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Abstract—In this paper we introduce the modulo resonator for
use in open-loop sigma-delta modulators (OLSDM). The OLSDM
presented in this work is intended for use in high accuracy (14-
bit), high-speed analog-to-digital converters.

The modulo resonator is used with a modulo notch filter to
insert a zero in the noise transfer function at a non-zero fre-
quency. The effect of finite gain in modulo integrators and modulo
resonators are described and verified through simulation. The
modulo resonator and previously published modulo integrator
are used in a behavioral model of a switched-capacitor fifth-order
OLSDM with more than 13-bit effective number of bits for an
oversampling ratio of four. We prove for the N-order OLSDM
that the number of bits in the quantizer (B) must be larger
than N to ensure equivalence between OLSDM and sigma-delta
modulation.

Index Terms—Sigma-delta modulators, switched-capacitor cir-
cuits, modulo integrator, modulo resonator, open-loop sigma-delta
modulators

I. INTRODUCTION

Open-loop sigma-delta modulators are a sub group of
sigma-delta modulators. We define OLSDM as any sigma-
delta modulator that does not have feedback of the quantized
modulator output signal.

An example of analog-to-digital conversion with OLSDM
is shown in Fig. 1. The input signal, x, is accumulated by the
integrator (〈Σ〉). The integrator in Fig. 1 is a modulo integrator
that wraps around when the sum exceeds the range (R). The
output of the integrator (u) is quantized by a quantizer, which
is modeled as a linear addition of quantization noise (q). The
conditions for modeling a quantizer as linear addition of noise
was covered in [1]. The modulo differentiator (〈∆〉) reverse the
effect of the modulo integrator. The decimation filter required
to down-sample the output of the modulator is not shown.

In this modulator the input signal passes through unchanged.
The quantization noise pass through the differentiator and is
first order high-pass filtered.

The sigma-delta modulator in Fig. 1 is equivalent to a
first order low-pass sigma-delta modulator providing certain
conditions are met.

Σ ∆
x y

q

u

Fig. 1. First order low-pass open-loop sigma-delta modulator

One of the first suggestion of an OLSDM was in [2].
Although there was no system implementation they explained
a method that avoided feedback of the quantized signal. More

recently there have been others like the Frequency Sigma-
Delta Modulator (FSDM) in [3] and [4]. In the FSDM a
voltage controlled oscillator (VCO) is used as the modulo
integrator, and it was shown in [3] that the pre-processing in
FSDM is equivalent to modulo integration. The non-feedback
sigma-delta digital-to-analog modulator, where the integrator
is implemented as a digital modulo integrator, was described
in [5]. In [6] an amplitude modulated switched-capacitor
open-loop sigma-delta modulator was introduced. A switched-
capacitor modulo integrator was used to perform the modulo
integration.

The application envisioned for OLSDM is as a front-end in
a high speed (>10MS/s), high resolution (14-bit) analog-to-
digital converter. The advantage of OLSDM is that it is trivial
to use high-latency quantizers since there is no feedback of
the quantized modulator output.

There are two unsolved challenges that this paper discuss:
when is open-loop sigma delta modulation equivalent to
sigma-delta modulation, and how to introduce zeros in the
noise transfer function (NTF) at non-zero frequencies.

A. When is OLSDM equivalent to SDM?

It is observed in simulation that open-loop sigma-delta
modulation (OLSDM) is not always equal to sigma-delta
modulation (SDM). Whether an OLSDM works as an SDM
depends on the input signal amplitude and the number of bits
in the quantizer. The input signal amplitude must be less than
|xn| < R/2 (0dBFS1), but OLSDM sometimes loose its noise
shaping at less than 0dBFS.

In [6] an error correction scheme was used to restore the
noise shaping for input signal amplitudes up to 0dBFS. But
the error correction assumed that the input frequency was
much less than the sampling frequency (fi << fs). For some
applications (like high speed, high resolution) the OSR can be
low (OSR < 8) and fi << fs is no longer valid.

The number of bits in the quantizer affect the equivalence
between OLSDM and SDM. It is observed that the number
of bits in the quantizer must be larger than the order of the
modulator. This was proved for the special case of a second
order OLSDM in [7].

We will prove for the N-order OLSDM that the number of
bits in the quantizer (B) must be larger than the order (N) to
ensure equivalence between OLSDM and SDM.

B. Zeros in NTF at non-zero frequency

Previous OLSDMs have all been low order low-pass sigma-
delta modulators. Low order low-pass sigma-delta modulators
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are unsuited for high conversion rate applications due to
the high oversampling ratio required to get high resolution,
assuming a low resolution quantizer is used.

