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Abstract— We introduce the switched capacitor analog modulo
integrator, which to our knowledge is a new circuit. We introduce
the amplitude modulated open loop Σ∆ modulator (OLSDM),
which is an analog modulo integrator followed by a quantizer and
a modulo differentiator. The mathematical equivalence between
low pass Σ∆ modulators and OLSDM is explained. Behavioral
simulations confirm the equivalence. The necessary circuit, a
switched capacitor analog modulo integrator, is explained in
detail. Behavioral level simulations in SPICE of the analog
modulo integrator verify the function, and prove the concept
of amplitude modulated OLSDM.
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I. INTRODUCTION

Σ∆ modulators have become a natural choice for analog-

to-digital conversion in applications with low to medium

bandwidth and high resolution. The Σ∆ modulator shapes the

spectral density of the quantization error of data converters.

The quantization error, or as it is often called, quantization

noise, is the error introduced by converting a continuous

value signal into a discrete value signal. This error is often

considered to have uniform spectral density, or in other words,

be a white noise source. The conditions for considering

quantization error as a white noise source was covered in [1].

The conventional low-pass Σ∆ modulator (L-SDM) in its

simplest form consists of an integrator followed by a quantizer.

The quantized signal is fed back to the input through a digital-

to-analog converter (DAC) and subtracted from the input. The

transfer function of the modulator is different for the input

signal and the quantization noise. 1 The input signal will

undergo an integration followed by a differentiation and have

a transfer function of one. The quantization noise will be

differentiated and thus high pass filtered.

In an ideal world, with no voltage swing limitations, an L-

SDM system could be implemented by an integrator followed

by a quantizer and a differentiator, but since supply voltage is

limited in electronic circuits, and an integrator has infinite dc

gain, it is difficult to implement. Somehow the output swing

of the integrator has to be limited. Feedback is normally used

to limit the output swing of the integrator.

0This version has been visually altered from the version published in Analog
Integrated Circuits and Signal Processing due to copyright on the final print

1This assumes a linear model of the quantizer, since the transfer function
is only defined for a linear system

There are many different types of Σ∆ modulators. In this

paper we discuss a small sub group that we denote Open Loop

Σ∆ Modulators (OLSDM). We define an OLSDM as: Any

Σ∆ modulator that does not have feedback of the quantized

modulator output signal.

One of the first suggestion of an OLSDM can be found in

[2]. Although there is no system implementation they explain

a method that avoids the feedback DAC. More recently there

have been others like the Frequency Σ∆ Modulator (FSDM)

in [3] and [4].

In the FSDM a voltage to frequency converter, a voltage

controlled oscillator (VCO), was used in place of the inte-

grator, and it was shown in [3] that the pre-processing in

FSDM is equivalent to modulo integration. The FSDM could

be identified as a frequency modulated OLSDM.

In [5] they introduced the non-feedback Σ∆ digital-to-

analog modulator where the integrator was implemented as

a digital modulo integrator.

In the past the noise shaping of Σ∆ modulators has been

combined with the high speed of pipelined ADCs. In [6] a

second order five bit Σ∆ Modulator was cascaded with a

12 bit pipelined ADC. The output of the Σ∆ Modulator was

combined with the output of the pipelined ADC to generate

the digital output word. We wanted to investigate whether one

could avoid any interaction, with the exception of the input and

output signals, between the Σ∆ Modulator and the pipelined

ADC in such a system. The question was; could one pre-

process the input signal to implement the sigma, quantize and

do post-processing to perform the delta, without interaction

between the sigma and the delta. The block diagram of such

a system is shown in Figure 1
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Fig. 1. First order OLSDM block diagram

We knew from [5] that the open loop Σ∆ modulator

was possible when all blocks were digital, by using modulo

integration, quantization and modulo differentiation. However,

in an analog-to-digital OLSDM the modulo integration would

have to occur in the analog domain. We were unable to find
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any published circuit that matched our requirements for an

analog modulo integrator. Accordingly, the switched capacitor

analog modulo integrator was developed, which we present

here. To our knowledge, this switched capacitor analog modulo

integrator is a new circuit.

