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Preface

This document is a summary of the curriculum in FE8113 High Speed Data Converters. The
goal of this document is to summarize the curriculum so that the results are presented. Proof of
equations and statements can be found in the references. The focus of the summary is as follows:

1. Performance limitations of high-speed ADCs.

2. Suitable architectures for high-speed ADCs.

3. An overview of calibration algorithms for pipelined ADCs.

4. Description, analysis and discussion of recent state-of-the-art ADC publications.

Words About Writing

This document is written about a field that is highly specialized, therefore there are words and
abbreviations not commonly used in the English language. Some abbreviations have become so
prevalent that they are not even capitalized in some texts. One of those words is Operational
Amplifier (OPAMP) which will in this document be written as opamp, without capitalization.
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Chapter 1

Introduction

This chapter will give an introduction to some of the background information needed to understand
the rest of the report. For a deeper introduction to data converters we suggest reading Chapter
11 in [1] or Chapters 1 and 2 in [2]. We start this chapter by describing two phenomena that limit
performance of data converters: noise and distortion. The two phenomena both serve to reduce
the available dynamic range of a data converter.

1.1 Noise

Noise can be found in any analog, and to some extent, in digital systems. Noise sources are often
divided into two categories: intrinsic and extrinsic. Intrinsic refers to some inherent property of
the system, whether it be physical or a property of the signal processing. Extrinsic refers to an
external influence, for example leakage of signals from one portion of the system to another. In
this section we will describe the Intrinsic phenomena of noise.

Noise manifests itself as random fluctuation of a signal. In the output signal of a analog
circuit block we will always have noise. These random fluctuations may have different power
spectral densities, and thus affect the system in different ways. There are three main noise sources:
thermal noise, shot noise and flicker noise. Thermal noise stem from the random fluctuation of
charge carriers, shot noise from charge carriers moving across a potential barrier and flicker noise
from the random trapping and release of charge carriers. Thermal noise and flicker noise are the
dominating noise sources in MOSFET transistors. In high-speed converters, techniques are often
employed to reduce flicker noise. Thus the dominating noise source in high-speed analog-to-digital
converters (ADCs) is often thermal noise. For a detailed, and at times complex, explanation of
the sources and properties of noise, we refer to [3].

The accumulated noise in a system place a lower limit on the resolution of the system. If the
signal power drops below the noise power of a system the signal is difficult to detect. For your
convenience, we have included a short document which gives an introduction to the mathematics
of noise sources in Appendix B.

1.2 Distortion

When it comes to data converters, it is important to have sufficient linearity. Non-linearities will
lead to distortion of the converted signal, and degrade the available dynamic range. To see how
this occurs, we can define a simple model for the ADC. The output, yout, of a ADC for a sinusoidal
input can be written as

yout = f(x), x = A cos(ωt) (1.1)

1
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where f(x) is the system function, A is the amplitude, t is time and ω is the angular input
frequency of the system. For a linear ADC f(x) is often approximated by

f(x) = x + en (1.2)

where en is a noise component. Thus the output would be

yout = A cos(ωt) + en (1.3)

A real converter is usually not linear, we will later discuss some of the sources that lead to non-
linearity in high-speed ADCs. If the system function is weakly non-linear we can approximate
f(x) using a Taylor series expansion. In this example we will use a Taylor series expansion around
zero. The system function f(x) then becomes

f(x) = K1x + K2x
2 + K3x

3 + ... + Kix
i + en (1.4)

where the coefficients Ki is given by

Ki =
1
i!

dif(0)
dx

(1.5)

We can calculate the output as a function of the input using (1.4); we will only include the first
three terms.

yout = K1A cos(ωt) + K2A
2 cos2(ωt) + K3A

3 cos3(ωt) + en (1.6)

By using the well know relation

cos a cos b =
1
2
[cos(a− b) + cos(a + b)] (1.7)

we can rewrite (1.6) as

yout = K1A cos(ωt) +
K2A

2

2
[1 + cos(2ωt)] +

K3A
3

4
[3 cos(ωt) + cos(3ωt)] (1.8)

In general, we can say that for a weakly non-linear system with a single sinusoid excitation we will
have harmonics in the output signal at nω where n is an integer. If we have two or more sinusoidal
input signals there will, in addition to harmonics, be inter-modulation products at kω1 ± nω2,
where ω1 and ω2 are the input signal frequencies and k and n are integers.

Since most analog and mixed signal integrated circuits use differential signaling it is useful to
know how distortion behaves in a differential circuit. In addition to improve signal to noise ratio
1, a differential system suppress even order distortion. The output of a differential circuit can be
defined as:

yout = f1(x)− f2(−x) (1.9)

where fk(x) are the individual non-linear transfer functions for the differential paths. We define
fk(x) as

fk(x) = K0k + K1kx + K2kx2 + K3kx3 (1.10)

where Kik are the distortion coefficients defined in (1.5). K0k is the zero order distortion (DC)
resulting from for example offsets. When we calculate the output yout we get

yout = K01 −K02 + [K11 + K12]x + [K21 −K22]x2 + [K31 + K32]x3 (1.11)
1Signals add linearly when combined after a differential system. For example a sinusoid with an amplitude of A

in the differential paths the amplitude would be 2A after combination, as shown by (1.12). Assuming uncorrelated
noise sources in the two differential paths with noise power of e2

n1 and e2
n2 the output noise power would be

e2
nout = e2

n1 + e2
n2. If the noise sources have the same power the output root mean square value would be

enout =
√

2en. Thus the signal to noise ratio improves with a factor of
√

2, since

S/N =
2A
√

2en

=
√

2
A

en
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If Ki1 = Ki2 the equation reduces to

yout = 2K11x + 2K31x
3 (1.12)

Equation (1.12) proves that even order distortion is removed if the distortion in the in differential
paths are equal. However, there is usually some mismatch between the the two differential paths
which result in even order distortion being suppressed, but not removed.