If the sampling frequency (fs) is constant, the resolution
can be increased by adding more zeros to the noise transfer
function (NTF). Adding zeros at a non-zero frequency (ω0 >
0) reduce the OSR more than adding them at zero frequency.

To the best of our knowledge, zeros at non-zero frequencies
have not been used in OLSDM.

The paper is organized as follows: In Section II OLSDM
is explained and requirements for input signal amplitude and
quantizer bits are derived. In Section III the key component
of OLSDM, the modulo integrator, is described in detail,
including the effects of finite gain in modulo integrators. The
modulo integrator has previously been described in [6], but
the effects of finite gain in modulo integrators has not been
exhaustively covered.

The modulo resonator is introduced in Section IV. The
modulo integrator and modulo resonator are combined in
Section V to make a behavioral model of a fifth order low-
pass OLSDM with more than 13-bit effective number of bits
with an OSR of four. Simulation results from behavioral level
models in MATLAB and SPICE are presented in Section V.

II. WHEN IS OLSDM EQUIVALENT TO SDM?
The modulo operator is used extensively in OLSDM to

limit the signal swing at the output of modulo integrator. The
modulo operator is written as

xr = 〈x〉R (1)

where x ∈ 〈−∞,∞〉 is the input signal, R is the range
and xr ∈ 〈−R/2, R/2〉 is the residue after dividing by the
range, R. This modulo function is not the normal mathematical
modulo function, but a function that computes the remainder
of the input signal after rounding it to an integer number of
full scale signal swings (R).

The modulo is similar to what was used in [8] where
they proved the equivalence of the open-loop and closed
loop representations by symbolic manipulation. The modulo
arithmetic used in OLSDM has previously been used in comb
filters, as was shown in [9].

The following theorem is useful for the derivations below.
Theorem 1: The modulo of the sum of modulo is equal to

the modulo of sum if the range of the two modulus are equal,
R0 = R1 = R

〈〈x〉R0 + 〈y〉R0〉R1 = 〈x+ y〉R (2)

A proof of the theorem is included in Appendix A
The modulo integration, shown in Fig 1, is written as

un =

〈 ∞∑
i=0

xn−i−1

〉
R

(3)

where xn is the input signal to the integrator at time n, un is
the modulator output signal, and n is the discrete time step.
The input signal at time n− 1 is written as xn−1.

The output of the modulator in Fig. 1 is

yn = 〈un − un−1 + qn − qn−1〉R (4)

where qn is the quantization noise.
Insert (3) in (4) and let en = qn − qn−1

yn =

〈〈 ∞∑
i=0

xn−i−1

〉
R

−

〈 ∞∑
i=0

xn−i−2

〉
R

+ en

〉
R

(5)

With (2) (5) reduces to

yn = 〈xn−1 + en〉R (6)

The discrete time equation for a first order low-pass sigma-
delta modulator is

yn = xn−1 + qn − qn−1 (7)

Equation (6) is equal to (7) if

|xn + en| < R/2 (8)

The absolute value of the filtered quantization noise (|en|)
has a maximum value of one LSB (Least Significant Bit), since
|qn| ≤ 1/2LSB and en = qn − qn−1. Here LSB = R/2B ,
where B is the number of bits in the quantizer.

The input signal for first order open-loop sigma-delta mod-
ulator must be limited by

|xn| < R/2− 1LSB = R(1/2− 1/2B) (9)

We will derive the general input signal limitations for N-order
OLSDM, but to reduce the length of equations we define

fx,n =
∞∑

i=0

xn−i (10)

and from (2)

〈〈fx,n〉R − 〈fx,n−1〉R + en〉R = 〈xn + en〉R (11)

For second order OLSDM (Fig. 2) the output of the first
integrator is

un = 〈fx,n−1〉R (12)

and the output of the second integrator is

u1,n = 〈fu,n−1〉R (13)

Σ ∆
x y

q

∆Σ
u u1 d1d0

Fig. 2. Second order low-pass open-loop sigma-delta modulator

The quantized signal is

d0,n = 〈fu,n−1〉R + qn (14)

And the output signal of the first modulo differentiator is

d1,n = 〈〈fu,n−1〉R − 〈fu,n−2〉R + en〉R (15)

which by (11) is written as

d1,n = 〈un−1 + en〉R (16)
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The output signal of the modulator is

yn = 〈〈fx,n−1〉R − 〈fx,n−2〉R + en − en−1〉R (17)

which by (11) is

yn = 〈xn−1 + qn − 2qn−1 + qn−2〉R (18)

The maximum absolute value of the quantization noise in
(18) is

|qn|+ |2qn−1|+ |qn−2| = 1/2 + 1 + 1/2 = 2 (19)

From this it follows that the input signal must be limited by

|xn| < R/2− 2LSB = R(1/2− 2/2B) (20)