In Section II we elaborate on the mathematical equivalence

between OLSDM and L-SDM, which is supported by behav-

ioral simulations in Matlab in Section III. Quantizer non-

linearity and common errors are also discussed in Section

III. In Section IV we introduce the analog switched capacitor

modulo integrator. Behavioral level simulations with a SPICE

macro model of the analog modulo integrator and the OLSDM

are presented in Section V.

II. OPEN LOOP Σ∆ MODULATOR

The most basic low pass OLSDM is an integrator, followed

by a quantizer and a differentiator as illustrated by Figure 1.

The input signal is integrated and afterwards differentiated,

hence the output is equal to the input, assuming a linear

system. The quantization error added by the quantizer is

differentiated thus high pass filtered. To limit the swing in

the analog domain we use a modulo operation at the output

of the integrator. The inverse operation, which is also a

modulo operation, is performed in the digital domain after

the differentiator. A modulo operation is trivial to implement

in the digital domain. The analog modulo operation is not

trivial, and it has previously been implemented as a voltage

to frequency converter in [3] and [4].

The equivalence of L-SDM and OLSDM was shown in [5].

Here we endeavor to explain the equivalence more intuitively.

The OLSDM has been modeled as a piecewise linear

system. The modulo operation is a non-linear operation, but

it can be seen as a piecewise linear system if we ignore

the discontinuities when the modulo operation occurs. The

quantizer has been modeled as a linear addition of noise.

Figure 2 shows the complete modulator.

Analog Digital

Analog Modulo Integrator Digital Modulo differentiation

Vi(n)
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q
(n
)

b(n) Vo(n) d(n) p(n)
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Fig. 2. Piecewise linear model of the OLSDM

The input signal to the modulator is Vi(n), where n is the

sample index. A signal with sample index n is the current

sample while n−1 is the previous sample. The input is added

to the previous output of the integrator, Vo(n − 1), resulting

in b(n). The signal b(n) is subjected to modulo operation

with Vo(n) as a result. d(n) is the sum of Vo(n) and the

quantization noise, q(n). The differentiator output p(n) is d(n)
minus the previous quantizer output d(n − 1). To get the

output, y(n), p(n) is subjected to a modulo operation. In this

system the second modulo operation cancels the first modulo

operation and we have a system that is equivalent to an L-

SDM. The equations in more detail follow.

We define the previous output from the integrator as

Vo(n− 1) ∈ 〈−Vref , Vref 〉 (1)

and the input signal as

Vi(n) ∈ 〈−Vref , Vref 〉 (2)

where Vref is the reference voltage.

We know that after integration, but before the modulo

operation, we get

b(n) = Vi(n) + Vo(n− 1) (3)

where b(n) will be bounded by

b(n) ∈ 〈−Vr, Vr〉 (4)

where Vr = 2Vref . The modulo operation is used to reduce the

output swing to Vo(n) ∈ 〈−Vref , Vref 〉. The modulo operation

subtracts or adds Vr, depending on the value of the summation

in (3). The next output from the integrator can be written as

Vo(n) =











b(n) + Vr b(n) ∈ 〈−Vr,−Vref ]

b(n) b(n) ∈ 〈−Vref , Vref 〉

b(n)− Vr b(n) ∈ [Vref , Vr〉 (5)

Accordingly (5) is the equation for a modulo integrator. After

quantization the input to differentiation will be

d(n) = Vo(n) + q(n)

d(n− 1) = Vo(n− 1) + q(n− 1) (6)

where q(n), q(n − 1) are the quantization errors. The the

output of the differentiator is

p(n) = d(n)− d(n− 1) (7)

If we in (7) insert for d(n), d(n − 1), Vo(n) and set e(n) =
q(n)− q(n− 1) the expression becomes

p(n) =











Vi(n) + Vr + e(n) Vi(n) ∈ 〈−Vref , 0〉

Vi(n) + e(n) Vi(n) ∈ 〈−Vref , Vref 〉

Vi(n)− Vr + e(n) Vi(n) ∈ 〈0, Vref 〉 (8)

The bounds of Vi(n) in (8) are derived from the possible

input signal values for the modulator to reach the states in (8).