1.3 Digital Coding

There are many different ways to encode numbers with ones an zeros. If codes or coding schemes
like offset binary, twos complement, thermometer code, gray code or circular code are unfamiliar
we suggest reading Table 2.1 and Chapter 3.3 in [2]

1.4 Classification of Signals

It is useful to get the signal classifications more accurate than just “analog” and “digital”. A pure
analog signal is continuous in time and continuous in value. A pure digital signal is discrete in time
and discrete in value. To convert from an analog signal to a digital signal two operations must
be performed: quantization and sampling. Quantization converts a continuous value signal into
a discrete value signal. Sampling converts a continuous time signal into discrete time signal. It
does not matter which of the two operations comes first. Although, in the real world it is difficult
to do quantization and then sampling. Sampling normally precedes quantization.

1.5 Quantization Errors

One of the more fundamental limitation of Nyquist converters, is the quantization error. Quanti-
zation of an continuous value signal is a non-linear operation. We define the output yQ as

yQ = Q(ya) = ya + qe (1.13)

where ya is the input signal, Q(x) is the quantization function and qe is the error signal due to
quantization.

1.5.1 The Exact Solution

The quantization operation distorts the input signal. We can write the quantization error, qe, as

qe = ya − yQ (1.14)

If the input signal, ya, is a ramp function, the quantization error will be a sawtooth function as
shown in Figure 1.1.

Using a sinusoid as the input signal, the quantization error becomes more complex. If ya =
A sinωt then, according to [4], the quantized signal, yQ, can be described as

yQ =
∞∑

p=1

Ap sin pωt (1.15)

where ω is the angular frequency, t is time and p is the harmonic index. The amplitude of the
individual harmonics, Ap, is defined as

Ap = δp1A +
∞∑

m=1

2
mπ

Jp(2mπA), p = odd (1.16)

Ap = 0, p = even (1.17)
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Figure 1.1: The input signal, quantized signal and the quantization error.

where

δp1 = 1, p = 1 (1.18)
δp1 = 0, p 6= 1 (1.19)

and Jp(x) is a Bessel function of the first kind. If we approximate the amplitude of the input
signal as

A =
2n − 1

2
≈ 2n−1 (1.20)

where n is the number of bits, we can rewrite (1.16) as

Ap = δp12n−1 +
∞∑

m=1

2
mπ

Jp(2mπ2n−1), p = odd (1.21)

Using (1.15) and (1.21), we can calculate the output signal yQ. In Figure 1.2 a 10-bit quantizer
spectrum is shown with 30.000 harmonics [2]. The spectrum shows how the amplitude of the
harmonics decrease as frequency increases.

1.5.2 The Approximation

It is generally accepted that for sufficient quantization steps (enough bits) and an active input
signal the quantization error, qe, can be approximated by a white noise [5]. The quantization
error varies between − 1

2LSB < qe < 1
2LSB and has an average power of q2

e = 1
12LSB2. As

previously mentioned the quantization error places a fundamental limit of the resolution of a
Nyquist converter with a finite number of bits. The general expression of signal to noise ratio is

SNR = 6.02n + 1.76dB (1.22)

where n is the number of bits
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Figure 1.2: 10-bit quantizer spectrum with 30.000 components.

1.5.3 The Exact Solution Versus the Approximation

A more accurate expression for the dynamic range than (1.22) of a n-bit converter, derived from
(1.15) and (1.21), is

S/N =
2n−1 +

∑∞
m=1

2
mπ J1(2mπ2n−1)√∑∞

i=1 [
∑∞

m=1
2

mπ J2i+1(2mπ2n−1)]2
(1.23)

In Table 1.5.3 the S/N for 1 to 10 bits in the quantizer is shown [2]. The approximation (1.22)
overestimates the signal-to-noise ratio. The overestimation is reduced with a higher number of
bits.

Number of bits Accurate S/N Approximate S/N
1 6.31 7.78
2 13.30 13.80
3 19.52 19.82
4 25.59 25.84
5 31.65 31.86
6 37.70 37.88
7 43.76 43.90
8 49.82 49.92
9 55.87 55.94
10 61.93 61.96

Table 1.1: S/N as function of the number of bits.
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1.6 Abbreviations and Measures

For a thorough definition of the different abbreviations and measures we refer to chapter 1 and 2
in [2]. This chapter summarizes some of the measures used in this report.

1.6.1 MSB and LSB

MSB is the Most Significant Bit and LSB is the Least Significant Bit. The LSB of a ADC is equal
to the converter step.

1.6.2 INL

INL is the Integral Non-Linearity of a ADC. It is the deviation of the quantization steps from a
straight line when linear errors (offset and gain errors) are removed.

1.6.3 DNL

DNL is the Differential Non-Linearity of a ADC. It describes the difference between two neigh-
boring analog signals when compared to the LSB

1.6.4 SNR

SNR is the Signal-to-Noise Ratio of a system. It is usually defined as

SNR = 10 log
Signalpower

NoisePower
(1.24)

but authors have a tendency to use different definitions when they talk about SNR. For example
some authors include distortion in SNR and some do not. The bottom line is that SNR is a measure
of the dynamic range available in a signal. The maximum SNR of a Nyquist n-bit converter is
usually defined as (1.22). SNR is sometimes written as S/N.

1.6.5 SFDR

SFDR is Spurious Free Dynamic Range. In a spectrum plot it is the difference between the power
of the signal and the most powerful harmonic.

1.6.6 ENOB

ENOB is Effective Number Of Bits. If we have the measured SNR of an ADC we can use (1.22)
to get effective number of bits:

ENOB =
SNR− 1.76

6.02
(1.25)

It should be noted that in data sheets where SNR is given it is sometimes measured without the
power of the first six harmonics. We would get a more accurate ENOB if we included distortion
in the SNR. SNR with distortion is often named SNDR (Signal to Noise and Distortion Ratio) or
SINAD (Signal to Noise And Distortion).

1.6.7 ERBW

ERBW is Effective Resolution BandWidth. It is defined as the bandwidth where the SNR (prefer-
ably with distortion) of the ADC stays within 3dB.
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1.6.8 FOM

FOM is Figure Of Merit. A FOM is used to compare the performance of different systems, a
collection of parameters are combined to get one number used for the comparison. The FOM
commonly used with analog-to-digital converters, is

FOM =
Power

2ENOBfs
(1.26)

A more accurate FOM would entail using 2ERBW instead of fs, since the given sampling fre-
quency in data sheets is not necessarily equal to 2ERBW [2]. FOM reduces with a factor of
around 10 in 10 years [2]. The figure of merit reflects the three parameters that conflict in analog
design: power dissipation, speed and accuracy.