(20) is sufficient to ensure that the second order OLSDM is
equivalent to a second order SDM. It can be shown that for
third order OLSDM the requirement is

|xn| < R/2− 4LSB = R(1/2− 4/2B) (21)

For N-order OLSDM the input signal must be limited by

|xn| < R(1/2− 2N−1/2B) (22)

If B = N the input signal limit is not practical since

|xn| < R(1/2− 2N−1/2B) = R(1/2− 1/2) = 0 (23)

Accordingly, B > N to ensure that N-order OLSDM is
equivalent to N-order SDM. This is equivalent to the quantizer
non-overload criteria in SDM proved in [10]. An N-order
sigma-delta modulator will not overload the quantizer if the
input signal is limited by |xn| < R/4, and B = N + 1.

For B = N + 1 in (22)

|xn| < R(1/2− 1/4) = R/4 (24)

In the next section we will cover the key component of
analog-to-digital OLSDM, the modulo integrator.

III. MODULO INTEGRATOR

In this section we discuss the implementation of a modulo
integrator in behavioral level models, the switched-capacitor
implementation, and effects of finite opamp gain in the modulo
integrator.

A. Behavior level implementation

The output of the modulo integrator is described by

un =

〈 ∞∑
i=0

xn−i−1

〉
R

(25)

In behavioral level models (25) is impractical due to the
infinite modulo. In the definition of the modulo (1) the input
signal can take any value, xn ∈ 〈−∞,∞〉. This requires the
modulo integrator to wrap around infinitely many times if the
output signal is to be limited by un ∈ 〈−R/2, R/2〉. But
since the input signal is limited by (22), the infinite modulo
is unnecessary. Assume that |xn| < R/2, which by (22) must
be true, then the maximum value after integration but before
the modulo is limited by ubefore,n ∈ 〈−R,R〉. Fig. 3 shows
an example of the output (ubefore,n) before modulo, and after
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Fig. 3. States of the modulo integrator for a sinusoidal input xn. The output
before modulo is ubefore,n and the output after is un.

modulo (un) for a sinusoidal input signal (xn). The modulo
integrator is implemented by adding or subtracting the range
R. The modulo operation can now be defined as

ubefore,n = un−1 + xn−1 (26)

and

un =


ubefore,n +R ubefore,n ∈ 〈−R,−R/2]
ubefore,n ubefore,n ∈ 〈−R/2, R/2〉
ubefore,n −R ubefore,n ∈ [R/2, R〉 (27)

The modulo integrator described by (27) can be imple-
mented as a switched-capacitor (SC) circuit [6].

B. Switched-capacitor modulo integrator

The SC modulo integrator is based on the parasitic insen-
sitive integrator shown in Fig. 4. The input signal is sampled
at the end of p1. In p2 the charge of C1 is moved to C2 by
forcing node Vx equal to zero with the opamp. The switched-

p1 p2p
1

p
2

Vi Vo

C1

Vxp1

p2

C2

Fig. 4. Parasitic insensitive switched-capacitor integrator

capacitor modulo integrator is shown in Fig. 5. Three clock
phases are needed for the modulo integrator, p1, p2, and p3.
The clock period is divided into four equally large phases t0,
t1, t2, t3 for a straightforward implementation. Phase one is
the combination of the first two phases (p1 = t0 + t1), phase
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two is the combination of the last two phases (p2 = t2 + t3),
and phase three is equal to the last phase (p3 = t3).

The input signal Vi is sampled across capacitor C1 during
p1. In p2 the charge across C1 is moved to C2. In p3 the
two comparators in Fig. 5 determine whether the output Vo

exceeds the references (VREF and −VREF ), here |VREF | =
R/2. Capacitor C3 has been pre-charged in p1 to VREF −
−VREF = R.

If the output voltage is larger than VREF C3 is connected
to Vx such that a charge equal to R is subtracted from C2. If
the output voltage is less than −VREF a charge equal to R is
added to the charge of C2. The charge transfer equations for
Fig. 5 are (28) if Vo,p2 ∈ 〈−VREF , VREF 〉, (29) if Vo,p2 ∈
〈−VR, VREF ] and (30) if Vo,p2 ∈ [VREF , VR〉.

C2Vo,n = C2Vo,n−1 + C1Vi,n−1 (28)

C2Vo,n = C2Vo,n−1 + C1Vi,n−1 + C3VR (29)

C2Vo,n = C2Vo,n−1 + C1Vi,n−1 − C3VR (30)
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Fig. 5. Switched-capacitor modulo integrator

If C1 = C2 = C3 the charge transfer equations implement
the modulo defined in (27). The modulo operation ensures that
the output signal in p3 stays within Vo ∈ 〈−VR/2, VR/2〉 as
long as Vi ∈ 〈−VR/2, VR/2〉.

