
1

A Compiled 9-bit 20 MS/s 3.5 fJ/conv.step SAR

ADC in 28 nm FDSOI for Bluetooth Low Energy

Receivers
Carsten Wulff, Member, IEEE, Trond Ytterdal, Senior Member, IEEE

Abstract—This paper presents a low power 9-bit com-

piled successive-approximation register (SAR) analog-to-

digital converter (ADC) for Bluetooth low energy receivers.

The ADC is compiled from a SPICE netlist, a technology

rule file, and an object definition file into a design rule

check (DRC) and layout versus schematic (LVS) clean

layout and schematic in 28 nm FDSOI. The compiled

SAR ADC reduces the design time necessary to port to a

new technology, and to demonstrate technology porting the

same SAR ADC architecture is compiled in 28 nm FDSOI

with IO transistors. This work also includes a comparator

clock generation loop that uses the bottom plate of

the capacitive digital-to-analog converter. The proposed

compiled core transistor SAR ADC achieves state-of-the-

art FoM of 2.7 fJ/conv.step at 2 MS/s, and 3.5 fJ/conv.step

at 20 MS/s with an area of 0.00312 mm2.
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I. INTRODUCTION

A
low-power, medium resolution analog-to-digital

converter (ADC) is a key building block in

Bluetooth® low energy [1] receivers. Low power in the

ADC is essential, as it can take up a large portion of

the receiver power budget, especially since two ADCs

are usually required in receivers with quadrature down-

conversion; one for the real branch, and one for the

imaginary branch.

In a Bluetooth® low energy receiver the design time

of the ADC can be high compared to design time of the

anti-alias filter, low-noise amplifier, and mixer. Reducing

design time of ADCs is an active research area, and part

of this research is analog layout generation.

One of the challenges with analog layout generation

is the large solution space. A schematic designer has

freedom to choose from any architecture, any combi-

nation of transistors, and a large number of transistor

widths and lengths. The schematic alone is not sufficient

to fully determine the layout. For example, the schematic

does not contain placement information for layout, since

the optimum layout placement might be different from

optimal schematic placement.

Analog layout generation has a long history with

works from the previous century [2], [3], but state-of-

the-art analog layout generation, as reviewed in [4], is

not widely adopted. More promising research avenues

avoid the challenge of analog layout generation from

schematics, by not having a schematic. Recently, ADCs

have been compiled in a digital flow [5], [6], and al-

though the ENOB was less than 6-bit, it is an interesting

approach. A similar approach has been used successfully

for all-digital PLLs [7].

This work, first introduced at a conference [8],

presents a method where the layout is not generated

based on drawn schematics. The ADC is described using

an approach borrowed from object oriented program-

ming. A custom compiler is used to compile the ADC.

The ADC is described in a SPICE netlist, an object

definition file, and a technology rule file. The compiler

outputs a schematic and layout in SKILL1 and GDSII.

The output can be loaded into Cadence Virtuoso and a

standard design flow can be used for parasitic extraction,

simulation, and verification.

To reduce the solution space, the presented method

uses a limited set of circuit blocks, a low complexity

ADC architecture, and proposes a technology indepen-

dent method for generating a design rule check (DRC)

and layout versus schematic (LVS) clean schematic and

layout in multiple technologies. Technology indepen-

dence in this work has been modeled with a tapeout

of one ADC in 28 nm FDSOI with core transistors, and

another in 28 nm FDSOI with IO transistors.

To demonstrate that an ADC can be compiled is not

sufficient to displace traditional analog design method-

ology. A compiled ADC is of limited use unless it can

1SKILL is the Lisp variant script language used in Cadence

Virtuoso



2

be demonstrated that the performance can match state-

of-the-art ADCs. To the best of the authors knowledge,

this work presents the most efficient compiled ADC and

achieves a FoM comparable to the state-of-the-art [9]–

[11] (as surveyed in [12]) with a smaller area, making it

perfectly suited for Bluetooth® low energy receivers.

The remainder of this paper is organized as follows:

Section II describes the SAR ADC architecture, while

Section III describes the compiler. Section IV describes

the design methodology using the compiler. Measure-

ment results are shown in Section V and conclusions

given in Section VI.

II. SAR ADC ARCHITECTURE

The successive-approximation register (SAR) ADC

architecture proposed in this work includes a technique

that uses the bottom plate of the capacitive digital-

to-analog converter (CDAC) in the bit-cycling clock

generation loop. Two clocks are commonly used in SAR

ADCs. One to set the sample rate, which in this work

is applied externally to the ADC, and one bit-cycling

clock, which can be generated locally in the ADC.