Consider the first case where

p(n) = Vi(n) + Vr + e(n), Vi(n) ∈ 〈−Vref , 0〉 (9)

Here Vr has been added, thus

b(n) ∈ 〈−Vr,−Vref ] (10)

from (5). For b(n) to have these bounds

Vi(n) ∈ 〈−Vref , 0〉 (11)

and

Vo(n− 1) ∈ 〈−Vref , 0〉 (12)

This is sufficient to ensure the bounds of p(n) in case 1 in (8)

are

p(n) ∈ [Vref , Vr〉
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Thus when we apply another modulo operation we get

y(n) =











Vi(n) + Vr − Vr + e(n) Vi(n) ∈ 〈−Vref , 0〉

Vi(n) + e(n) Vi(n) ∈ 〈−Vref , Vref 〉

Vi(n)− Vr + Vr + e(n) Vi(n) ∈ 〈0, Vref 〉 (13)

and for all cases in (13), y(n) ∈ 〈−Vref , Vref 〉. Equation (13)

can be expanded into

y(n) = Vi(n) + q(n)− q(n− 1)

Which result in the well known equations

y(z)

Vi(z)
= 1 ,

y(z)

q(z)
= 1− z−1 (14)

The transfer function from the input signal to the output is

one, which is the same as for an L-SDM, although often the

transfer function of an L-SDM from input to output contains

a time delay, y(z)/Vi(z) = z−1. The quantization error is

differentiated, thus first order high pass filtered. This proof

can be extended to higher order modulators.

III. BEHAVIORAL SIMULATIONS IN MATLAB

The behavioral simulations presented here are an implemen-

tation of the equations explained in the previous section. 2

A. First And Second Order OLSDM

A first and second order OLSDM and an oversampled

quantizer without noise shaping were modeled and simulated

in Matlab. The oversampled quantizer without noise shaping

was included to compare ideal results with the simulated

results. All quantizers were implemented as 7 bit quantizers.

An oversampling ratio (OSR) of 8 was chosen. An overview

of the system can be seen in Figure 3.

FFT

FFT

FFT

Signal 

Source

Quantizer 

First Order OLSDM

Second Order OLSDM

Fig. 3. Overview of behavioral level simulation system

The ideal signal to noise and distortion ratio (SNDR) for

the different cases are shown in Table I. The ideal SNDR are

based on equations from [7].

The equations for the OLSDM were implemented as spec-

ified in the previous section with one exception. We chose to

2The Matlab code for the first and second order OLSDM can be downloaded
from http://www.nextgenlab.net/olsdm

TABLE I

IDEAL SNDR FOR 7 BIT QUANTIZER, OSR=8

Noise Shaping Improvement (dB) Total (dB)
None 10× log(OSR) 52.9

First order 30× log(OSR)− 5.17 65.8
Second order 50× log(OSR)− 12.9 76.1

implement the quantizer using unsigned integer outputs, the

output ranging from 0-127. With this implementation d(n)
has a dc offset. The differentiator is a high pass filter and

removes this dc offset. For the modulo operation to work, a dc

offset was added after the differentiator to restore the correct

common mode. In the second order OLSDM a dc offset was

added after both differentiators.

The sampling frequency was chosen arbitrarily at 1MHz

and the input signal was chosen according to the rules of

coherent sampling [8]. In Matlab the sampling frequency is

of no importance, we could just as well have used normalized

frequencies. However, these simulations will be compared to

SPICE simulations, and in SPICE the sampling frequency is

of importance. The input frequency was fin = 6164.6Hz and

215 samples of the output, y(n), were calculated.