1.7 Aliasing

Aliasing is an important phenomena that should be mentioned in any document about ADCs.
Aliasing is the folding of input signal frequencies higher than the Nyquist frequency fs/2 into
the base-band. Here fs is the sampling frequency of the ADC. Aliasing is mostly an unwanted
phenomena. To avoid aliasing an anti-alias filter is used. This can be a pure analog filter in front
of the ADC, or a combination of analog filtering and digital post filtering. Note that digital post
filtering, in other words filtering after sampling, requires a certain oversampling of the base-band.
If the base-band is limited to fb the sampling frequency might be at 8fb [2]. Design of alias filters
will not be discussed in this report.



Chapter 2

Design Challenges in High-Speed
ADCs

Two of the main challenges in design of high-speed ADCs are timing and distortion [2].

2.1 Timing Errors

Timing errors manifest through different sources. We will describe the most prominent in this
section. The timing errors may lead to both noise and/or distortion, but we treat them under
timing and not distortion, because of the source of the error.

2.1.1 Sampling Clock Jitter

Sampling is usually controlled by a clock signal at a certain sampling frequency, fs. According to
the Nyquist theorem, signal frequencies at, or below, fs

2 can be accurately reproduced from the
sampled data. How accurate a signal can be sampled depends on the sampling time uncertainty.
One form of sampling time uncertainty is called jitter or clock phase noise. Jitter is a random
fluctuation of the sampling instance. The source of jitter is often thermal noise in clock buffer-,
amplifier- or generator-circuits [2]. To illustrate the effects of jitter we created a simple MATLAB
example. The MATLAB code can be found in Appendix A.1. The results can be seen in Figure
2.1 and 2.2. In Figure 2.1 the sampled spectrum with and without jitter is shown. Note that the
signal without jitter has finite resolution because we have added noise to emulate quantization
noise. The jitter is simulated as a random fluctuation of the sampling instant, as can be seen from
the code. From Figure 2.1 we can see that noise power is increased when jitter is added. In Figure
2.2, signals are shown in time domain. We can see that the signal with jitter samples an incorrect
value from the input signal.

It is possible to derive equations for the maximum jitter that can be tolerated in an ADC. As
we can see from Figure (2.2), at a specific time t we sample a value A without jitter, and with jitter
we sample a value A + ∆A. For the jitter not to have an adverse effect on the resolution of the
converter, the factor ∆A must be less than the quantization step of the converter. An expression
for the maximum jitter, ∆tmax, can be written as (2.1) [2], where n is the number of bits and fin

is the maximum input frequency. For a 16-bit converter system with an input frequency of 20 kHz
the maximum jitter must be less than 1

4nsec [2].

∆tmax =
2−n

πfin
(2.1)

Since the amount of jitter depends on the input signal frequency, as shown in (2.1), it is imperative
that clock amplifiers/buffers in high-speed ADCs are designed to have sufficiently low jitter.

8
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Figure 2.1: Spectrum with and without jitter in sampling of a sinusoid
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Figure 2.2: Time domain plot with and without jitter in sampling of a sinusoid

If we know how much jitter we have in a circuit, it is useful to have an expression for the
reduction in ENOB. The reduction in the ENOB due to jitter can be written as [2]

ENOBreduction =
log(1 + [2nπ

√
6 Tjit

Tsig
]2)

2 log 2
(2.2)
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where n is the number of bits, Tjit is the root mean square of sampling clock phase noise and Tsig

is the period of input signal. In [2] they have plotted (2.2) as a function of n and Tjit

Tsig
, the result

is duplicated in Figure 2.3.

Figure 2.3: Reduction in ENOB versus Tjit

Tsig

2.1.2 Limited Rise and/or Fall Time of Sampling Clock

On-chip clock signals will have finite rise and fall times due to the finite resistance and non-zero
capacitances of clock amplifiers/buffers, and interconnect. White noise in clock amplifiers/buffers
might worsen the jitter if rise and/or fall times are to high. Clock amplifiers should be designed
with low rise and fall times.

2.1.3 Skew of Clock or Input Signal

Assume that our converter looks like the converter in Figure 2.4. In this example distributed
sampling is used, in other words the input signal is sampled at different locations on the chip, but
preferably at the same time. Due to finite speed of signal propagation on-chip, which is between
half and one-third of the speed of light [2], the input signal and sampling clock arrive at different
locations at different times. A typical signal may travel around 100µm to 200µm in 1ps, so that
a converter like the one shown, may experience a difference of several pico seconds in sampling
instant from one end of the converter to another. This time difference causes an error which results
in non-linear distortion [2]. Skew of clock signal or analog signals is one of the major contributors
to non-linearity, and thus distortion, in high-speed ADCs [2]

To avoid problems with clock or signal skew in high-speed ADCs it is common to implement
tree like signal routing structure, like the one shown in Figure 2.5. With such routing the delays
from clk ⇒ clki are all equal.

2.1.4 Signal-Dependent Delay

If a signal-dependent delay is introduced, it can lead to non-linear distortion. A circuit with
amplitude-limiting followed by bandwidth-limiting introduces a delay that is slope dependent,
which can lead to distortion [2]. Circuits with amplitude-limiting and bandwidth-limiting are



CHAPTER 2. DESIGN CHALLENGES IN HIGH-SPEED ADCS 11

Vref

Vinput

clk

clk

clk

Figure 2.4: Distributed sampling in an ADC

almost always found in the first stages of a high-speed ADC in form of a sample-and-hold or input
amplifiers.