A typical SAR ADC architecture can be seen in Fig.

1(a), with a comparator, SAR logic, and the CDAC.

The comparator is forced into reset during sampling

(CK = 1), and it triggers when the sample clock turns

off. It is common to use detection methods to determine

when the comparator has made a decision, and use this

to trigger the subsequent resets of the comparator. Such

self-timed loops, shown in Fig. 1(a), are common in prior

art [9], [13]–[15].

One of the challenges in a self-timed loop is to allow

sufficient time for the CDAC to settle. Each time the

comparator makes a decision, one (or more) of the

capacitors are switched and the resulting transient must

settle to the accuracy of the ADC. It is possible to

use circuit techniques like delay cells [9], [13], [14], or

replica delays [15] to adjust the time between comparator

decisions. Common to these techniques is that they try

to model the required CDAC settling time, and allow

enough time before the comparator makes the next

decision. In this work, we use the bottom plate of the

CDAC directly in the comparator clock generation loop

to improve robustness, and ensure sufficient time for

CDAC settling, as shown in Fig. 1(b).

The SAR ADC architecture used to demonstrate the

compiler is shown in Fig. 2(a). It has NMOS boot-

strapped input switches, a strong-arm comparator with

kick-back compensation [16], and a metal-oxide-metal

finger CDAC.

Sampling of the differential input signal (VP −VN ) is

controlled by the sample clock CK. The sample clock

Prior works

SAR

Logic

CK

C[X : 0]

VINPUT

+

CK

−

(a) Clock generation separate from CDAC

CK CMP

Delay

This work

SAR

Logic

CK

C[X : 0]

VINPUT

+

CK

−

(b) Clock generation including CDAC

CK CMP

Delay

Fig. 1. Comparator clock generation in: (a) Prior works, (b) This

work.

has a duty-cycle of less than 25 % to increase the time

available for the SAR algorithm. The first SAR logic

block (LOGIC[8]) is enabled when CK = 0, the next

logic block (LOGIC[7]) is enabled when LOGIC[8]
has completed and sets EO = 1. The bit-cycling contin-

ues until EO = 1 for the last logic block (LOGIC[0]).
The comparator clock (CK CMP ) is generated by

the loop that starts with the comparator outputs (P and

N ) into the SAR logic blocks and out from the CO
output. A pulse signal is generated internally in the SAR

logic, and the CI and CO form a chain of OR gates.

The digital output from each stage is DP1.

The bottom plate of the CDAC capacitors are con-

trolled directly by the DP0, DP1, DN0 and DN1 signals,

which switch between ground and the reference voltage.

The reference voltage is at the same voltage as the

supply voltage. The first five stages of the ADC use

split monotonic switching [17] to reduce the common

mode variation, while the last four stages use monotonic

switching [18]. In a monotonic based scheme, an 8-

bit CDAC is sufficient. The SAR ADC in this work is

intended as building block for noise-shaped SAR ADCs

[14], where the last residue is needed, thus it uses a 9-bit

CDAC.

The compiled ADC uses unit transistors for all blocks

in the design, as explained below. One unit transistor

size is used for both PMOS and NMOS. The W = 258

nm and L = 30 nm for the core transistors, and W = 344

nm and L = 180 nm for the IO transistors. A small unit

transistor was chosen to reduce the power consumption
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Fig. 2. Proposed SAR ADC architecture with: (a) Block diagram, (b) Enable logic, (c) CDAC state control, (d) Clock generation.

in the comparator and digital logic. The schematic and

sizing of the comparator [16] is shown in Fig. 3. The

boot-strapped switch transistor has four unit transistors

in parallel.

The SAR logic consists of three parts: enable logic

(Fig. 2(b)), CDAC state control (Fig. 2(c)), and clock

generation loop (Fig. 2(d)). During sampling of the ADC

input the SAR logic is reset (CK = 1). In the enable

logic of the first stage EI = CK = 0, and node A = 1,

while EO = 0. Thus EI = EO = 0 of all subsequent

stages. The CDAC state control has DP0 = DN1 = 0
while DN0 = DP1 = 1. In the clock generation loop

of the first stage CI = 0, and since node B = 0, then

CO = 0. Accordingly CI = CO = 0 for all subsequent

stages.