The input signal to the OLSDM must be limited, as specified

in equation (2). It turns out that (2) is incorrect when we deal

with a finite resolution quantizer, which we will discuss in

the next section. For the remainder of this paper the input

signal amplitude has been fixed at 0.9FSR, unless otherwise

specified. As a consequence SNDR will be 0.91dB lower than

ideal cases in Table I.

The outcome of simulations are summarized in Table II.

Both the second order OLSDM and the first order OLSDM

have approximately the same SNDR as the ideal modulators.

When we remove the effects of reduced input amplitude

we are left with an error of +0.2dB for no noise shaping,

+0.01dB for first order OLSDM, and −0.19dB for second

order OLSDM, which is within the errors of the SNDR

extraction.

The Fast Fourier Transform was used to extract the SNDR,

the FFTs can be seen in Figure 4 and Figure 5. The light

gray spectrum in the figures are the FFTs of the ideal 7 bit

quantizer, which is the same for the two figures.

TABLE II

SNDR OF OLSDM MODULATORS WITH 215 POINT FFT

Noise Shaping Total (dB) Difference from Ideal (dB)
None 52.2 -0.7

First order 64.9 -0.9
Second order 74.9 -1.1

B. Input Signal Amplitude Limitations

In the derivation of (2) we ignored quantization noise. But

when we deal with a finite resolution quantizer, quantization

noise cannot be ignored. With quantization noise (8) becomes

p(n) =











Vi(n) + Vr + e(n) Vi(n) + e(n) ∈ 〈−Vref , 0〉

Vi(n) + e(n) Vi(n) + e(n) ∈ 〈−Vref , Vref 〉

Vi(n)− Vr + e(n) Vi(n) + e(n) ∈ 〈0, Vref 〉 (15)
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Fig. 4. 215 point FFT of the first order OLSDM output
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Fig. 5. 215 point FFT of the second order OLSDM output

The boundaries of (15) now include the quantization noise.

For example for case two, where

p(n) = Vi(n) + e(n)

no digital modulo should be performed. To make certain no

digital modulo is performed

Vi(n) + e(n) ∈ 〈−Vref , Vref 〉

accordingly

Vi(n) ∈ 〈−Vref + |e(n)|, Vref − |e(n)|〉 (16)

If the input amplitude is not limited as specified by (16), we

get a condition we denote as false modulo errors. For example,

assume that for case two in (15) we get

p(n) = Vi(n) + e(n) <= −Vref (17)

as a consequence

y(n) = Vi(n) + Vr + e(n) (18)

here a modulo operation was carried out on p(n) when it

should not have been.

The limit in (16) indicate that low resolution quantizers may

not be suited for this type of OLSDM.
These errors are easy to spot in the output of the OLSDM,

shown in Figure 6. They cause large glitches which span the

range of the output codes. To avoid these errors it is sufficient

to limit the input signal. It should be noted that the presence

of these errors completely removes the noise shaping of the

OLSDM.
In the circuit implementation of the analog modulo in-

tegrator, described by equation (5), we use comparators to

detect b(n) ∈ 〈−Vr,−Vref ] and b(n) ∈ [Vref , Vr〉. If we

use the outputs from these comparators we can prevent the

false modulo errors from occuring. In the first order OLSDM

we know that a modulo should only be performed after

differentiation when a modulo was performed in the analog

modulo integrator. Consequently we can use the outputs of

the comparators in the modulo integrator to control the modulo

operation in the differentiator. This ensures that false modulo

errors never occur. The solution comes at the cost of delay

lines that must be added to synchronize the comparator outputs

from the modulo integrators with the modulo differentiator.

For the remainder of the paper we do not use this solution.