2.1.5 Sampling Comparators Aperture Time

The aperture time is defined as the time between the command to sample occurs and the actual
sample is taken. A large aperture time leads to high-frequency errors which cause an averaging
in the time domain, leading to third-order distortion [2]. The architecture of the comparator may
cause a large aperture time. Large rise or fall times in sampling clock, with respect too the clock
period, will cause a large aperture time. Increasing the small signal bandwidth of the comparator
and reducing the rise and/or fall times of sampling clock may reduce the effect. This is another
of the major contributors to distortion in high-speed ADCs [2].

2.2 Distortion

Distortion of the quantized signal is a phenomena which have many sources. Some sources of
distortion have their roots in timing errors, as explained in previous section. This section discussed
some of the other sources of distortion in high-speed ADCs.

2.2.1 Distortion in Input Buffers and/or Amplifiers

A non-linear transfer function of input buffers or amplifiers will lead to distortion, as explained
in Section 1.2. Most integrated analog-to-digital converters manufactured today use differential
signaling. As previously explained, differential circuit suppress even order distortion; it is often
third order distortion in input buffers/amplifiers that is the dominating source of non-linearities [2].
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clk0 clk2 clk3 clk4 clk5 clk6 clk7 clk8

clk

Figure 2.5: Tree signal routing with equal delay from clk ⇒ clki

To reduce distortion in amplifiers and/or buffers one can reduce internal signal swing, or avoid
stacking of transistors in output stages. In a multistage opamp it is usually the output stage
that dominates the non-linearities at lower frequencies; at higher frequencies the input stage
dominates [6].

2.2.2 Offset in Input-Amplifiers/Comparators

Mismatch of devices is one of the more important sources of non-linearity in modern CMOS
technologies [2]. Mismatch of transistor pairs in input-amplifiers/comparators leads to an off-
set, in other words the output currents of a differential pair are not equal when the differential
input voltage is zero. Although offset is a linear error when referred to the individual input-
amplifiers/comparators it will introduce non-linearities in ADCs. Assuming one comparator per
quantization step, the offset of the individual quantization steps will vary, thereby degrading the
INL of the ADC. In CMOS technology the offset of a differential pair can be written as

Voffset =
avth√
WL

(2.3)

where avth is a process parameter, W is width of the transistor and L is the length of the transistor
[2]. An increase of the gate area of the transistors will reduce the offset in a differential pair. Note
that the reduction in offset voltage is proportional to 1/

√
WL; the input capacitance of a MOSFET

is proportional to WL. Thus input capacitance of the differential pair will increase faster than
the offset voltage is reduced. There are techniques that can reduce offset without increasing input
capacitance. These techniques will be covered in Chapter 3.
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2.2.3 Changes in Reference Voltage(s)

The reference voltage or voltages of an ADC are essential. It can be said that it is next to
impossible to make an ADC without a reference, which is usually true since it is difficult to
quantify anything without having something to quantify it with respect to. Reference voltages
can be defined through a resistive divider with unit resistors, for example one for each quantization
step. Matching accuracy of unit resistors will affect the INL of the ADC in much the same way as
offset in comparators. It is possible to estimate the required matching for a certain INL. Section
2.6.6 in [2] shows simulations of mismatch in unit resistors versus the resulting INL. Results are
summarized in Table 2.2.3. We see that for a 14-bit ADC we need a matching accuracy of 0.4%

Number of bits INL ≈ 1
2LSB INL ≈ 1LSB

8-bit 3.1% 6.2%
10-bit 1.6% 3.1%
12-bit 0.9% 1.7%
14-bit 0.4% 0.85%

Table 2.1: Resistor matching versus converter accuracy data.

to get an INL of 1
2LSB. This source of distortion is usually not the dominating source since it is

possible to achieve matching better than 0.1% for resistors and capacitors in modern processing
technology [7]; of course this depends on the resolution of the converter. Another error that
can introduce non-linearity through reference voltages is kickback from comparators [2]. During
sampling of input signal a kickback from a comparator can temporarily change the reference
voltage, thereby introducing an offset in the reference voltage.



Chapter 3

Architectures for High-Speed
ADCs

In this chapter we will present some of the more common architectures for high-speed analog-to-
digital converters.

3.1 Full-Flash Converters

In a flash ADC 2N − 1 comparators are used to extract N-bits. It is one of the more direct
approaches to analog-to-digital conversion. The most common flash ADC is possibly the ther-
mometer encoded flash. There have also been publications with other types of encoding, like gray
encoding or circular encoding. These will not be discussed here and we refer to chapter 3.9 and
3.10 in [2] for further information.

In Figure 3.1, a 2-bit thermometer encoded flash converter is shown. The difference between
the input signal voltage and a reference voltage is amplified using input amplifiers resulting in the
outputs A0 − A2. The reference voltages are generated by voltage division in the string of unit
resistors. After amplification 2N − 1 = 3 comparators are used to detect the zero crossing, which
occurs when the input signal voltage is equal to a reference voltage1. Sampling is performed by
clocking the comparators using the clock signal Clk. A decoder takes the thermometer encoded
output, T1 − T3, from the comparators and converts it into the two binary outputs MSB and
LSB.

For example, if the input signal voltage is larger than the reference voltage Vref1 but smaller
than Vref2, the amplifier outputs A0 and A1 will be larger than zero. Output A2 will be less than
zero. The output of the comparators would be T2 = 0, T1 = 1, T0 = 1, and we get the binary code
10 from the decoder.

With modern processing technology, it is possible to get around 8-bit from a full-flash converter;
anything more is impractical [2].

3.1.1 Comparators

Comparators in a full-flash ADCs are usually latched comparators. For implementation and
architectures we refer to Chapter 7 in [1]. Note that when flash converters are described in the
literature the input amplifier is often a part of the comparator. Therefore, when they describe
problems with offset in comparators, it is often the offset in the input amplifier of the comparator
they talk about. With high gain input amplifiers the offset of the latched comparator is less
important. The offset error in the latched comparator is divided by the gain of the input amplifier
when referred to the input Vin.