The first comparator decision is initiated by CK = 0
(steps 1 and 2 in Fig. 4). At that point the first latch

(MN0 − MN2,MP0) in the enable logic is armed, and

as soon as (P ||N) = 1, then A = 0. This arms the

second latch (MN3,MP1 − MP3) in the enable logic.

Still EO = 0. The CDAC state control is also triggered

by (P ||N) = 1 (step 3 in Fig. 4).

The advantage of the bit-cycling clock generation loop

in this work, is that it includes the transition of DP1

and DN0. Since either DP1 or DN0 is guaranteed to

transition from high to low, these signals can be used to

trigger comparator reset. When either DP1 or DN0 = 0
then MP6 or MP7 turns on, and sets node B = 1, and

consequently CO = 1 (step 4 in Fig. 4).

The comparator in Fig. 3 is reset when CK CMP =
0, which occurs when CO = 1, since CK = 0, and for

the last stage EO = 0 (steps 5 and 6 in Fig. 4). The

comparator will set signals P = N = 0, which turns on

transistors MP2 and MP1, and sets EO = 1 (step 7).

This enables the next stage, and locks the state of the

CDAC state control, since MN5 and MN8 turn off. Also,

CO = 0 and in the end CK CMP = 1 (step 8 and 9 in

Fig. 4), which clocks the comparator once more, and the

next bit is decided. The bit-cycling ends when EO = 1
for the last stage.

III. COMPILER

The key contribution in this work is to speed up the

design time of SAR ADCs, and reduce the effort neces-

sary to port a design to another technology. Schematic

capture, simulation, layout, and parasitic netlist simula-

tion, is a time consuming endeavor for ADCs. For charge

based SAR ADCs the small unit capacitance make them

sensitive to poor layout. It is common to spend time

tracking down fF parasitics, and redoing layout. The

design time would be shorter if one could generate

DRC/LVS clean layout in minutes, instead of days. Rapid

ADC generation would allow for more iterations before

tapeout, and could even allow automatic exploration of

the design space. It could also enable rapid porting to

another technology.
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Fig. 4. Timing diagram of the SAR logic.

The compiler in this work (a Perl script) compiles a

core transistor SAR ADC into GDSII in 2.7 seconds

on a Macbook Air with 1.7GHz Intel Core i7. The Perl

version of the compiler is closed source, but there is a

reduced feature set open source version written in C++

[19], which compiles a SPICE netlist, an object definition

file, and a rule file of a core transistor SAR ADC into

GDSII in 0.35 seconds.

The SPICE netlist does not contain transistor lengths

or transistor widths, rather it contains references to unit

transistors. The unit transistor can be series connected,

or parallel connected.

The object definition file is written in JavaScript Ob-

ject Notation (JSON) [20], a common text data format,

which is supported in most programming languages. The

object definition file, which contains the definition of

the unit transistor, does not contain absolute dimensions,

thus it is technology independent. The object definition

file also defines the routing of blocks in the ADCs. Ab-

solute dimensions, and technology specific information

are defined in a rule file.

The remainder of this Section is organized as follows,

the rule file is described in Section III-A, while the

unit transistor is described in Section III-B, and the unit

capacitor in Section III-C. The place and route of the

design is described in Section III-D, while the top level

SAR ADC layout is described in Section III-E.

A. Technology rule file

The rule file contains the GDSII layer numbers, GDSII

data-type, layer material definitions, what cuts (vias) to

use for transitions between layers, and design rules.

All rules, like poly width, cut size, metal width,

metal spacing and metal cut enclosure are based on

a dimensionless parameter GAMMA. The layout rules

in this work are inspired by early work on dimen-

sionless layout rules, or LAMBDA rules, where the

LAMBDA parameter was equal to half the minimum

feature size (F/2 ) [21]. The dimensionless rule approach

was further extended to nano-scale technologies with

GAMMA = F/4 in [22], [23].

In this work the GAMMA has been redefined to F/6
to allow better granularity of the layout rules.

In the rule file for 28 nm FDSOI there are 140 unique

rules, but 95 of those are for the different metals and

cuts (spacing, width, enclosure).

The compiler can automatically insert cuts between

layers, and to build the cuts the material type (active,

cut, metal, poly), and the connect stack (PO to CO to

M1, M1 to VIA1 to M2), is defined in the rule file for

each of the layers.