In Section III-C we describe an error correction technique

that corrects false modulo errors without using the comparator

outputs.
Unrelated to these errors it was shown in [9] that for digital-

to-analog OLSDM N +1 quantizer bits are normally needed,

where N is the OLSDM order. Thus for a second order

OLSDM we would need a 3 bit quantizer. We expect the same

to be true for analog-to-digital OLSDM.
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Fig. 6. The output of the first order OLSDM in the presence of false modulo

errors

C. Quantizer Linearity And Correction Of False Modulo Er-

rors

An important issue of the amplitude modulated OLSDM

is how the linearity of the quantizer affects the system. The

step sizes in the quantizer were made dependent on the

input signal, thus introducing a non-linearity. By changing

the dependence on the input signal we control the linearity

of the quantizer. In this example an 7 bit quantizer with a
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maximum of 6.8 bit linearity was used as the quantizer in

the second order OLSDM. The results are presented for two

different input amplitudes, 0.8FSR and 0.9FSR. Figure 7

shows the linearity of the OLSDM as a function of quantizer

linearity. As expected, the linearity of the OLSDM does

depend on the linearity of the quantizer. For each bit of

reduction in the linearity of the quantizer the second order

OLSDM looses half a bit of linearity. The slope is constant

until a threshold is reached, the threshold marks the onset of

false modulo errors. Below this threshold the SNDR of the

OLSDM degrades rapidly. The threshold is highly dependent

on the input amplitude and is on the order of (16). Such a

sharp decrease in SNDR at a particular input signal amplitude

is undesirable, and it would be advantageous to correct for

the cause of the sharp degradation, the false modulo errors.

As mentioned we can use the comparator output from the

analog modulo integrators to control modulo differentiation,

which will remove the false modulo errors. However, there is

an alternate solution.

3 3.5 4 4.5 5 5.5 6 6.5 7
0

2

4

6

8

10

12

Quantizer Effective Number Of Bits

 O
L

S
D

M
 E

ff
ec

ti
v

e 
N

u
m

b
er

 O
f 

B
it

s

 

 

0.8 FSR

0.9 FSR

Fig. 7. Linearity of second order OLSDM as a function of quantizer linearity

The false modulo errors have a large amplitude and high

frequency, as seen in Figure 6. They span the range of the

output codes in two samples, and thus have a frequency close

to the Nyquist frequency. If we take advantage of the fact

that the input signal is, by choice, at least eight times lower

than the Nyquist frequency, since we chose an OSR of eight,

we can reduce the errors. There is a maximum difference

between two adjacent output codes, which depend on the

input signal. We assume a sinusoidal input at one-eight of

the Nyquist frequency. A sinusoid has a maximum slope at

the zero crossing which is approximately given by

Slope ≈ Aπ/OSR (19)

, where A is the amplitude. In (19) we have used the well

known assumption that sinx ≈ x if x is small and that OSR =
fs/2fin. With an OSR of eight Slope ≈ 0.39 at zero crossing,

which is approximately one fifth of the FSR.

We assume that any change in the output of more than

0.6FSR between two consecutive samples is due to a false

modulo error. If two consecutive samples of the OLSDM

output has a difference of more than 0.6FSR we undo the

modulo operation. The result of this simple correction can be

seen in Figure 8. The error correction compensates for the

dependence on input signal amplitude and the onset of false

modulo errors. It should be noted that this error correction

technique now allows the input signal amplitude to be FSR.

In this error correction technique we have made an assump-

tion on the properties of the output signal of the modulator.

In this assumption we must be cautious of the quantization

noise. If we use a low resolution quantizer the quantization

noise power at higher frequencies can be significant, and

output codes which span the range of output codes in two

samples are certainly possible. Having said that, with higher

resolution quantizer and low order noise shaping the quantizer

noise power is not significant enough to influence the error

correction.
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Fig. 8. Linearity of second order OLSDM as a function of quantizer linearity
with error correction enabled

The circuit implementation of an amplitude modulated

OLSDM requires an analog modulo integrator. The next

section explains how such a function can be implemented by

a switched-capacitor circuit.

