l4_mosfets
- TFE4152 - Lecture 4
- MOSFET’s
- Goal for today
- Metal-Oxide-Semiconductor (MOS) Transistors
- Drain Source Current (\(I_{DS}\))
- Large signal model
- Gate-source voltage
- Inversion level
- Weak inversion
- Moderate inversion
- Strong inversion
- The threshold voltage (\(V_{tn}\)) is defined as \(p_p = n_{ch}\)
- \(C_{GS} \text{ for } V_{DS} = 0, V_{S} = 0\)
- Drain-source voltage
- Strong inversion
TFE4152 - Lecture 4
MOSFET’s
Source
Goal for today
- Symbols
- Current characteristics
- Operating regions
- The square-law model
- Channel length modulation
- The small signal model (low frequency)
- Bulk Effect
Metal-Oxide-Semiconductor (MOS) Transistors
NMOS conduct for positive gate-to-source voltage
PMOS conduct for negative gate-to-source voltage
Drain Source Current (\(I_{DS}\))
dicex/sim/spice/NCHIO
Large signal model
\(I_{DS} = f(V_{GS},V_{DS},...)\)
Gate Source Voltage (\(V_{GS}\))
dicex/sim/spice/vgate.cir:
.include ../../../lib/SUN_TRIO_GF130N.spi
.include ../../../models/ptm_130.spi
vdrain D 0 dc 1
vgate G 0 dc 0.5
vbulk B 0 dc 0
vcur S 0 dc 0
X1 D G S B NCHIO
.dc vgate 0 1.8 0.01
.plot I(vcur)
dicex/lib/SUN_TRIO_GF13N.spi:
.SUBCKT NCHIO D G S B
M1 D G S B nmos w=1.08u l=0.6u
.ENDS
dicex/models/ptm_130.spi
.model nmos nmos level = 21
+version = 4.0 binunit = 1 paramchk= 1 mobmod = 0
+capmod = 2 igcmod = 1 igbmod = 1 geomod = 1
+diomod = 1 rdsmod = 0 rbodymod= 1 rgatemod= 1
+permod = 1 acnqsmod= 0 trnqsmod= 0
+tnom = 27 toxe = 2.25e-9 toxp = 1.6e-9 toxm = 2.25e-9
+dtox = 0.65e-9 epsrox = 3.9 wint = 5e-009 lint = 10.5e-009
...(about 60 more lines)
Gate-source voltage
Param | Voltage [V] |
---|---|
VGS | 0 to 1.8 |
VDS | 1.0 |
VS | 0 |
VB | 0 |
Inversion level
Define \(V_{eff} \equiv V_{GS} - V_{tn}\), where \(V_{tn}\) is the “threshold voltage”
Veff | Inversion level |
---|---|
< 0 | weak inversion or subthreshold |
0 | moderate inversion |
> 100 mV | strong inversion |
Weak inversion
The drain current is low, but not zero, when \(V_{eff} << 0\)
\[I_{DS} \approx I_{D0} \frac{W}{L} e^{V_{eff}/n V_{T}} \text{ if } V_{DS} > 3 V_{T}\] \[n \approx 1.5\]Moderate inversion
Stay away from moderate inversion for analog design.
If you can’t, then trust the model
Strong inversion
\[I_{DS} = \mu_n C_{ox} \frac{W}{L} \begin{cases} V_{eff} V_{DS} & \text{if }V_{DS} << V_{eff} \\[15pt] V_{eff} V_{DS} - V_{DS}^2/2 & \text{if } V_{DS} < V_{eff} \\[15pt] \frac{1}{2} V_{eff}^2 & \text{if } V_{DS} > V_{eff} \\[15pt] \end{cases}\]The threshold voltage (\(V_{tn}\)) is defined as \(p_p = n_{ch}\)
Gate Source Capacitance (\(C_{GS}\))
\(C_{GS} \text{ for } V_{DS} = 0, V_{S} = 0\)
In strong inversion
\[C_{GS} = W L C_{ox}\]where
\[C_{ox} = \frac{K_{ox} \epsilon_0}{t_{ox}}\] \[Q_{ch} = W L C_{ox} V_{eff}\]Drain Source Voltage (\(V_{DS}\))
Drain-source voltage
Param | Voltage [V] |
---|---|
VGS | 0.5 |
VDS | 0 to 1.8 |
VS | 0 |
VB | 0 |
Strong inversion
\[I_{DS} = \mu_n C_{ox} \frac{W}{L} \begin{cases} V_{eff} V_{DS} & \text{if }V_{DS} << V_{eff} \\[15pt] V_{eff} V_{DS} - V_{DS}^2/2 & \text{if } V_{DS} < V_{eff} \\[15pt] \frac{1}{2} V_{eff}^2 & \text{if } V_{DS} > V_{eff} \\[15pt] \end{cases}\]Head simulation
Channel length modulation
\[I_{DS} = \mu_n C_{ox} \frac{W}{L} \begin{cases} V_{eff} V_{DS} & \text{if }V_{DS} << V_{eff} \\[15pt] V_{eff} V_{DS} - V_{DS}^2/2 & \text{if } V_{DS} < V_{eff} \\[15pt] \frac{1}{2} V_{eff}^2[1 + \lambda(V_{DS} - V_{eff})] & \text{if } V_{DS} > V_{eff} \\[15pt] \end{cases}\]\(\lambda = \frac{k_{ds}}{2L\sqrt{V_{DS} - V_{eff} + \Phi_0}}\), where \(k_{ds} = \sqrt{\frac{2K_s \epsilon_0}{q N_A}}\)