B. Unit transistor

The structure of the object definition file is inspired

by object oriented programming, where all objects are

instances of a class. The class is defined in the compiler,

and the compiler has classes for transistors, capacitors,

resistors, digital cells and complex cells (CDAC, SAR

ADC).

The layout rules for nano-scale transistors contain

complex spacing rules. In the 28 nm FDSOI design rule

deck there are close to 5000 design rules. Not all these

rules relate to transistors, but it is complex to design a
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DRC clean programmable transistor cell that can support

multiple technologies, from multiple foundries. Instead

of a complex programmable transistor cell this work

implements a simplified transistor cell. The layout of the

transistor can be seen in Fig. 5.

To avoid complex rules the rule file defines two

numbers, the vertical grid size and the horizontal grid

size. For the ADCs in 28 nm FDSOI the grids are

the same (86 nm), but two numbers are defined in the

compiler for future flexibility. The compiler also supports

modification of the grid on a per cell basis, and multiple

unit transistors in a design.

The grid size controls the spacing between poly gates,

the active enclosure of cuts, the metal enclosure of cuts,

the dummy poly to active spacing and the poly to cut

spacing. To improve manufacturability the transistor has

two cuts for drain, source and poly, regular poly pitch

to improve poly critical dimension (CD) and enlarged

metal one rectangles to satisfy minimum metal area

DRC rules. There are vertical routing channels between

active and gate, and gate and bulk contact to simplify

routing. On neighboring transistors the dummy poly can

be overlapped to ensure regular poly pitch over large

distances.

The unit transistor is described in the object definition

file as an ASCII code as shown in Fig. 6. The ASCII

has a NxM matrix where each cell is one grid in size.

A − character means empty space, x means the grid

is filled. m means the grid is filled horizontally, but the

height of the rectangle is the minimum routing width for

that layer. For w the grid is also filled horizontally, but

the height of the rectangle is the normal routing width

for that layer. K, C, and c make cuts to the next layer.

D,G, S,B are the familiar ports of the transistor.

The PMOS and NMOS have the same physical dimen-

sions, thus they differ only by their respective implant

layers and well definitions. The compiler supports the

object oriented programming concept of inheritance,

where an object can inherit all features of a parent.

One example is the PMOS in Fig. 6, which inherits

the DMOS. The function addEnclosures searches the

parent cell and finds the OD rectangles, adds P-implant

layer, and low threshold voltage layer with enclosures

defined in the rule file. This object oriented design

approach allows complex cells to be constructed from

small modifications of existing cells.

To make the unit transistor DRC clean requires an

iterative process where the transistor layout is compiled,

DRC checks are run, and grid sizes adjusted until the

transistor is DRC clean. With this simplified transistor

there is a risk that it will not fit all technologies, but so

far DRC clean transistors have been compiled in 28 nm

G

S

B

D

Vertical Grid

Horizontal Grid

COOD PO M1

Fig. 5. Unit transistor layout.

// Unit transistor definition

{ "name" : "DMOS" ,
"class" : "Gds::GdsPatternTransistor",
"fillCoordinatesFromStrings" : [

[ "OD",
"------------------xxxx",
"----xxK-----------xCxC",
"----xxx-----------xxxx",

"----xxK-----------xCxC",
"------------------xxxx"

],
[ "PO",

"-mmmmmmmmmmmmm--------",
"----------------------",
"-mmmmmmmmmmcxc--------",
"----------------------",

"-mmmmmmmmmmmmm--------"
],
[ "M1",

"------------------xxxx",
"----wDww----------xxxx",
"-----------wGww---xBxx",
"----wSww----------xxxx",
"------------------xxxx"

]

]
},
// PMOS definition

{ "name" : "PCHDL",
"inherit" : "DMOS",
"beforePlace" :{
"addEnclosures" : [
["OD",1,["PP","LVT"]],
["OD",0,["PP"]]

]
}

}

Fig. 6. Object definition of the unit transistor (DMOS) and the

PMOS (PCHDL).

FDSOI, 28 nm, 65 nm and 55 nm.

C. Unit capacitor

The building block for the 9-bit CDAC is a 5-bit

CDAC cell, with an additional unit capacitor to make 32

unit capacitors. A 3D view [24] can be seen in Fig. 7(a),

and the cell in Fig. 7(b). The bottom plate is a metal

finger in metal four and metal three. The capacitor top

plate surrounds the bottom plate fingers in metal four.