1For the moment we will ignore offset in the amplifiers and comparators

14
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Figure 3.1: 2-bit full-flash converter

3.1.2 Input Amplifier

An example of an input amplifier is shown in Figure 3.2 a). It is a differential pair with resistive
load and a current source that biases the transistors. The differential output voltage is ideally
equal to

Vout = gmR[Vin − Vrefi] (3.1)

where gm is the transconductance of the transistors. However, due to mismatch between transistors
the output exhibit an offset when the differential input is zero, Vin = Vrefi, as seen in Figure (3.2)
b). To have low offset in the amplifier the input transistors must have a large gate area, as
previously explained. With a large gate area follows a large input capacitance. As all the input
amplifiers are connected in parallel the accumulated capacitance load on the input can be quite
large. A large input capacitance is a disadvantage in high speed circuits because input buffers will
have high power dissipation [2].

The linearity of the input amplifiers is critical in a high-speed ADC, as previously explained.
The input capacitance of the input amplifiers is often dominated by gate source capacitance, Cgs,
of the transistor. This capacitance can be highly non-linear, especially if input transistors are
biased in moderate inversion. Care must be taken by a designer to ensure that the non-linearities
of the input capacitance are low enough.

3.1.3 Error Correction

Thermometer encoded ADCs usually implement some form of bubble error correction. A bubble
error is a lone zero amidst a series of ones, for example for a 3-bit converter 0011011. For further
reading about bubble correction we refer to chapter 3.18 in [2]

3.1.4 Interpolation

Interpolation can be used to reduce the number of input amplifiers in a full-flash ADC. An example
of interpolation in a 3-bit full-flash is shown in Figure 3.3. Here a string of interpolating resistors
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Figure 3.2: Comparator input amplifier

are inserted between the outputs of the input amplifiers. To avoid interaction between amplifiers
one should insert some form of buffer stage at the amplifier output. An example of such buffering
is shown in Figure 3.4.

Assume that the input signal lies between two reference levels, and that both amplifiers on
either side are in linear operation. As the outputs will have a finite slope with respect to the input
in linear operation (finite gain), and that the zero crossing occurs at different values of Vin for
the two amplifiers, it is possible to achieve accurate interpolation of the zero crossing as shown in
Figure 3.5. Let the reference levels of amplifier 0 and amplifier 1 be at Vref0 and Vref1 respectively.
At a certain input voltage,

Vin = Vref0 +
Vref1 − Vref0

2
(3.2)

the amplifier outputs A0 and A1 would be as shown in Figure (3.5) where −A0 = A1 . If the
interpolation resistors are of equal size the interpolated voltage would be

Vinterpolated = A1 +
A0 −A1

2
= −A0 +

2A0

2
= 0 (3.3)

Thus the zero crossing is correctly interpolated. The accuracy of interpolation depends on the
linearity of the amplifiers and the mismatch between resistors. In addition to reduce the number
of input amplifier interpolation improves the DNL of an ADC [2].

The 3-bit flash-ADC in Figure 3.3 used single interpolation where the number of input ampli-
fiers is reduced by a factor of two. There are other types of interpolation possible.

Multiple Interpolation: The resistor string between amplifier outputs can consist of multiple
resistors; we need less input amplifiers if multiple interpolation is used.

Active Interpolation: Instead of using resistor strings to interpolate between amplifier outputs,
one can use active circuits. An example of active interpolation is shown in Figure 3.6, A0

and A1 is the output from the input amplifiers. This interpolation architecture performs
well, even at high frequencies, if offset voltages and mismatch between devices are small
compared to required interpolation accuracy. 3.6

Capacitive interpolation: In a discrete time systems it is possible to use capacitive interpola-
tion. Example of capacitive interpolation is shown in Section 3.5.5 in [2].

It should be noted that interpolation is not exclusive to full-flash converters, it has also been
used successfully in folding converters [8].
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Figure 3.3: Example of Interpolation in a 3-bit flash converter.

3.1.5 Averaging

When implementing interpolation we inserted a buffer at the output of the input amplifiers to
avoid interaction between the amplifiers. It turns out that allowing interaction can help reduce
offset of the input amplifiers [2]. The technique is called averaging. Averaging can be performed
by placing a resistor between the unbuffered outputs of the input amplifiers. The improvement in
offset voltage is proportional to

√
Nactive, where Nactive is the number of linear active amplifiers.

An example of an averaging circuit is shown in Figure 3.7. It is assumed that the amplifiers to
the left and right of the zero crossing amplifier (M3/M4) is operating in linear region. Although
averaging improves INL, it has non-linearities at the end of the averaging chain. The first and last
amplifier only has active amplifiers to the left or right, not both. This reduces the usable range
to around 75%. Some solutions have been proposed to deal with this non-linearity [2].

Adding extra amplifiers: By adding two extra amplifiers, one on each side of the chain, and
scaling the last resistor one can achieve a usable range of 95%

Moebius band averaging: The resistors are connected in a Moebious band, thus the resistor
chain has no end. This technique also achieves close to 95% usable range.

Active averaging system: Active averaging uses active transistors. An output signal is ob-
tained as the sum of three neighboring differential pairs.

3.1.6 Full-Flash ADC Example

An example of a 6-bit flash ADC is shown in Figure 3.8 If we start from the left in the plot
we have the reference generation with 15 taps. The input is fed to 15 amplifiers with averaging.
Afterwards, a distributed track and hold is used to sample the signal. After sampling they have
two stages with interpolation/averaging to achieve 63 zero crossings. These zero crossings are
detected by the 63 clocked comparators. A thermometer code to binary code is performed at the
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end. A performance summary of the converter is shown in Table 3.1.6. This converter has a FOM
of 6.87 pJ per conversion step. It was published in 2001 [9].

3.1.7 Evolution Of The Flash Converter

We do not know which ADC architecture was the first, but when you look at them it looks like
the flash ADC has evolved into several different species over the years. We have the thermometer
encoded, gray encoded and circular encoded flash ADC. Often the difference is a small improvement
within a certain area, for example gray encoded flash ADC uses analog preprocessing to reduce
the number of comparators. Discrete time implementations, with a sample and hold in front of
the converter, have been used to alleviate problems with clock skew.