C. Effects of finite gain in modulo integrators

One of the non-idealities in SC integrators is the finite
opamp gain. The effects of finite opamp gain was covered
in [11] and [12]. The transfer function of an integrator with
finite gain can be approximated by

Vo(z)
Vi(z)

=
C1

C2

az−1

1− bz−1
(31)

where

a = 1− 1 + C1/C2

A0
(32)

b = 1− 1
A0

(33)

and A0 is the DC gain of the opamp. The derivation
is included in Appendix B. A block model of the modulo
integrator is shown in Fig. 6.

z
-1

x u

z
-1

x u
a

b

A0 < ∞

Fig. 6. Block model of the modulo integrator for finite DC gain.

We have assumed that the modulo operation does not
influence the effects of finite gain. To verify the model in
Fig. 6 it is implemented in SIMULINK and compared with
two other models, one based on the difference equations and
one based on a SPICE implementation.

An expression can be derived for the output of a first-
order OLSDM using the modulo arithmetic used in Section
II. The output of a first order OLSDM with finite DC gain in
the modulo integrators can be approximated by the difference
equation

yn =
〈
xn−1 −

qu,n

A0
+ qn − qn−1

〉
R

(34)

where qu,n is a white noise approximation of the modulo
integrator output un. The derivation is left for Appendix C.

The difference between (34) and (6) is the term −qu,n/A.
Due to the finite opamp gain there is a leakage of un to the
output. The modulo integrator output (un) is a deterministic
signal of the input, but we assume it can be approximated as
quantization noise with the limits qu,n ∈ 〈−R/2, R/2〉.

From (34) the signal-to-noise and distortion ratio (SNDR)
can be calculated. For a sinusoidal input the SNDR is

SNDR = 10log

 A2/2
1

12A2
0OSR

+
LSB2

12
×K

 (35)

where A is the amplitude of the sinusoid, the first term
in the denominator is the effects of finite gain, and
the second term the quantization noise where K =
2
∫ fs/2OSR

0
|NTF (z = ejω)|2df . The calculation of (35) is

left for Appendix D. With B = 7, OSR = 4 and A0 = 50dB
the expected SNDR is 51.3-dB.

An FFT of the SIMULINK model (Fig. 6) is shown in Fig.
7. Fig. 8 shows the FFT of the approximate model as defined
by (34). The FFT of the SPICE model output is shown in Fig.
9.

The approximation in Fig. 8 is different from the others,
here the noise floor is relatively flat up to 0.01fs. At that
point the shaped quantization noise is larger than the leakage
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from the integrator output (from (34)) and we get the high-pass
noise shaping.

For both the SIMULINK model in Fig. 7 and SPICE model
in Fig. 9 we can see that the contribution qu,n/A0 is not white,
but equal to un/A0. Fig. 10 shows the FFT of the modulo
integrator output (un) from the SIMULINK simulations.

The vertical line in the figures denote the upper band-
width limit for noise calculation. As a quick estimate of the
performance (35) works well. It overestimates the effects of
noise and has an SNDR of 51.3-dB compared to 52.2-dB
for the SIMULINK model, 51.66-dB in the SPICE model
and 51.44-dB for the approximation (34). These models show
that the modulo operation does not significantly influence the
equations for the effects of finite gain.

Calculation speed is very different in the three models. Cal-
culating (35) takes less than a second, while the SIMULINK
model take ten seconds for 215 points, and the SPICE simu-
lations take a thousand seconds for 215 points.

To increase the resolution of this first order low-pass
OLSDM we can either increase the quantizer resolution,
which we will not do, or reduce the in-band quantization
noise with higher order noise shaping. To get higher order
noise shaping we can increase the number of zeros in the
noise transfer function (NTF) of the modulator. Either at
z=1 (zero frequency) with modulo integrators, or introduce
zeros at non-zero frequencies. The next section introduce the
modulo resonator, which is used to insert a zero at a non-zero
frequency in the noise transfer function.
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Fig. 7. SIMULINK model, SNDR = 52.20-dB

IV. MODULO RESONATOR

Zeros at non-zero frequency in the noise transfer function
reduce the oversampling ratio for a given quantizer resolution.
With zeros at non-zero frequency one can implement band-
pass sigma-delta modulators. In this section the modulo res-
onator is introduced and the ideal and simulated performance
is discussed.
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Fig. 8. Approximation, SNDR = 51.44-dB
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Fig. 9. SPICE model, SNDR = 51.66-dB
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A model of modulator with zeros at non-zero frequency can
be seen in Fig. 11. In a world without signal swing limitations
the input signal (xn) can be conditioned with a resonator, the
output of the resonator quantized, and input signal restored
with a notch filter. The quantization noise will pass through
the notch filter and be filtered accordingly. The output of the
modulator is written as

Y (z) = STF (z)X(z) +NTF (z)Q(z) (36)

STF (z) is the signal transfer function and NTF (z) is the
noise transfer function.