The bottom plate routing, in metal one, is covered by

a ground shield in metal two to reduce the parasitic

coupling to the top plate. The compiler has a built-

in class to make this cell, and the class gets the metal

width, capacitor finger spacing and metal route spacing

from the rule file.

The four MSB in the 9-bit CDAC uses 15 cells (bit 8

= 8 cells, bit 7 = 4 cells, bit 6 = 2 cells, bit 5 = 1 cell).

Bit 4 uses one cell, but half the capacitors are connected
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to ground. Bit 3, bit 2, bit 1 and bit 0 share a cell, thus in

total 17 cells are used in the 9-bit CDAC. The netlist for

the IO ADC with the detailed CDAC cell arrangement

is available at [19].

The total capacitance seen from the top plate node of

the 9-bit CDAC is simulated at 169 fF. The parasitic ca-

pacitance to ground is simulated at 67 fF. The remaining

102 fF is the combination of the 512 unit capacitors. The

unit capacitor is simulated at 0.2 fF in 28 nm FDSOI.

D. Place and Route

The layout of the enable logic from Fig. 2(b) can

be seen in Fig. 8, with a 3D view [24] in Fig. 8(a).

The enable logic layout in Fig. 8(d) has been compiled

from the input files into LATEX [25] with cic2tikz [19] to

improve figure readability, thus it does not include the

implant layers, or well definitions.

The placement of instances in the layout is determined

by the order of instances in the SPICE netlist (Fig. 8(b)).

The instance name (i.e. MN0) is used to group elements.

It is the group name, defined as the characters up to

the first number (i.e MN ), that determines whether row

or column number is incremented. The first transistor,

MN0, is placed in column zero and row zero, as seen

in Fig. 8(d). If the next instance has the same group name

the row number is incremented. Thus all MN transistors

will be placed on top of each other. If the next instance

has a different group name, for example MP , the row

number is reset and the column number is incremented.

For example, instance MP0 will be placed in row zero

and column one, while MP1 to MP3 are placed on top

of MP0.

The compiler does not contain an auto-router. It con-

tains routing instructions to route circuits, thus a designer

has to specify exactly the necessary routes for the circuit

blocks. The compiler does, however, contain instructions

to find ports, perform simple routes, and do layer stack

transitions.

The routes are defined in the object definition file,

and the object definition of the enable logic is shown in

Fig. 8(c). The enable logic is an object of a class that

has support functions for digital cells. For example, the

class automatically adds routes in metal four for VDD

and VSS, as seen in Fig. 8(a). Only the outline is shown

for the VDD and VSS in Fig. 8(d) to make the metal

one routing visible.

There are two types of route instructions in Fig. 8(c),

a connectivity route, and a directed route. A connectivity

route can search the circuit for instance ports, and find

all instance ports that belong to a net name. The net

name match is performed with regular expressions [26].

(a)

(b)
CTOP

C1A

C1B

C2

C4

C8

C16

M1 M2 M3 M4

Fig. 7. Layout of the 5-bit CDAC cell used in the 9-bit CDAC with:

(a) A 3D view, (b) The 32 unit capacitor cells.

Route number 3 in Fig. 8(c) is a connectivity route

for net EO between MN3 and MP1. The instructions

for this route are [’M1’,’EO’,’--|-’,’onTopR’],

which translates to: Find all instance ports in metal

one (’M1’) that match the regular expression ’EO’, use

rightmost port as the start of the route (’onTopR’), and

route in a left, up or down, left pattern (’--|-’) to the

other ports. This forms the route marked with 3 in Fig.

8(d).

For the net A in Fig. 8(b) the connectivity route is

not sufficient, as a connectivity route would route from

the gate of MP3 to the gate of MN3 in metal one,

thus creating a short. The directed route is used in these

cases to customize the route. For net A there are three

directed routes (route number 6, 7, 8). The instructions

for route number 6 is [’PO’,’A’,’MN3:G-MP3:G’],

which translates to: Find instance ’MN3’, check if the

instance has a port called ’G’ in poly, and route in poly

(’PO’) horizontally to an instance with name ’MP3’ and

port ’G’.

The complete object definition file contains object

definitions for all the blocks in the ADC. Most of the

lines in the object definition file are route instructions,

and it requires effort from an analog designer to define

the routes of a complete ADC, but this is a one time

effort. Once the routes are defined they can scale to

multiple technologies without change. The reason it

scales is because route information is void of technology

information.