IV. THE ANALOG MODULO INTEGRATOR

A requirement set on the analog modulo integrator was that

it should use maximum swing available, for example 0.8V

peak-to-peak with 1.2V supply. It should also be a discrete

time system and it should be amplitude modulated and not

frequency modulated as was used in [3] and [4]. The discrete

time equation for a analog modulo integrator was shown in

(5).

Using pseudo code the modulo integrator can be described

as

1) Add the previous output to the current input

2) If the new output is equal to or exceeds the reference

voltages

3) Subtract/Add the range of the integrator, Vr

4) Set the current output to the remainder

A modulo operation is trivial to implement in the digital do-

main, but it may not be obvious how it should be implemented

in the analog domain. Adding two voltages in the analog

domain is conceptually trivial. Whether a voltage exceeds a
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reference can be detected using a comparator. Subtraction in

the analog domain is also trivial, but keeping the remainder

presents a challenge.

Assume that the reference voltages are symmetric around

the common mode, such that |Vref | = | − Vref | and |Vref |+
| − Vref | = Vr. The maximum internal voltage in the modulo

integrator would be less than Vref + Vref = Vr or more than

−Vref + −Vref = −Vr. So the output after summation, but

before modulo operation, will be bounded by

−Vr < b(n) < Vr (20)

In a circuit where the analog value is represented by voltages

the swing would have to be 2Vr to accurately represent all

analog values. Since our input signal has a range of Vr we

would waste an extra range of Vr just to represent intermittent

values in the integrator. It would be better if we could set

the voltage swing of the circuit to Vr, which is equal to the

maximum input swing. But in a circuit where the analog values

are represented with voltages this is difficult.

A. A Solution Based On Switched Capacitors

Switched-Capacitor (SC) circuits are prevalent in many

analog integrated circuits. In discrete time Σ∆ modulators

it is common to implement the integrator with a switched-

capacitor circuit. It turns out that with small modifications a

switched-capacitor integrator can be converted to an analog

modulo integrator.

In switched-capacitor circuits the analog values are repre-

sented by voltages across charged capacitors. A conventional

switched-capacitor integrator, shown in Figure 9, adds the

previous output and current input.

This simple integrator has two phases, sample (φ1) and

charge transfer (φ2). Assume the charge stored on C2 is

zero (Q2 = 0). In the sample phase we charge C1 to the

input voltage, thereby placing a charge of Q1 = ViC1 on

the capacitor. During charge transfer the charge of C1 is

transferred to C2 by forcing the voltage Vg to be equal to

ground using an operational amplifier. The voltage across

C1 is then zero and there is no charge stored across it, all

charge is across C2. This causes the output voltage to be

Vo(n) = Q1/C2. If the input value is kept constant, the next

output value, after a clock cycle, will be Vo(n+1) = 2Q1/C2.

In the charge transfer phase Vg is a high impedance node,

thus the total charge, Qtot, given by Qtot = Q1+Q2, does not

change. Qtot is independent of the voltages at Vg and Vo. Thus

we can argue that the ideal output value, Vo−ideal = Qtot/C2

is only dependent on the total charge across the capacitors. By

ideal output voltage Vo−ideal we mean the output voltage Vo

if Vg was forced to ground.

A real world operational amplifier will normally have a

maximum output signal swing. For example, if we exceed

this signal swing the gain in the operational amplifier goes

down, and it is unable to force virtual ground. In this case Vo

saturates, it cannot go any higher, hence Vo < Vo−ideal. This

saturation voltage we define as Vsat > Vref .

Assume that the operational amplifier saturates in φ2, hence

Vo = Vsat > Vref . If we can detect this condition, Vo >

Vref , we can subtract a charge from Vg that represents Vr

(Vr = 2Vref as defined in Section II), thus perform a modulo

operation. We would now have

Vo−ideal = (Qtot −QVr
)/C2 < Vref < Vsat

as a consequence the operational amplifier will be able to force

virtual ground.

