Slides

TFE4152 - Lecture 6

Models and passives

Source

Week Book Monday Book Friday
34   Introduction, what are we going to do in this course. Why do you need it? WH 1 , WH 15 Manufacturing of integrated circuits
35 CJM 1.1 pn Junctions CJM 1.2 WH 1.3, 2.1-2.4 Mosfet transistors
36 CJM 1.2 WH 1.3, 2.1-2.4 Mosfet transistors CJM 1.3 - 1.6 Modeling and passive devices
37   Guest Lecture - Sony CJM 3.1, 3.5, 3.6 Current mirrors
38 CJM 3.2, 3.3,3.4 3.7 Amplifiers CJM, CJM 2 WH 1.5 SPICE simulation and layout
39   Verilog   Verilog
40 WH 1.4 WH 2.5 CMOS Logic WH 3 Speed
41 WH 4 Power WH 5 Wires
42 WH 6 Scaling Reliability and Variability WH 8 Gates
43 WH 9 Sequencing WH 10 Datapaths - Adders
44 WH 10 Datapaths - Multipliers, Counters WH 11 Memories
45 WH 12 Packaging WH 14 Test
46   Guest lecture - Nordic Semiconductor    
47 CJM Recap of CJM WH Recap of WH

Maze status (Exercise 6)

User Clock Cycles
martinmm 240
carstenw 3471

Goal for today

  • Common questions
  • Metal
  • Resistors
  • Capacitors
  • Inductors
  • Diodes
  • Electrostatic discharge

p-, p, p+, n-, n, n+

What does p-, p, p+ mean? We usually dope with \(N_A \approx 10^{21}\) to \(N_A \approx 10^{25}\) per \(m^3\)

\[N_{A(p-)} < N_{A(p)} < N_{A(p+)}\]

Why use it? Imagine a \(n+\) region in a \(p-\) material. We then know that \(N_A << N_D\) and the depletion region is mostly on the \(p-\) side.

How does \(n_i\) change with temperature?

Roughly doubles every 11 degrees (simple model)

\(n_i \approx 1.1e10 \times 2^{\frac{T - 300.15}{11}}\) [\(1/cm^3\)]

BSIM 4.8, Intrinsic carrier concentration (page 122)

\[n_i = 1.45e10\frac{TNOM}{300.15}\sqrt{\frac{T}{300.15}}exp\left[21.5565981 - \frac{qE_g(TNOM)}{2 k_b T}\right]\]
from scipy import constants
import numpy as np
import matplotlib.pyplot as plt
k_b = constants.Boltzmann
q = constants.physical_constants["elementary charge"][0]

E_g = 1.13
TNOM = 300.15
T = np.arange(TNOM,TNOM + 100)
n_i_simple = 1.1e10 * 2**((T - TNOM)/11)
n_i_bsim = 1.45e10*(TNOM/300.15) * np.sqrt(T/300.15) \
 * np.exp(21.5565981 - (q*E_g)/(2*k_b*T))
plt.semilogy(T,n_i_simple,label="Simple")
plt.semilogy(T,n_i_bsim,label="BSIM 4.8")
plt.legend()
plt.xlabel("Temperature [K]")
plt.ylabel(" $n_i$ [$1/cm^3$]")
plt.savefig("l6_ni.pdf")
plt.show()

Passives

Metal in ICs is not wire in schematic

Resistance ~ m\(\Omega\)/\(\square\)

Capacitance ~ aF/\(\mu\)m to fF/\(\mu\)m

Inductance ~ nH/mm

Max current ~ mA/\(\square\)

Layout Must simulate/know
All C Imax
Analog, Power R C Imax
Some RF, Some Power R L C Imax

Layout parasitic extraction Calibre xRC Synopsys StarRC Cadence Quantus

3D EM Simulators Keysight ADS HFSS

Transistor CAD (TCAD) Synopsys TCAD

Resistors

Polysilicon

Often two types, with, and without silicide

Silicide reduces resistance of polysilicon

Diffusion

Use doped region as resistor

Usually without silicide

Non-linear capacitance

Tricky temperature dependence

Metal

Usually too low omhic to be a useful resistor

Useful for “separating nets” in schematic and layout

Must be considered for power supply and ground routing (high currents)

Capacitors

What is S, M, L, XL on a chip?

nRF52832 \(3200 \mu m \times 3000 \mu m = 9600 k \mu m^2\)

S \(< 5 \text{ } k\mu m^2\) M \(< 50 \text{ } k\mu m^2\) L \(< 200 \text{ } k\mu m^2\) XL \(> 200 \text{ } k\mu m^2\)