E. Top level SAR ADC layout

The object definition of the SAR ADC top level uses

a SAR ADC class in the compiler. The layout placement

in this class is controlled by the SPICE netlist, but the

placement algorithm is different from the digital cells.

The SAR ADC class assumes that any instance in the

SPICE netlist with a group name XCDAC is a CDAC.

Any instance with group name XB is assumed to be

a input switch, and instances with group name XA are

digital cells. Based on these assumptions the compiler

places the input switches at the bottom, CDAC in the
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(d)

MN0
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MN2
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MP2
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(a) (c)

{ "name": "SAREMX1_CV",
"class" : "Layout::LayoutDigitalCell",
"addConnectivityRoutes": [

["M1","N1|N2","||",""], 1

["M1","N3","-|",""], 2

["M1","EO","--|-","onTopR"] 3
],

"addDirectedRoutes" : [
["PO","P","MN1:G-MP1:G"], 4
["PO","N","MN2:G-MP2:G"], 5
["PO","A","MN3:G-MP3:G"], 6
["M1","A","MN0:S-MP0:S"], 7

["M1","A","MP0:S-|--MP3:G"] 8
]

}
}

(b)

.SUBCKT SAREMX1_CV P N EI EO CK_N AVDD AVSS
MN0 N3 EI A AVSS NCHDL

MN1 N3 P AVSS AVSS NCHDL
MN2 AVSS N N3 AVSS NCHDL
MN3 EO A AVSS AVSS NCHDL
MP0 AVDD CK_N A AVSS PCHDL
MP1 N2 P EO AVSS PCHDL
MP2 N1 N N2 AVSS PCHDL
MP3 AVDD A N1 AVSS PCHDL

.ENDS

COOD PO M1 M2 M3 M4

Fig. 8. The enable logic with: (a) 3D layout, (b) SPICE netlist (c) Object definition (d) Layout.

middle, digital cells at the top. A compiled layout of an

IO transistor SAR ADC can be seen in Fig. 9(a), and a

core transistor SAR ADC in Fig. 9(b). The layout in Fig.

9 was compiled from the input files into Encapsulated

Postscript (EPS) [27] with cic2eps [19] to improve figure

readability, thus it does not include cuts, implant layers,

or well definitions.

To port the SAR ADC from core transistors to IO

transistors required some changes to the compiler inputs.

The metal spacing was changed in the rule file, which

is why the CDAC in the IO ADC is taller than in the

core ADC. The unit transistor was redefined, and PMOS

and NMOS were modified to change the implant layers.

There were no changes to the SPICE netlist. Less than

5 % of the lines in the input files required changes to

compile the IO transistor ADC from the core transistor

ADC input files.

IV. DESIGN METHODOLOGY

The ADC design in this work started with an archi-

tecture exploration using hand analysis and schematics,

as shown in Fig. 10. Compiled cells (5-bit CDAC,
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(b)(a)

39µm

40µm

8
0
µ
m1
0
6
µ
m CDAC

Logic

Comparator

Switch

Fig. 9. Top level layout for: (a) An IO SAR ADC, (b) A Core SAR

ADC.

transistors) were used as schematic building blocks for

more complex cells (9-bit CDAC, comparator). When

a suitable architecture was found, the initial netlist was

modified to control placement of instances in the layout,

and the routing instructions implemented. As the design

progressed, more and more of the ADC was compiled.

In the end, the ADC was fully described by the SPICE

netlist, object definition file and technology file. The

architecture schematic was no longer needed, although it

was kept for most circuits to visualize the implemented

architecture. Testbenches and extracted parasitic netlist

simulations were used to verify the physical implemen-

tation. It was assumed that the physical verification was

sufficient to verify the compiler code. The complete

object definition file that was used to generate the core

transistor ADC in this work consists of 1266 lines of

code, but that file generates 21 different SAR ADC

variants, with 8-bit, 9-bit, 10-bit and 11-bit CDACs.

The design effort for the initial compiled SAR ADC is

estimated at 400 hours, including development of the

compiler code.

It is reasonable to expect that some redesign must

be done after the initial compile, or indeed porting

to another technology. The advantage of this work for

design and redesign, is that changes to the circuit can

be done in minutes, and recompiled in seconds. For

example, changing the width of the unit transistor, as

shown in Fig. 11(b). This allows the analog designer to

start simulation on extracted netlist early in the design

flow, and primarily do the optimization for performance,

process, voltage and temperature on extracted netlist.

