Slides

TFE4152 - Lecture 5

MOSFET’s

Source

Week Book Monday Book Friday
34   Introduction, what are we going to do in this course. Why do you need it? WH 1 , WH 15 Manufacturing of integrated circuits
35 CJM 1.1 pn Junctions CJM 1.2 WH 1.3, 2.1-2.4 Mosfet transistors
36 CJM 1.2 WH 1.3, 2.1-2.4 Mosfet transistors CJM 1.3 - 1.6 Modeling and passive devices
37   Guest Lecture - Sony CJM 3.1, 3.5, 3.6 Current mirrors
38 CJM 3.2, 3.3,3.4 3.7 Amplifiers CJM, CJM 2 WH 1.5 SPICE simulation and layout
39   Verilog   Verilog
40 WH 1.4 WH 2.5 CMOS Logic WH 3 Speed
41 WH 4 Power WH 5 Wires
42 WH 6 Scaling Reliability and Variability WH 8 Gates
43 WH 9 Sequencing WH 10 Datapaths - Adders
44 WH 10 Datapaths - Multipliers, Counters WH 11 Memories
45 WH 12 Packaging WH 14 Test
46   Guest lecture - Nordic Semiconductor    
47 CJM Recap of CJM WH Recap of WH

Goal for today

  • Low frequency model
  • High frequency model
  • Subthreshold operation
  • Velocity saturation

  • Other effects
    • DIBL
    • WPE
    • Stress
    • Gate current
    • Breakdown effects

Low frequency model

\(g_{m} = \frac{\partial I_{DS}}{\partial V_{GS}}\\)

\(g_{ds} = \frac{1}{r_{ds}} = \frac{\partial I_{DS}}{\partial V_{DS}}\\)

Transconductance (\(g_m\))

Define \(\ell = \mu_n C_{ox} \frac{W}{L}\) and \(V_{eff} = V_{GS} - V_{tn}\)

\(I_{D} = \frac{1}{2} \ell (V_{eff})^2\) and \(V_{eff} = \sqrt{\frac{2I_{D}}{\ell}}\) and \(\ell = \frac{2I_D}{V_{eff}^2}\)

\[g_m = \frac{ \partial I_{DS}} {\partial V_{GS}} = \ell V_{eff} = \sqrt{2 \ell I_{D}}\] \[g_m = \ell V_{eff} = 2 \frac{I_D}{V_{eff}^2} V_{eff} = \frac{2 I_D}{V_{eff}}\]

Define \(\ell = \mu_n C_{ox} \frac{W}{L}\) and \(V_{eff} = V_{GS} - V_{tn}\)

\[I_D = \frac{1}{2} \ell V_{eff}^2[1 + \lambda V_{DS} - \lambda V_{eff})]\] \[\frac{1}{r_{ds}} = g_{ds} = \frac{ \partial I_D}{\partial V_{DS} } = \lambda \frac{1}{2} \ell V_{eff}^2\]

Assume channel length modulation is not there, then

\(I_D = \frac{1}{2} \ell V_{eff}^2\) which means \(\frac{1}{r_{ds}} = g_{ds} \approx \lambda I_D\)

Intrinsic gain

Define intrinsic gain as

\[A = \left|\frac{v_{out}}{v_{in}}\right| = g_m r_{ds} = \frac{g_m}{g_{ds}}\] \[A = \frac{2 I_D}{V_{eff}} \times \frac{1}{ \lambda I_D } = \frac{2}{\lambda V_{eff}}\]

vgaini = Gate Source Voltage = \(V_{eff} + V_{tn}\)

Body Effect

Bulk voltage

Param Voltage [V]
VGS 0.5
VDS 1.0
VS 0
VB -1.0 to 0.3

\[V_{tn} = V_{tn0} + \gamma \left(\sqrt{ V_{SB} + | 2 \phi_F |} - \sqrt{| 2 \phi_F |} \right)\] \[V_{tn} = V_{tn0} + \gamma \sqrt{|2 \phi_F|} \left(\sqrt{ \frac{V_{SB}}{| 2 \phi_F |} + 1 } - 1 \right)\]

\(\gamma = \frac{ \sqrt{ 2 q N_A K_{si} \epsilon_0}}{C_{ox}}\) \(\Phi_F = V_T ln\left(\frac{N_A}{n_i}\right)\)

\[V_{SB} = 0, V_{tn} = V_{tn0}\] \[V_{SB} > 0, V_{tn} > V_{tn0}\] \[V_{SB} < 0, V_{tn} < V_{tn0}\]

High frequency model

\(C_{gs}\) and \(C_{gd}\)

\[C_{gs} = \begin{cases} WLC_{ox} & \text{if }V_{DS} = 0 \\[15pt] \frac{2}{3}WLC_{ox} & \text{if }V_{DS} > V_{eff} \\[15pt] \end{cases}\] \[C_{gd} = C_{ox} W L_{ov}\]

\(C_{sb}\) and \(C_{db}\)