One of the differences between the switched capacitor

analog modulo integrator and the conventional integrator is

that the latter has three clock phases. The first two have the

same function as in the conventional integrator, sample and

charge transfer. The third clock phase is added to detect if

Vo > Vref (and the opposite, Vo < −Vref ) in phase two.

If it does exceed, a charged capacitor is connected to the

charge transfer node of the integrator, node Vg in Figure 9.

This subtracts or adds the charge which represent Vr. This

will change the charge transfer equation, and as we shall see,

implement a modulo operation.

Provided that the input signal limited as specified by (16),

the subtracted/added charge will ensure that

−Vref < Vo < Vref (21)

The circuit needed to implement a modulo integrator is

shown in Figure 10. It is connected to the integrator in node

Vg and Vo. The complete circuit has, as mentioned, three

clock phases; φ1, φ2 and φ3. The timing diagram is shown in

Figure 11, where T denotes the period and 1/3, 2/3 denotes

the fractional time steps.

Consider the integrator in Figure 9. During clock phase φ1
the input signal is sampled across capacitor C1. In clock phase

φ2, before φ3, the charge from C1 is transferred to C2. The

charge transfer equation will be

C2Vo(n− T/3) = C2Vo(n− T ) + C1Vi(n− 2T/3) (22)

In this equation, Vo(n−T/3), is equivalent to b(n) from equa-

tion (3) and will have the same bounds, assuming C1 = C2.

For the output, Vo(n), to stay within the reference voltages,

Vr has to be added or subtracted as in equation (5).

Figure 12 shows the states of Figure 10 in more detail.

During φ1, Figure 12 a) , the capacitor C3 is charged to Vr =
Vref −−Vref . At the start of φ3 the latched comparators ( X2
and X3 in Figure 10) determine whether the output voltage

exceeds the reference. Figure 12 b) shows the connections if

the output voltage, Vo(n − T/3), is higher than Vref . Here

a charge of Q3 = C3Vr is transferred to the node Vg in the

Fig. 9. Conventional switched capacitor integrator
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Fig. 10. Modulo circuit

φ1

φ2

φ3

T T T

-1/3-2/3 -1/3-2/3 -1/3-2/3

Fig. 11. Timing diagram for the modulo integrator

integrator. This will change the charge transfer equation into

C2Vo(n) = C2Vo(n− T ) + C1Vi(n− 2T/3)− C3Vr (23)

For Vo(n−T/3) lower than −Vref , Figure 12 c) , the polarity

of the charge is reversed and the charge transfer function is

C2Vo(n) = C2Vo(n− T ) + C1Vi(n− 2T/3) + C3Vr (24)

And if −Vref < Vo(n− T/3) < Vref the capacitor C3 is not

connected to Vg and the charge transfer function (22) remains

unchanged as shown in Figure 12 d). Notice that the outputs

from the comparators can never be high at the same time.

Combining the three equations, (22), (23) and (24) with

C1 = C2 = C3 and ignoring the fractional time-steps ( n−T/3
and n− 2T/3) the result is (5).

The analog modulo integrator presented here resemble a

first-order low pass 1.5 bit Σ∆ Modulator. If one plots the

spectrum of the combined comparator outputs it is a quantized

first order noise shaped version of the input. What makes an

analog modulo integrator different from a first order low pass

Σ∆ Modulator is

• The quantizer levels are set at ±Vref , and not evenly

distributed between ±Vref .

• The three phase clock implements a form of zero time

quantizer feedback, if Vo is higher than Vref Vr is

immediately subtracted before the next output of the

integrator.

• The comparator outputs are not necessary to reverse the

effect of the modulo operation in the digital domain.