The input signal pass through unchanged if the notch filter
response matches the resonator response, thus STF (z) = 1.2

In Fig. 11 the NTF (z) is equal to the notch filter response,
which has a zero at a non-zero frequency.

x u

q

d y

Fig. 11. Ideal open-loop implementation of NTF zeros at non-zero frequency

A common resonator used in sigma-delta modulators is
based on the lossless discrete integrator (LDI) [13] shown in
Fig. 12. The LDI resonator has a pair of complex conjugate
poles at

zp = ρ± j
√

(1− ρ2), ρ = 1− g/2 (37)

and a resonance frequency of ω0 = cos−1(ρ). The advantage
of the LDI is the tunable resonance frequency.

z
-1

z
-1

-g

x u

Fig. 12. Resonator based on the lossless discrete integrator (LDI)

If the integrators in Fig. 12 are replaced with modulo
integrators we get the modulo resonator shown in Fig. 13. With
this modulo resonator we can implement Fig. 11 as shown in
Fig. 14. Fig. 14 is a modulo resonator followed by a linear
quantizer and a modulo notch filter. The modulo operations at
the end of the notch filter reverse the modulo in the resonator.

mod

z
-1

z
-1

mod

-g

x u

Fig. 13. The modulo resonator

2The STF (z) will probably also contain a time delay, depending on the
implementation, STF (z) = z−n

mod

z
-1

z
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mod
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x u

Modulo Resonator

z
-1

z
-1

g-2

q

y

mod mod

Modulo Notch Filter

Fig. 14. The open-loop sigma-delta modulator with NTF zeros at non-zero
frequency
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Fig. 15. Modulator response. Magnitude of a 215 point FFT. Input signal
amplitude is -3dBFS, input signal frequency is at fi = 0.006 with a
normalized sampling frequency, fs = 1. The SNDR with OSR = 4 is
62.1-dB

The noise transfer function of the modulator in Fig. 14 is

NTF (z) = z2 + (g − 2)z + 1 (38)

And has an ideal SNDR of

SNDR = 10log

(
A2/2

2
∫ fs/2OSR

0
Q2

M (f)|NTF (z)|2df

)
(39)

if we assume sinusoidal input. Here Q2
M (f) is the power

spectral density of the quantization noise given by

Q2
M (f) =

LSB2

12fs
=

1
22B12fs

(40)

where LSB = R/2B and R = 1.
The optimum zero frequency can be calculated from (39).

Using an OSR of four the optimum zero frequency is fi =
0.0718fs (g = 0.2).
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Fig. 14 was implemented as a SIMULINK model. Fig. 15
is a 215 point FFT of the modulator output (yn) with an
input signal amplitude of −3dBFS and a quantization noise
power equivalent to a 7-bit quantizer. Coherent sampling and
a Hanning window was used to avoid spectral leakage of the
signal power into neighboring FFT bins. A brick-wall filter
with bandwidth from 0− fs/2OSR was used to calculate the
SNDR. The vertical line in Fig. 15 denotes the bandwidth.

For fs = 1, OSR = 4, B = 7, A = 1/
√

8 the ideal
SNDR from (39) is 62-dB. The simulated SNDR match the
ideal SNDR (1% difference).

A. Effects of finite gain in modulo resonators

Exact analysis of the effects of finite gain in a modulator
with a modulo resonator is complex. The derivation is left for
Appendix E.

The modulator output (yn in Fig. 14) with finite gain in the
modulo resonators can be approximated by

yn ≈ 〈xn−1 + (1 + g)εp,n−1 + en〉R (41)

where εp is the leakage from the first modulo integrator. The
shaped quantization noise is represented by en. The leakage
from the first modulo integrator dominate over the leakage
from the second modulo integrator if the opamp gains in the
two integrators are equal.

With (41) the SNDR is

SNDR ≈ 10log

 A2/2
(1 + g)2

12A2
0

1
OSR

+
LSB2

12
×K

 (42)

where K =
∫ fs/2OSR

0
|NTF (z)|2df .

Accuracy of (42) depend on the DC gain. It overestimates
the SNDR with 1.5-dB to 1-dB for a DC gain of 60-dB -
80-dB compared to the derivation in Appendix E. But the
leakage from the modulo integrator is approximated by a
white noise source, which has higher power than the power of
the actual leakage. Accordingly, the two assumptions: leakage
approximated by a white noise source, and assuming εp is the
dominating noise source, work in opposite directions.