The analog designer can also quickly adopt to new

design requirements. A noise-shaped SAR ADC (11-bit

ENOB simulated) [28] was designed with a variant of

the 9-bit core ADC in this work as a building block.

In a noise-shaped SAR ADC the thermal noise sampled

on the CDAC is not shaped by the loop filter, thus [28]

required more CDAC capacitance. An example of a 9-

bit SAR ADC variant with more CDAC capacitance, is

shown in Fig. 11(c).

In the authors experience, there is sufficient support

in the compiler classes to place and route most analog

circuits, but the compiler can only use cells that it

generates. It cannot use standard-logic cells, or layout

cells drawn with traditional analog design methodology.

The compiler was also used for support circuits out-

side the ADCs. A digital input pad circuit, shown in

Fig. 12, uses the standard compiler classes. Some analog

circuits may require custom compiler classes, and a com-

bination of analog design expertise and programming

expertise is needed to code the classes.

In [28] compiled cells were used as building blocks,

similar to the architecture exploration in this work, but

the top level layout was drawn in Cadence Virtuoso. The

advantage of the compiler for complex analog circuits,

for example Bluetooth® low energy receivers, is that

key sub-blocks can be quickly compiled. As a result,

the analog designer can focus the design effort on the

difficult parts.

V. MEASUREMENT RESULTS

The micrograph can be seen in Fig. 13(a), and the die

measures 1.04 mm × 1.04 mm without seal-ring. The

layout is shown in Fig. 13(b), with the IO transistor ADC

and core transistor ADC locations indicated by arrows.

On this die there are seven other compiled SAR ADCs

with 8-bit, 10-bit and 11-bit resolutions. The prototype

is fabricated in a 28 nm FDSOI process with an area of

39 µm x 80 µm = 0.00312 mm2 for the core transistor

SAR ADC, and 40 µm x 106 µm = 0.00424 mm2 for

the IO transistor SAR ADC, including logic, comparator,

CDAC, and input switch.

The input signal to the ADCs was supplied from a

R&S SML signal generator through a 5th-order passive

band-pass filter, and the input frequency was selected

for coherent sampling. A balun was used to convert

from single ended to differential, and the balun common

mode voltage was supplied externally through a resistive

divider. The sample clock was supplied from a second

R&S SML signal generator at twice the ADC sample

rate, and an on-chip sine-to-square circuit with a pulse-

picking divide-by-two was used to generate the 25 %

duty-cycle. The parallel output data was captured with

an RTE1022 oscilloscope with mixed-signal option. The

data was post processed in MATLAB, and a Hanning

window was used before the FFT.

Architecture

Hand Analysis

Schematic

Testbench

Simulation

Implementation

SPICE netlist

Object definition file

Technology file

Compilation

Compiler

GDSII SKILL

Loading

SKILL into

Cadence

Virtuoso

(minutes)

Initial

visual

inspection

(seconds)

Physical

verification
Simulation

Testbench

Parasitic netlist

LVS DRC
Visual

inspection

Compiled schematics and layout (OpenAccess database)

Initial netlist

C
o

m
p

il
ed

ce
ll

s

Fig. 10. Design methodology

(c)(b)(a)

Fig. 11. Layout variants of the core ADC with: (a) The original

core ADC, (b) A core ADC with wide transistors (1.72µm), (c) A

core ADC with more CDAC capacitance.
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XC2

XC1

AV DD 1V 8 AV DD 1V 0 AV DD 1V 0

XA2 XA3 XA4

TO CORE 1V 0FROM PAD 1V 8

XC2

XC1

XA2

XA3

XA4

FROM PAD 1V 8
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O
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O
R
E

1
V
0

{ "name" : "DI_1V8_ST28N",
"boundaryIgnoreRouting" : 0,

"composite" : 1, "noPowerRoute" : 1,
"schematic" : 0,
"class" : "Layout::LayoutDigitalCell",
"afterPlace" :{

"addPowerRings" :[
["M1","AVDD_1V0","t"],
["M1","AVSS","btrl"]

]

},
"beforeRoute" : {

"addPowerConnections" : [
["AVDD_1V0","XA","top"],
["AVSS","XC","left"],

["AVSS","XA4|XA2","bottom"]
],

"addConnectivityRoutes" : [

["M3","FILT_O","--|-","onTopR"],

["M2","SCHMITT_O","-|--"],

["M1","INV_O","-|--"]