Both are depletion capacitances, ref lecture 3

\[C_{sb} = (A_s + A_{ch}) C_{js}\] \[C_{js} = \frac{C_{j0}}{\sqrt{1 + \frac{V_{SB}}{\Phi_0}}}\] \[\Phi_0 = V_T ln\left(\frac{N_A N_D}{n_i^2}\right)\] \[C_{db} = A_d C_{jd}\] \[C_{js} = \frac{C_{j0}}{\sqrt{1 + \frac{V_{DB}}{\Phi_0}}}\]

Be careful with \(C_{gd}\) (blame Miller)

You will derive Miller theorem in the future (p 169)

If \(Y(s) = 1/sC\) then \(Y_1(s) = 1/sC_{in}\) and \(Y_2(s) = 1/sC_{out}\) where \(C_{in} = (1 + A) C\), \(C_{out} = (1 + \frac{1}{2})C\)

\[C_{1} = C_{gd} g_{m} r_{ds}\]

\(C_{gd}\) can appear to be 10 to 100 times larger!

if gain from input to output is large

Weak inversion

or subthreshold

If \(V_{eff} < 0\) diffusion currents dominate.

\(I_{D} = I_{D0} \frac{W}{L} e^{V_eff / n V_T}\), where

\(V_T = kT/q\), \(n = (C_{ox} + C_{j0})/C_{ox}\)

\[I_{D0} = (n - 1) \mu_n C_{ox} V_T^2\] \[g_m = \frac{I_D}{nV_T}\]

\(g_m/I_D\) or “bang for the buck”

Subthreshold:

\[\frac{g_m}{I_D} = \frac{1}{nV_T} \approx 25.6 \text{ [S/A] @ 300 K}\]

Strong inversion:

\[\frac{g_m}{I_D} = \frac{2}{V_{eff}}\]

Velocity saturation

Electron speed limit in silicon

\[v \approx 10^7 cm/s\] \[v = \mu_n E = \mu_n \frac{dV}{dx}\]

\(\mu_n \approx 100 \text{ to } 600 \text{ } cm^2/Vs\) in nanoscale CMOS

Square law model

\[Q(x) = C_{ox}\left[V_{eff} - V(x)\right]\] \[v = \mu_n E = \mu_n \frac{dV}{dx}\] \[\ell = \mu_n C_{ox} \frac{W}{L}\] \[I_{D} = W Q(x) v = \ell L \left[ V_{eff} - V(x)\right] \frac{dV}{dx}\] \[I_{D} dx = \ell L \left[ V_{eff} - V(x)\right] dV\] \[I_{D} \int_0^L{dx} = \ell L \int_0^{V_{DS}}{\left[ V_{eff} - V(x)\right] dV}\] \[I_{D} \left[x\right]_0^L = \ell L \left[V_{eff}V - \frac{1}{2}V^2\right]_0^{V_{DS}}\] \[I_{D} L = \ell L \left[V_{eff}V_{DS} - \frac{1}{2} V_{DS}^2\right]\] \[@ V_{DS} = V_{eff} \Rightarrow I_{D} = \frac{1}{2} \ell V_{eff}^2\]

Mobility Degredation

Multiple effects degrade mobility

  • Velocity saturation
  • Vertical fields reduce channel depth => more charge-carrier scattering
\[\ell = \mu_n C_{ox} \frac{W}{L}\] \[\mu_{n\_eff} = \frac{\mu_n}{([1 + (\theta V_{eff})^m])^{1/m}}\] \[I_{D} = \frac{1}{2} \ell V_{eff}^2 \frac{1}{([1 + (\theta V_{eff})^m])^{1/m}}\]

From square law \(g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \ell V_{eff}\)

With mobility degredation \(g_{m(mob-deg)} = \frac{\ell}{2 \theta}\)

What about holes (PMOS)

In PMOS holes are the charge-carrier.

\[\mu_p < \mu_n\]

In intrinsic silicon: \(\mu_n \leq 1400 [cm^2/Vs] = 0.14 [m^2/Vs]\) \(\mu_p \leq 450 [cm^2/Vs] = 0.045 [m^2/Vs]\)

\[\mu_n \approx 3\mu_p\]

\(v_{n\_max} \approx 2.3 \times 10^5 [m/s]\) \(v_{p\_max} \approx 1.6 \times 10^5 [m/s]\)

Doping (\(N_A \text{or} N_D\)) reduces \(\mu\)

Assume we want same current in strong inversion and active region

What should \(\frac{W_p}{W_n}\) be?

OTHER

As we make transistors smaller, we find new effects that matter, and that must be modelled.

which is an opportunity for engineers to come up with cool names

https://ieeexplore.ieee.org/document/5247174

Drain induced barrier lowering (DIBL)

Well Proximity Effect (WPE)

Stress effects

Stress PMOS NMOS
Stretch Fz Good Good
Compress Fy OK Good
Compress Fx Good Bad

What can change stress?

Gate current

Hot carrier injection

Channel initiated secondary-electron (CHISEL)

Analog Design Recommendations

Unit size transistors for analog design

\(W/L \in[4, 6, 10]\), but should have space for two contacts

Use parallell transistors for larger W/L

Amplifiers \(L = 1.2 \times L_{min}\)

Current mirrors \(L = 4 \times L_{min}\)

Choose sizes that have been used by foundry for measurement to match SPICE model

Unit transistor layout

Use 2 fingers (parallel transistors)

Never rotate transistors

Make sure bulk is close