For A = −3dBFS, OSR = 4, g = 0.2, LSB = 1/27

and a DC gain of 60-dB, the approximate SNDR from (42) is
59.5-dB. Whereas for 40-dB DC gain the SNDR is 43.1-dB.

Using the previously described modulo integrators in a
SIMULINK model of the modulator from Fig. 14, the SNDR is
59.2-dB for 60-dB DC gain and 42.5-dB for 40-dB DC gain.
A difference of 0.3-dB (4%) at 60-dB DC gain and 0.6-dB
(7%) at 40-dB DC gain.

V. FIFTH-ORDER LOW-PASS OLSDM

It has previously been shown that the accuracy of SC circuits
depend on the capacitor mismatch, finite DC gain and unity-
gain bandwidth of the opamp [11], [12]. We have discussed
the effects of finite DC gain, but left the derivation of capacitor
mismatch and finite unity-gain bandwidth for later work. But
we expect the effects to be similar and limit the performance to
below 14-bit ENOB. This assumes no calibration or trimming.

Stages in an OLSDM can be pipelined and it is possible to
use high latency quantizers such as pipelined ADCs or SAR
ADCs. One in envisioned application of OLSDM is a 14-bit
high speed ( 20MS/s) ADC. In this section we describe a fifth-
order OLSDM with an OSR of four and 13-bit ENOB.

A. Ideal modulator

The modulator is seen in Fig. 16. It has two modulo
resonators, a modulo integrator, a 7-bit quantizer, a modulo
differentiator, and two modulo notch filters. To ensure that
(22) is satisfied a gain of 0.9 is inserted between the first and
second resonators, and between the second resonator and the
modulo integrator (this is not shown in Fig. 16).

x

y

Σ

∆

q

Fig. 16. Fifth-order open-loop sigma-delta modulator

The noise transfer function of the modulator in Fig. 16 is
given by

NTF (z) =
(z2 + (g1 − 2)z + 1)(z2 + (g2 − 2)z + 1)(z − 1)

0.81
(43)

And the ideal SNDR can be calculated with (39), using the
NTF from (43). With an OSR of four the optimal constants
are g1 = 0.17 and g2 = 0.48. For OSR = 4, A = −3dBFS
and B = 7 the ideal SNDR is 85-dB.

A 215 point FFT is calculated from the output of a MAT-
LAB simulation of the ideal modulator in Fig. 16. The FFT is
shown in Fig. 17. The simulated match the ideal SNDR (1%
difference).

The input signal must be limited as stated in (22). An input
signal amplitude of -3dBFS = 1/

√
8 ≈ 0.354 is used in the

simulations. If we insert for N = 5 and B = 7 in the input
signal limit (22)

|x(n)| < R(1/2− 25−1/27) = 0.375 (44)

Thus the modulator is valid for an input signal amplitude of
-3dBFS.

B. Modulator with finite opamp gain in modulo integrators

Fig. 18 shows the fifth order sigma-delta modulator with the
the modeled opamp gain. The modulo integrators are modeled
with an opamp gain of 85-dB in the first resonator, 75-dB in
second resonator, and 65-dB in the last modulo integrator.
These gains were chosen from design equations based on
(42). Assume the leakage due to finite opamp gain in the first
modulo resonator dominate. The SNDR is then estimated from
(42). The estimated SNDR for this modulator is 83.3-dB for
an input amplitude of -3dBFS. Fig. 19 is a 215 point FFT of
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Fig. 17. Modulator output. Magnitude of a 215 point FFT of the modulator
output. Input signal amplitude −3dBFS. Input frequency fi = 0.006 and
sampling frequency fs = 1. With an OSR = 4 the SNDR is 84.9-dB

the modulator output (yn) using an input signal amplitude of
−3dBFS.

x

y

65 dB

Σ

∆

q

85 dB 75 dB

Fig. 18. Fifth-order open-loop sigma-delta modulator. The DC gain of
opamps are shown above the stages.

The simulated SNDR is 80.9-dB (13.15-bit ENOB3), or 2.4-
dB below the estimated SNDR. This is expected due to leakage
from later stages. If we increase the DC gain in the second
modulo resonator and the last modulo integrator to 200-dB, we
remove them as noise contributors. This increases the SNDR
to 82.8-dB, which is 0.5-dB (6%) lower than the estimated.

The modulator in Fig. 19 was implemented in SPICE as a
switched capacitor circuit.

C. SC modulator

Fig. 20 shows the switched-capacitor implementation of the
modulator. A single ended modulator was used for simplicity.

The opamps have a DC gain of 85-dB, 85-dB, 75-dB, 75-
dB, and 65-dB The opamp was implemented as a macro-model
of a single-pole operational amplifier.