Metal-Oxide-Metal finger capacitors

Unit capacitance \(\approx 1 fF/\mu m^2/layer\)

\[10 pF = 100 \mu m \times 100 \mu m = 10 k \mu m^2\]

MOS capacitors

dicex/sim/spice/NCHIO/vcap.cir

* gate cap

.include ../../../models/ptm_130.spi

vdrain D 0 dc 1
vgaini G 0 dc 0.5
vbulk B 0 dc 0
vcur S 0 dc 0

M1 D G S B nmos  w=1u  l=1u

.op

Moscap \(\approx 10 fF / \mu m^2\)

\[10 pF = 31 \mu m \times 31 \mu m \approx 1 k \mu m^2\]

dicex/sim/spice/NCHIO/vcap.vlog

Device m1:
	Vgs     (gate-source voltage)        [V] : 0.5
	Vgd     (gate-drain voltage)         [V] : -0.5
	Vds     (drain-source voltage)       [V] : 1
	Vbs     (bulk-source voltage)        [V] : 1.90808e-12
	Vbd     (bulk-drain voltage)         [V] : -1
	Id      (drain current)              [A] : 7.32634e-06
	Is      (source current)             [A] : -7.32633e-06
	Ibd     (bulk-drain current)         [A] : -1.01e-12
	Ibs     (bulk-source current)        [A] : 9.581e-25
	Vt      (threshold voltage)          [V] : 0.378198
	Vgt     (gate overdrive voltage)     [V] : 0.121802
	Vgsteff (effective vgt)              [V] : 0.12515
	Gm      (transconductance)           [S] : 8.44164e-05
	Gmb     (bulk bias transconductance) [S] : 2.00071e-05
	Ueff    (mobility)             [cm^2/Vs] : 417.675
	Gds     (channel conductance)        [S] : 1.95043e-07
	Rds     (output resistance)        [Ohm] : 5.12708e+06
	Vdsat   (drain saturation voltage)   [V] : 0.14171
	IC      (inversion coefficient)       [] : 4.42478
	Cgs     (gate-source capacitance)    [F] : 9.98457e-15
	Csg     (source-gate capacitance)    [F] : 5.86932e-15
	Cgd     (gate-drain capacitance)     [F] : 3.98239e-16
	Cdg     (drain-gate capacitance)     [F] : 3.91086e-15
	Cds     (drain-source capacitance)   [F] : 4.30968e-15
	Cgg     (gate-gate capacitance)      [F] : 1.05198e-14
	Cdd     (drain-drain capacitance)    [F] : 1.05198e-14
	Css     (source-source capacitance)  [F] : 0
	Cgb     (gate-bulk capacitance)      [F] : 1.05198e-14
	Cbg     (bulk-gate capacitance)      [F] : 1.74123e-15
	Cbs     (bulk-source capacitance)    [F] : 8e-16
	Cbd     (bulk-drain capacitance)     [F] : 3.97768e-16

Varactors (voltage dependent capacitor)

Inductors

Usually two top metals, because they are thick (low ohmic)

Use foundry model

3D electro magnetic simulation often needed

Variation in passives

Absolute value for resistors and capacitors $\approx \pm 10$% to $\pm 20$%

Relative precision for closely spaced devices $ \approx$ 0.1 % to 1 %

Relative precision for devices on same die \(> 2\)% or more

Relative precision

Resistors and Capacitors can be matched extremely well

\(i_3 = 0 = i_1 - i_2\) \(0 = \frac{V_i - V_o}{R} - \frac{V_o}{1/sC}\)
\(0 = V_i - V_o - V_o s R C\) \(V_o (1 + sRC) = V_i\)

\[\frac{V_o}{V_i} = \frac{1}{1 + sRC}\]

Assume standard deviation (\(\sigma\))1 of

\(\sigma_R = 20\)%, \(\sigma_C = 20\)%

\(\sigma_{RC} = \sqrt{0.2^2 + 0.2^2} = 28\)%

Diodes

Many, many ways

Reverse bias diodes to ground are useful for signals with long routing to transistor gate. Protects gate from breakdown during chemical mechanical polish.

Electrostatic Discharge

If you make an IC, you must consider Electrostatic Discharge (ESD) Protection circuits

Standards for testing at JEDEC

But I just want a digital input, what do I need?

Input buffer

  1. If you don’t remember how standard deviation works, read Introduction to mathematics of noise sources