To deal with the component count of full-flash ADCs the two-step flash ADC was developed.
It has a drastically reduced component count compared to the full-flash ADC. The two step
architecture is shown in Figure 3.9. The idea behind the two step flash is to do a coarse quantization
first, subtract the quantized value from the input with the help of a DAC and then do quantization
of the residue (fine quantization). With this architecture it is possible to achieve 8-bit resolution
with only 40 comparators [2]. However, the accuracy of the DAC needs to be 8-bit for the ADC to
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Figure 3.7: Resistive averaging scheme

have sufficient linearity for 8-bit operation. It is not uncommon to have a gain stage between the
coarse and fine quantizations. The two-step flash ADC has evolved further into a prevalent species,
the pipelined ADC. The pipelined ADC has become prevalent in the medium/high resolution and
high speed segment. The pipelined ADC will be discussed in a separate section. Akin to the
two-step flash is the sub-ranging converters. These have no gain stage between the coarse and fine
stages. In the next section we will discuss another relative of two-step flash, the folding ADC.

3.2 Folding ADC

Folding ADC’s combine the component savings of a two-step ADC with the digital sampling of
a full-flash converter. A folding converter system can be seen in Figure 3.10. The folding ADC
consists of a coarse quantization and a fine quantization, like the two-step converter. One of the
differences is that the folding ADC does not need a sample-and-hold in front of the converter.
The coarse quantizer determines the MSBs, the MSBs determine the number of times the input
signal is folded. The output of the folding circuit is converted by the fine flash converter to get
the LSB’s.
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Figure 3.8: 6-bit converter architecture

Parameter Value
Technology 0.35 µ Standard CMOS Single Poly, Five Metal
Resolution 6-bit
Effective Number of Bits 5.6 bit
Resolution Bandwidth 450 MHz
Maximum Clock Frequency 1.1GHz
Supply Voltage 3.3V
Power Dissipation 300mW

Table 3.1: Performance summary of 6-bit flash converter

To see how folding works, take a look at Figure 3.11. Here the input signal is a ramp from
0 to 1, the axis are normalized full-scale range. A 2 bit coarse quantization finds the MSBs. In
a two-step flash ADC we would subtract the MSBs from the input signal to get a residue, the
residue is shown in the Figure by the grey arrow. In a folding ADC the input signal is folded as
shown by the folding signal in Figure 3.11, thereby limiting the input signal to 1 LSB of the coarse
quantization. A fine quantizer can be used to convert the folded signal.

3.2.1 The Folding Block

An example of a folding block can be seen in Figure (3.12). The transistors M2,M4,M5 are
forward biased diodes. These will turn on, one at a time, when the input signal, Iin, increases.
The reference currents I0 are divided equally between the same size resistors R1 and R2 via the
transistors M1,M3,M5,M7, thus the differential output voltage Vout is biased at zero. The circuit
produces a folding signal similar to the one in (3.11). These triangular folding blocks suffer from
high frequency problems. Band-limiting in the folding blocks will incur rounding of the folding
signal [2]. As such the folding signal will not be shaped like a triangle, but rounded at the
extremities. This will cause distortion of the fine quantized signal. One of the solutions to this
problem is to use two parallel folding blocks where the folding thresholds are offset by a certain
amount, as shown in Figure (3.13) [2]. Here the fine converter is used only during linear operation
of the folding blocks. When folding block A deviates from a linear transfer function a switch is
made, and the output signal from folding block B is used.

Another technique is to implement one folding block for each LSB in the residue with a small
offset between the folding blocks, and use a single bit quantizer to detect a zero transitions. An
example of a folding block that can be used in such a system can be seen in Figure (3.14). At
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Figure 3.9: The Two-Step Flash Architecture
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Figure 3.10: Folding converter system

zero input voltage Vin = 0 the differential output voltage Vout is zero. When the input voltage,
Vin, is equal to Vref1, the currents through M1 and M2 are equal, increasing the output voltage
to roughly half the available swing. As the input voltage increases further the output voltage will
probably saturate at maximum swing. When M3 starts to draw current instead of M4, the voltage
will start to drop again and at Vin = Vref2 we reach another half-way point. The circuit continues
to fold the input signal depending on how many differential pairs there are in the folding block. If
we have a 10-bit folding ADC with 3-bit coarse quantizer, we would need up to 128 folding blocks.
Such a system would have a large input capacitance. To reduce the number of folding blocks we
can use interpolation in much the same way as in the full-flash ADC.

3.2.2 Folding ADC Example

The block diagram of a 8-bit, 70MS/s, 110mW folding and interpolating converter is shown in
Figure (3.15) [8]. A coarse quantization of 3-bits was used, thereby a folding rate of eight was used
in the four folding amplifiers. Interpolation was used to bring the total up to 32 folded signals; 32
comparators detect the zero transitions and their outputs were combined with the coarse MSBs
to form the 8-bit output. The converter achieves a FOM of around 56.7 pJ per conversion step.
It was published in 1995.

3.2.3 Folding ADC Summary

To improve high frequency performance a sample-and-hold (S/H) can be inserted in front of the
converter. It is also possible to do distributed track-and-hold (T/H) with analog pre-processing
to reduce the required linear region, settling requirements and power dissipation compared to a
single S/H [2]. The disadvantage of the distributed T/H is the need for multiple clock signals.
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Figure 3.11: Signals in a folding converter

Figure 3.12: Example of a triangular folding block

It should be noted that the MSBs, the output from the coarse quantizer, is often determined
using signals from the folding blocks of a converter.

One of the drawbacks of folding ADCs are the high frequencies in the folding circuit and loss
of resolution due to limited bandwidth in folding circuit.

To increase the folding rate (number of times a signal is folded) but not the input capacitance,
folding blocks can be connected in cascade. For more information see section 3.14.16 in [2].