A comparison between the MATLAB model and the SPICE
model is shown in Fig. 20, here a 215 point FFT was run
on both the SPICE and the MATLAB outputs. The SNDR is

3ENOB = (SNDR-1.76)/6.02
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Fig. 19. Magnitude of a 215 point FFT of the modulator output. Input signal
amplitude −3dBFS, input frequency fi = 0.006 and sampling frequency
fs = 1. With an OSR = 4 the SNDR=80.9-dB
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Fig. 20. Fifth order OLSDM SPICE model. Quantization and NTF are
implemented in MATLAB

the same for both models. In SPICE, however, there is more
harmonic content, with the second harmonic visible in the FFT.

The quantizer and NTF for the SPICE simulations is imple-
mented in MATLAB. A 7-bit ideal quantizer is used instead
of the linear approximation to quantization noise.

VI. CONCLUSION

In this paper we introduced the modulo resonator for open-
loop sigma-delta modulators (OLSDM). It was used with a
modulo notch filter to introduce a zero in the noise transfer
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Fig. 21. Comparison of SPICE model and MATLAB model. Input signal
amplitude −3dBFS, input frequency fi = 0.006 and sampling frequency
fs = 1. With an OSR = 4 the SNDR is 80.9-dB for the MATLAB model
and 80.9-dB for the SPICE model.

function at a non-zero frequency. The modulo resonator and
previously published modulo integrator were used in a behav-
ioral model of a switched-capacitor fifth-order OLSDM with
more than 13-bit effective number of bits for an oversampling
ratio of four. We proved that the number of bits in the
quantizer (B) must be larger than the order of the modulator
(N) to ensure equivalence between OLSDM and sigma-delta
modulation.

APPENDIX A
PROOF OF MODULO THEOREM

Proof: From definition

〈a+ nR〉R = 〈a〉R (45)

where n is an integer. Given

〈〈x〉R + 〈y〉R〉R (46)

we can write 〈x〉R = x− nR and 〈y〉R = y −mR, where n
and m are integers. From (45) it follows that

〈x− nR+ y −mR〉R = 〈x+ y〉R (47)

APPENDIX B
EFFECTS OF FINITE GAIN IN SC INTEGRATORS

If we assume infinite DC gain in the opamp the charge
transfer equation is simply

C2Vo,n = C2Vo,n−1 + C1Vi,n−1 (48)

The z-domain transfer function of (48) is

Vo(z)
Vi(z)

=
C1

C2

z−1

1− z−1
(49)

If C1 = C2 (49) is the well known transfer function of a
discrete time integrator and is a good approximation if the
DC gain (A0) is much higher than the accuracy required. If
the DC gain is close to, or lower than the accuracy (49) no
longer apply.

With finite opamp gain the voltage Vx (in Fig. 4) will be
different from zero. A non-zero Vx will result in a residual
charge on capacitor C1 given by Q1,n = C1Vx. The charge
transfer equation change into

Q2,n = Q2,n−1 +Q1,n−1 +Q1,n (50)

where Q2 = C2(Vo − Vx), Q1,n−1 = C1Vi. The residual
voltage Vx is equal to Vx = −Vo/A0. We define

α = 1 +
1
A0

(51)

If we expand (50) we get

αV0,n = αVo,n−1 +
C1

C2
Vi,n−1 −

C1

C2

Vo,n

A0
(52)

Solved for Vo/Vi and transferred to the z-domain we get the
transfer function

Vo(z)
Vi(z)

=
C1

C2

 1

1 +
1 + C1/C2

A0

 z−1

1− α

 1

1 +
1 + C1/C2

A0

 z−1

(53)

If we assume A0 >> 1 (53) can be approximated to first order
by

Vo(z)
Vi(z)

=
C1

C2

(
1− 1 + C1/C2

A0

)
z−1

1−
(

1− 1
A0

)
z−1

(54)

APPENDIX C
EFFECTS OF FINITE GAIN IN MODULO INTEGRATORS

From charge transfer equations the output of the modulo
integrator is

αun = 〈αun−1 + xn−1 − un/A0〉R (55)

where α = 1 + 1/A0 and A0 is the DC gain of the opamp.
We also have

αun−1 = 〈αun−2 + xn−2 − un−1/A0〉R (56)

and that

αun−2 = 〈αun−3 + xn−3 − un−2/A0〉R (57)

Using (2) the output of the modulo integrator is

un =

〈∑∞
i=0 xn−1−iα

i −
∑∞

i=0

un−i

A0
αi

〉
R

α

=

〈 ∞∑
i=0

xn−1−iα
i−1 −

∞∑
i=0

un−i

A0
αi−1

〉
R

(58)
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The output of the modulator is

yn = un − un−1 + qn − qn−1 (59)

using (2) and (58)

yn =
〈
xn−1

α
− un

A0α
+ qn − qn−1

〉
R

(60)