V. BEHAVIORAL LEVEL VERIFICATION OF THE SC

OLSDM

We implemented a macro model description of the SC

analog modulo integrator described in the previous section.3

A single pole operational amplifier macro model with a

dc gain of 74dB and a voltage limiter was used to model

the operational amplifier. The comparators were modeled as

latched comparators. Ideal switches with an on resistance of

200 Ohms were used and the capacitors C1-C3 were 5pF.

The reference voltages were Vref = 1V and −Vref = −1V .

The switch resistance, capacitance and references were chosen

arbitrarily. The output of the operational amplifier was limited

to ±1.4V . This ensures that for some values of the input

the integrator will saturate during φ2. The input frequency,

sampling frequency and the number of samples was the same

as for the Matlab simulation. An overview of the system can

be seen in Figure 13.

Only the analog modulo integrator was implemented in

SPICE. Its output was extracted and post-processed in Matlab.

The code for the differentiator and the quantizer were the same

as in the behavioral simulations.

In Figure 14 the input signal (dark gray) and the output

signal (light gray) of the first order SC modulo integrator

is shown for the first 150 samples. The sinusoidal input had

an amplitude of 0.9V . The output, Vo, has been sampled at

the end of φ3 and it can be seen how it never exceeds the

references at Vref and −Vref .

A transient simulation was performed. The results are

summarized in Table III. If we remove the effect of reduced

input signal amplitude the errors are −0.2dB for first order

OLSDM and −2.1dB for second order OLSDM. The error for

first order OLSDM is within the error of the SNDR extraction.

The error for the second order OLSDM it is to large to be

caused by deviations due to SNDR extraction. This extra loss

of −2.1dB was mainly due to non-linearity of the voltage

limiter used in the simulation. When the voltage limiter is

removed the error for second order OLSDM is reduced to

−0.79dB. The remaining difference is mostly due to finite

gain in the operational amplifier. The FFTs of the first and

second order OLSDM are shown in Figure 15 and Figure 16,

the ideal quantizer in light gray and the OLSDM output in

dark gray.

TABLE III

SNDR OF OLSDM MODULATORS IN SPICE

Noise Shaping Total (dB) Difference from Ideal (dB)
First order 64.7 -1.1

Second order 73.1 -3

VI. FUTURE WORK

There are no integrated circuit implementations of an am-

plitude modulated OLSDM as of yet. An integrated circuit

implementation would be the next step. It is needed to check

whether the amplitude modulated OLSDM has a place in the

3The SPICE macro model of the switched capacitor analog modulo inte-
grator can be downloaded from http://www.nextgenlab.net/olsdm
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Fig. 12. The states of the modulo circuit in Figure 10

FFT

FFT

FFT

Signal 

Source

Quantizer 

First Order OLSDM

Second Order OLSDM

Fig. 13. Overview of circuit simulation with macro models

family of analog-to-digital converters, or whether it is just of

academic interest. There are many questions to be answered

and some questions that have not yet been asked. The switched

capacitor analog modulo integrator is, to our knowledge, new

circuit, and it may find applications outside the realm of

OLSDM.

VII. CONCLUSION

We introduced the switched capacitor analog modulo inte-

grator, which to our knowledge is a new circuit. We introduced

the amplitude modulated open loop Σ∆ modulator (OLSDM),

which is an analog modulo integrator followed by a quantizer

and a modulo differentiator. The mathematical equivalence

between low pass Σ∆ modulators and OLSDM was explained.
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Fig. 14. Input vs output for the modulo integrator. Input is a sine with an
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Fig. 15. FFT of output from first order OLSDM simulation in SPICE.
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Fig. 16. FFT of output from second order OLSDM simulation in SPICE.

Behavioral simulations confirmed the equivalence. The nec-

essary circuit, a switched capacitor analog modulo integrator,

was explained in detail. Behavioral level simulations in SPICE

of the analog modulo integrator verified the function, and

proved the concept of amplitude modulated OLSDM.
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