]
}

}

.SUBCKT DI_1V8_ST28N AVDD_1V0 AVDD_1V8
+ AVSS FROM_PAD_1V8 TO_CORE_1V0
XC1 FILT_O AVSS CAPX10_CV angle=180

XC2 FROM_PAD_1V8 FILT_O AVSS RPPO_S0
+ xoffset=25 yoffset=15

XA5 AVSS TAPCELL_EV xoffset=20
XA2 FILT_O SCHMITT_O AVDD_1V8 AVSS SCX1_EV

XA5a AVSS TAPCELL_EV yoffset=20
XA3 SCHMITT_O INV_O AVDD_1V0 AVSS IVX1_EV

XA4 INV_O TO_CORE_1V0 AVDD_1V0 AVSS IVX8_CV
+ yoffset=15
XA6 AVSS TAPCELL_CV

.ENDS

(a)

(b)

(d)(c)
COOD PO M1 M2 M3 M4

Fig. 12. Digital input pad circuit with: (a) Schematic, (b) SPICE

netlist, (c) Layout, (d) Object definition.

(a) (b)

9-bit CORE
9-bit IO

Fig. 13. Overall layout with: (a) Micrograph, (b) Chip Layout.

Three chips have been measured for the core tran-

sistor SAR ADC with similar performance. The core

transistor SAR ADC in this work achieves a FoM2 of

3.5 fJ/conv.step at 20 MS/s, shown in Fig. 14(a), and

2.7 fJ/conv.step at 2 MS/s (Fig. 14(b)) placing it among

the most power efficient and area efficient ADCs for its

sample rate and resolution.

The ENOB of the core ADC is limited by thermal

noise. The comparator is the likely source of the thermal

noise, as the ENOB can be changed by varying the

input common mode voltage. The core transistor SAR

ADC is functional from 80 kS/s - 80 MS/s and operates

from a single 0.4 V - 1.1 V supply voltage, as shown

in Fig. 14(c). The SNDR and SFDR as a function of

2FoM = P/(2ENOB
× fs)

frequency can be seen in Fig. 14(d). The measured

power consumption of the core ADC is 15.87 µW at 20

MS/s and 0.94 µW at 2 MS/s. The measured power

consumption of the core ADC CDAC is approximately

44 % at 20 MS/s and approximately 47 % at 2 MS/s. The

simulated power consumption of the core ADC CDAC

is 42 % at 20 MS/s and 44 % at 2 MS/s. The simulated

power consumption of the comparator is 25 % at 20

MS/s and 23 % at 2 MS/s.

The spectrum of the IO transistor SAR ADC is shown

in Fig. 15.3 Table I shows a summary and comparison

of key measurements with prior-art.

VI. CONCLUSION

A low power 9-bit compiled SAR ADC has been pre-

sented with a comparator clock generation loop that uses

the bottom plate of the CDAC. The ADC was compiled

from text input files into a DRC/LVS clean layout and

schematic in 28 nm FDSOI. The proposed ADC achieves

a FoM of 3.5 fJ/conv.step at 20 MS/s with an area of

0.00312 mm2, and demonstrates that a compiled SAR

ADC can achieve state-of-the-art performance.
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3Due to limitations for the IO SAR ADC it is not possible to

separate the current in pad drivers, and ADC current. The load on

each pin is at least 4pF, as specified on the RTE1022 oscilloscope.

Accordingly the current for the IO SAR ADC is estimated at ADC

current = 542 µA - average(bit transitions x 10 MHz x 4 pF x 1.6

V).

TABLE I

COMPARISON TO PRIOR ART.

Weaver [5] Harpe [9] Patil [10] Liu [11] This work

Technology (nm) 90 90 28 FDSOI 28 28 FDSOI

Fsample (MS/s) 21 2 No sampling 100 2 20

Core area (mm2) 0.18 0.047 0.0032 0.0047 0.00312

SNDR (dB) 34.61 57.79 40 64.43 46.43 48.84

SFDR (dBc) 40.81 72.33 30 75.42 61.72 63.11

ENOB (bits) 5.45 6.7 - 9.4 6.35 10.41 7.42 7.82

Supply (V) 0.7 0.7 0.65 0.9 0.47 0.69

Pwr (µW) 1110 1.64 -3.56 24 350 0.94 15.87

Compiled Yes No No No Yes

FoM (fJ/c.step) 838 2.8 - 6.6 3.7 2.6 2.7 3.5
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