Assuming A0 >> 1 we can approximate the modulator output
by

yn =
〈
xn−1 −

un

A0
+ qn − qn−1

〉
R

(61)

The signal un can be written as (25). This signal is the
quantization noise after rounding the integrator output to the
range R. We assume this quantization noise is white. Assume
un ≈ qu,n ∈ 〈−R/2, R/2〉. Then (61) simplifies to

yn =
〈
xn−1 −

qu,n

A0
+ qn − qn−1

〉
R

(62)

APPENDIX D
CALCULATION OF THE SNDR

The power spectral density of quantization noise is given
by the well known equation

Q2(f) =
LSB2

12fs
(63)

where fs is the sampling frequency. For a given bandwidth
the noise power is

Q2 = 2
∫ fs/2OSR

0

Q2(f)df =
LSB2

12
1

OSR
(64)

The LSB of qu,n/A0 can be written as R/A0. And if we
assume R = 1 the noise power of the modulo integrator output
leakage is given by

Q2
u =

1
12×A2

0

1
OSR

(65)

The quantization noise in a first order OLSDM is high-pass
filtered, and has a noise transfer function of

NTF (z) = 1− z−1 (66)

The LSB of the quantization noise is LSB = R/2B , so with
R = 1 the quantization noise power can be calculated from

Q2
n = 2

∫ fs/2OSR

0

1
12× 22Bfs

|NTF (z = ejω)|2df (67)

The signal to noise and distortion ratio can be written as

SNDR = 10log
(

A2/2
Q2

u +Q2
n

)
(68)

and inserted for (65) and (67) gives

SNDR = 10log

 A2/2
1

12A2
0OSR

+
LSB2

12
×K

 (69)

where

K = 2
∫ fs/2OSR

0

|NTF (z = ejω)|2df (70)

APPENDIX E
EFFECTS OF FINITE GAIN IN MODULO RESONATORS

We start with the difference equations for the output of the
integrators in the modulo resonator. And we assume that the
modulo has no effect. The output of the first modulo integrator
is given by

αpn = (1 + g)αpn−1 + x− gun − εp (71)

where εp = pu/A0 ≈ qp/A0 is the leakage as described earlier
for modulo integration and α = 1+1/A0, where A0 is the DC
gain. The leakage is now (1+g) larger than for a single modulo
integrator, which is due to the feedback capacitor given by gC
in Fig. 20. The feedback capacitor increase the residual charge
since the voltage Vx in the modulo integrator is now forced
across a larger capacitance C+gC. The output of the modulo
resonator is written as

αun = αun−1 + pn−1 − εu (72)

where εu = un/A0 ≈ qu/A0 is the leakage from the second
modulo integrator. Transferring to the z-domain and solving
the equations for u we get

U(z) =
xz−1

B(z)
− (1− z−1)αεu

B(z)
− (1 + g)εpz−1

B(z)
(73)

where B(z) is

B(z) = α2z−2 + (g − 2α2)z−1 + α2 (74)

After the modulo resonator the signal is quantized and filtered
by the notch filter. The notch filter transfer function is equal
to the noise transfer function. The NTF can be written as4

NTF (z) = z−2 + (g − 2)z−1 + 1 (75)

and we see that if α = 1 then NTF (z) = B(z).
The output of the modulator will be

Y (z) = U(z)×NTF (z) +Q(z)×NTF (z) (76)

inserted for (73) in (76)

Y (z) =
NTF (z)
B(z)

[
xz−1 + (1− z−1)αεu + (1 + g)εpz−1

]
+ Q(z)×NTF (z) (77)

There are three effects that can be seen from (77). The
leakage from the first integrator εp leaks directly to the output
scaled by a factor 1 + g. The leakage from the second
integrator, εu, is first order high pass filtered. The finite
gain in the modulo integrators cause an incomplete pole/zero
cancellation between the NTF(z) and B(z), for low DC gain
this will increase the noise contribution. For high DC gain we
can assume that α ≈ 1 such that NTF/B(z) ≈ 1. Then (77)
becomes

Y (z) = X(z)z−1 + (1− z−1)εu + (1 + g)εpz−1

+ Q(z)×NTF (z) (78)

4Here we have shifted the NTF in time by multiplying by z−2
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Transferred back to time domain we have the difference
equation

yn = 〈xn−1 + εu,n − εu,n−1 + (1 + g)εp,n−1 + en〉R (79)

where en is the shaped quantization noise.
The dominating noise source in (79) is the the leakage from

the first integrator ((1 + g)εp,n−1). The modulator output can
thus be approximated by

yn ≈ 〈xn−1 + (1 + g)εp,n−1 + en〉R (80)
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