3.3 Pipelined ADC

A block diagram of a pipelined ADC can be seen in Figure (3.16). The pipelined ADC consists
of multiple stages, normally preceded by a sample-and-hold (S/H) circuit. In each stage p-bits
are determined. A p-bit ADC quantizes the stage input signal, the quantized signal is subtracted
from the stage input signal using a p-bit DAC. The residue after subtraction is amplified so the
input swing of the pipelined stage is equal to the output swing. The last stage in a pipelined
ADC is usually a flash ADC. An over-range is normally implemented in pipelined ADCs. In other
words the sum of the p-bits bits from each stage is larger than the resolution of the overall ADC.
This over-range is used to reduce the required accuracy of the ADC within the pipelined stage. In
the first stage the DAC and amplifier (Gain) need to have full accuracy. In the subsequent stages
the required accuracy is lower due to the accumulated gain. Therefore stages 2 through stage n
are usually scaled in order to reduce the power dissipation of these stages. The number of bits
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Figure 3.13: Double folding output signal

Figure 3.14: Example of zero crossing folding

selected for each stage, p, depends on the overall resolution of the ADC and what is possible to
implement within the restrictions of the processing technology.

3.3.1 Speed Of Pipelined ADC

By pipelining stages, the speed of the converter can be equal to the maximum speed of each stage.
Stages in a pipelined ADC normally have two phases: sampling and multiplication. Stages are
normally clocked with opposite phases, in short stage 1 multiplies while stage 2 samples. If the
clock period of the overall converter is Ts, each stage has Ts/2 for each phase. Sampling normally
occurs at the end of a phase, thus stage 1 has Ts/2 to settle before stage 2 samples its output
signal. A new sample is available at the output of the pipelined ADC at the end of each clock
period. Although the pipelined ADC has a large throughput, the latency2 depends on the number
of stages. This excludes the pipelined ADC from some applications where latency is key, for
example as a quantizer in a conventional Σ∆ ADC.

2Latency is the time it takes from the analog input signal is sampled to the digital word is available at the
output of the ADC
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Figure 3.15: Block diagram of a 8-bit folding and interpolating converter

3.3.2 The Pipelined Stage

A common number for the bits in each stage is 1.5-bits. With 1.5-bits the stage ADC is often
implemented as a flash ADC with two comparators. A common implementation of a 1.5-bit
stage is shown in Figure (3.17) [2]. The two comparators have thresholds at ±Vr/4, where Vr

is the reference voltage. During sampling the comparators quantize the input signal. At the
same time the input signal is sampled onto capacitors Cf and Cs with switches S1, S2 and S3.
Switch S1 is often turned of before switches S2 and S3 to make the charge injection from the
switches independent of the input signal. During the multiplication phase the quantized input
signal is used to decide which of the voltages +Vr, 0 or −Vr should be connected to the capacitor
Cs, this is effectively the DAC. The capacitor Cf is connected to the opamp output during the
multiplication phase. The opamp proceed to settle, and forces a virtual ground at the negative
input of the opamp. When the opamp has settled the output signal is ready to be sampled by the
next stage. The output of this stage can be written as

vresidue =



(1 +
Cs

Cf
)Vinput − Vr, Vinput > Vr

4 (3.4)

(1 +
Cs

Cf
)Vinput, −Vr

4 < Vinput < Vr

4 (3.5)

(1 +
Cs

Cf
)Vinput + Vr, Vinput < −Vr

4 (3.6)

The output codes from the stage ADC are usually

pout =


10, Vinput > Vr

4 (3.7)

01, −Vr

4 < Vinput < Vr

4 (3.8)

00, Vinput < −Vr

4 (3.9)

3.3.3 Error Correction In Pipelined ADCs

Assume that one of the comparators in the 1.5-bit pipelined stage has an offset that makes the
threshold larger than Vr/4, for example 1.5Vr/4. If the input value of stage 1 is 1.2Vr/4 the flash
ADC will incorrectly decide that the quantized word should be “01” and not “10”, which would



CHAPTER 3. ARCHITECTURES FOR HIGH-SPEED ADCS 25

Stage 1 Stage 2 Stage M

Digital error correction

S/H

Dout

Analog 
input

S/H

p-bit 
ADC

p-bit 
DAC

Gain

Stage 
output

Stage 
input

p-bits

Figure 3.16: Block diagram of a pipelined ADC

Figure 3.17: Implementation of a 1.5-bit stage

be correct. The output value of stage 1 would be 2× 1.2Vr/4 = 1.2Vr/2. Stage 2 will then decide
that the quantized word is “10”, even if it has the same offset in comparator. To combine stage
output words they are shifted and summed leading to

Stage 1: 01
Stage 2 MSB: 1
Corrected Stage 1: 10

Thus a 1.5-bit pipelined stage can tolerate an offset in comparators up to ±Vr/4, greatly reducing
the required accuracy of the stage ADC.

3.3.4 Reducing Power in Pipelined ADCs

The sample-and-hold in front of the converter and the opamps in each stage dissipates most of
the power in a pipelined converter [7]. Note that the opamp in a stage is only used during half
the clock period. Techniques have been developed that switch off the opamp during half the clock
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period to reduce power dissipation, however this technique is normally not suitable for high-speed
designs due to the slow turn on time of high-speed opamps [10] . Another technique is to share
an opamp between two stages [2].

3.3.5 Pipelined ADC Summary

A switched capacitor amplifier, like the one used in 1.5-bit stage, requires a high-gain opamp. In
the first stage the gain normally needs to be slightly higher than the resolution of the pipelined
ADC. For example, for a 10-bit converter we may need 70dB gain in the first stage opamp [10].
High-speed, high-gain opamps have high power dissipation and may be difficult to implement in
modern nanoscale processes. Too low gain in the opamp leads to incorrect settling of the switched-
capacitor amplifier, in short the gain is less than 2 for a 1.5-bit stage. Due to the architecture of the
pipelined converter this leads to non-linear distortion. Calibration techniques have been developed
to deal with this problem [11]. Other effects that limit performance of pipelined converters will
be presented in Chapter 4.

