lectures/l9_amplifiers

TFE4152 - Lecture 9

Current mirrors and Amplifiers

Source

Week Book Monday Book Friday
34 Introduction, what are we going to do in this course. Why do you need it? WH 1 , WH 15 Manufacturing of integrated circuits
35 CJM 1.1 pn Junctions CJM 1.2 WH 1.3, 2.1-2.4 Mosfet transistors
36 CJM 1.2 WH 1.3, 2.1-2.4 Mosfet transistors CJM 1.3 - 1.6 Modeling and passive devices
37 Guest Lecture - Sony CJM 3.1, 3.5, 3.6 Current mirrors
38 CJM 3.2, 3.3,3.4 3.7 Amplifiers CJM, CJM 2 WH 1.5 SPICE simulation and layout
39 Verilog Verilog
40 WH 1.4 WH 2.5 CMOS Logic WH 3 Speed
41 WH 4 Power WH 5 Wires
42 WH 6 Scaling Reliability and Variability WH 8 Gates
43 WH 9 Sequencing WH 10 Datapaths - Adders
44 WH 10 Datapaths - Multipliers, Counters WH 11 Memories
45 WH 12 Packaging WH 14 Test
46 Guest lecture - Nordic Semiconductor
47 CJM Recap of CJM WH Recap of WH
## Goal for today
Current mirrors
Amplifiers

Errata

Process variations - Correction

Wrong Assume strong inversion and active $$ V_{eff} = \sqrt{2\mu_p C_{ox} \frac{W}{L} I_1} $$

Correct Assume strong inversion and active $$ V_{eff} = \sqrt{\frac{2}{\mu_p C_{ox} \frac{W}{L}} I_1} $$

Large signal vs small signal

I ≠ i

V ≠ v

I = Ibias + i

V = Vbias + v

Current Mirror

M1 is diode connected (VG = VD)

Current mirror rin

$$ r_{ds} = \frac{1}{g_{ds}} $$

$$ r_{in} = \frac{v}{i} $$

i = gmv + gdsv

$$ r_{in} = \frac{1}{gm + gds} \approx \frac{1}{gm} $$

## Current mirror rout
Output voltage does not affect vgs
rout = rds

Source degeneration

What is the operating region of M3 and M4?

What is the operating region of M1 and M2?

Source degeneration rout

vgs1 = 0

vgs2 =  − vs

i = gds1vs ⇒ vs = irds1

$$r_{out} = \frac{v}{i}$$

$$i = -g_{m2} v_{s} + \frac{v - v_s}{r_{ds2}}$$

$$i = -g_{m2} v_{s} + \frac{v - v_s}{r_{ds2}}$$ insert vs = irds1

$$i = -i g_{m2} r_{ds1} + \frac{v - i r_{ds1}}{r_{ds2}}$$

irds2 + igm2rds1rds2 + irds1 = v

$$ r_{ds2} + g_{m2}r_{ds1}r_{ds2} + r_{ds1} = \frac{v}{i} $$

$$ r_{out} = r_{ds2} \left[1 + r_{ds1} \left( \frac{1}{r_{ds2}} + g_{m2}\right )\right] $$

rout = rds2[1+rds1(gm2+gds2)]

rout = rds2[1+rds1(gm2+gds1)]

Cascode current mirror

Same equation as source degeneration, but M2 is in saturation

rds2(saturation) > rds2(linear)

rout = rds4[1+rds2(gm4+gds2)]

One more current mirror …

“High speed, high gain OTA in a digital 90nm CMOS technology” Berntsen, Wulff, Ytterdal

> image ../ip/berntsen.png removed

Amplifiers

Source follower

## Source follower
Input resistance  ≈ ∞
Gain $$ A = \frac{v_o}{v_i}$$?
Output resistance rout?

Source follower - Gain

io = vo(gds+gs) − gmvi + vogm

io = 0

gmvi = vo(gm+gs+gds)

$$ A = \frac{v_o}{v_i} = \frac{g_m}{g_m + g_{ds} + g_s} $$

Gain is less than 1

Source follower - rout

io = vo(gds+gs) − gmvi + vogm

vi = 0

io = vo(gds+gs+gm)

$$ r_{out} = \frac{v_o}{i_o} = \frac{1}{g_m + g_{ds} + g_{s}} $$

$$ r_{out} \approx \frac{1}{g_m}$$

Assume 100 electrons

ΔV = Q/C =  − 1.6 × 10−19 × 100/(1×10−15) =  − 16 mV

ΔV = Q/C =  − 1.6 × 10−19 × 100/(1×10−12) =  − 16 uV

Common gate

Common gate

Input resistance ?

Gain ?

Output resistance ?

Common gate - rin

i = gmv + gdsv

$$ r_{in} = \frac{1}{g_m + g_{ds}} \approx \frac{1}{g_m}$$

However, we’ve ignored load resistance.

$$ r_{in} \approx \frac{1}{g_m}\left(1 + \frac{R_L}{r_{ds}}\right) $$

Common gate - rout

Common gate - rout

rout = rds

Common gate - Gain

Common gate - Gain

$$ i_{o} = - g_m v_{i} + \frac{v_{o} - v_{i}}{r_{ds}} $$

io = 0

0 =  − gmvirds + vo − vi

vi(1+gmrds) = vo

$$ \frac{v_o}{v_i} = 1 + g_m r_{ds} $$

Common gate - Gain

We’ve ignored bulk effect (gs), source resistance (RS) and load resistance (RL)

$$ A = \frac{(g_{m} + g_s + g_{ds})(R_L||r_{ds})}{1 + R_S\left(\frac{g_m + g_s + g_{ds}}{1 + R_L/r_{ds}}\right)}$$

If RL >  > rds, RS = 0 and gs = 0

$$ A = \frac{(g_{m} + g_{ds})r_{ds}}{1} = 1+ g_m r_{ds} $$

Common source

Common source

Input resistance rin ≈ ∞

Output resistance rout = rds, it’s same circuit as the output of a current mirror

Gain ?

## Common source - Gain
$$ i_{o} = g_m v_i + \frac{v_o}{r_{ds}} $$
io = 0
$$ -g_m v_i = \frac{v_o}{r_{ds}} $$
$$ \frac{v_o}{v_i} = - g_m r_{ds}$$

## Differential pair
Input resistance rin ≈ ∞
Gain A = gmrds
Output resistance rout = rds
Best analyzed with T model of transistor (see CJM page 31)

Diff pairs are cool

Can choose between

vo = gmrdsvi

and

vo =  − gmrdsvi

by flipping input (or output) connections

Thanks!