3.4 Time-Interleaved ADCs

Time-interleaved ADCs are used when very high bandwidths and sampling rates are required.
Applications include digital oscilloscopes with bandwidths up to 6GHz and sampling speeds of
20GS/s [2]. In Figure (3.18) an example of time-interleaving is shown. Here three ADC’s are
interleaved. In front of each ADC is a sample and hold. For this example the sampling clock of
each S/H runs at 1/3 of the sampling frequency fs. A timing diagram is shown in Figure (3.19).
Each of the clock phases clk1− clk3 are out of phase. The output from the ADC, shown in Figure
(3.19) as D1, D2, D3, are fed to a digital multiplexer which combines the three interleaved signals
into the output Dout.

clk1

clk2

clk3

D
ig

ita
l M

ul
tip

le
xe

r

ADC1

ADC2

ADC3

Vin Dout

D1

D2

D3

Figure 3.18: Time-Interleaving of three ADCs

Problems occur in time-interleaved converters because of the difference in offset and gain
errors [12] between the ADCs. The difference in errors between the ADCs will, in this example,
produce in-band signals at one-third of the sampling frequency fs. Therefore time-interleaved
converters may require trimming of offsets and gain.

Most ADC architectures can be used for interleaving. It does not necessarily have to be one of
the high-speed architectures. In [13] eight successive-approximation (SAR) ADCs were interleaved.
SAR ADCs are normally associated with slow but accurate ADCs. With this architecture they
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Figure 3.19: Timing of time-interleaved converter

achieved a performance of 6-bit, 600MHz maximum input frequency and a power dissipation of
10mW, resulting in a FOM of 0.4pJ per conversion step, which is a quite good result.



Chapter 4

Calibration Techniques For
Pipelined ADCs

In this chapter we will discuss some of the calibration techniques that have been developed to deal
with problems in pipelined ADCs. There are a multitude of papers on calibration available, and
the techniques described here are only a sampling of the whole.

Each stage in a pipelined converter has a DAC. In high-resolution multi-bit stage pipelined
converters these DACs, often implemented as switch capacitor circuits, suffer from non-linearities
due to mismatch between unit capacitors in the DAC [11]. These non-linearities produce harmonics
in the frequency spectrum of a converter. A technique called dynamic element matching (DEM)
can be used to spread the power of these harmonics.

4.1 Dynamic Element Matching

An example of a simple current DAC can be seen in Figure (4.1). The output value of the DAC
is determined by the sum of currents and the configuration of the output from the thermometer
encoder. The DAC output, Vout, is given by

Vout = RIref [T0(1 + e0) + T1(1 + e1) + T2(1 + e2) + T3(1 + e3)] (4.1)

where R is the resistance, Iref is the reference current, Ti is the output from the thermometer
encoder (Ti is 1 or 0) and ei is the error introduced by the different paths. If the error is exactly
the same for all paths, e0 = e1 = e2 = e3, the errors will introduce a gain error in the output, but
the DAC will still be linear. This is only true if the summed currents are unit currents. Mismatch
of devices makes it highly unlikely that all errors are exactly the same. The magnitude of the error
is often randomly distributed around a typical value. The error is usually constant with respect
to time. With different values for the errors, there will be a deterministic non-linear relationship
between the output signal and the error, resulting in distortion.

A DAC with DEM can be seen in Figure (4.2). The number of current paths in this DAC has
doubled to allow for DEM implementation,. It is not strictly necessary to have double the number
of paths, but it is common to implement an over-range. After the thermometer encoder we have a
scrambler that selects the correct number of currents to sum, which it does in a random fashion.
This decorrelates the error from the output signal, which smears the power of the harmonics
produced by non-linearities out in the frequency spectrum, effectivly reducing the distortion into
noise. A pseudo random sequence is often used at the input of the scrambler.

An example of the output spectrum with and without DEM can be seen in Figure (4.3) [11].

28
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Figure 4.1: Simple Current DAC

4.2 DAC Noise Cancellation

DAC Noise Cancellation (DNC) is an extension of DEM encoding. It makes use of the fact that
the DAC error can inherit some of the statistical properties of the pseudo-random signal used in
the DEM encoding. In [11] a DEM encoder is implemented in such a way that the DAC error is
given by

eDAC [n] =
∑

k

∑
r

∆k,rsk,r[n] + ∆ssegsseg[n] (4.2)

where k ∈ 1, 2, 3, r ∈ 1, 2, 3, 4, 5 and seg are indexes of switching blocks within the DEM encoder,
∆k,r and ∆seg are the constant errors due to mismatch and sk,r[n] and sseg[n] are the pseudo-
random signals. For an explanation of how the DEM encoding is performed we refer to [11].
Sufficed to say, the error ∆k,r or ∆seg is the error of a specific path in the DAC. If we can find
the magnitude of this constant error, it can be subtracted from the output code, thus reducing
or removing the error introduced by that specific path in the DAC. In [11] a 9-level DAC was
implemented, the DNC correction of the first stage is shown in (4.4). The residue signal from the
pipeline is re-quantized to reduce the size of the DNC logic. The residue is then correlated with the
each of the 9 pseudo-random sequences. After correlation the correlated signal is averaged, thereby
estimating the value of −∆k,r or −∆seg. The estimated error is then multiplied by the pseudo-
random signals and the resulting value is subtracted from the residue signal of the ADC. The
DNC technique effectively measures the individual error of each of the DAC paths and subtracts
an equivalent error if the DAC path has been used in that particular residue code.

4.3 Gain Error Correction

Gain error correction (GEC) is used to correct for gain errors in pipelined stages due to for
example, finite gain in stage opamps. An example of GEC is shown in (4.5). The first stage of
a pipeline converter is shown, and the rest of the stages are shown as an ideal back-end ADC.
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Figure 4.2: Current DAC with DEM encoder

The interstage gain is represented as G(1 + ε) where ε represents the gain error. The error in the
interstage gain will introduce a non-linearity in the transfer function of the ADC, and thus reduce
SFDR and SNDR [11].

A pseudo-random sequence, rgec, is added at the input of the DAC; rgec is white and has a
mean of zero. This travels the same path as the residue1, and see the same gain. The output from
the back-end ADC can be written as

ybackend = G(1 + ε)[yresidue − rgec] (4.3)

By calculating the covariance between ybackend and rgec, we get an estimate of the power due to
rgec in ybackend. We could write

Prgec
=

1
N

N∑
n=0

ybackendrgec = −(1 + ε)
1
N

N∑
n=0

r2
gec (4.4)

where N is a large number. Note that the power is proportional to −(1 + ε). This can be used to
get the estimate −(1+e) shown in Figure (4.5), where e is the estimate of ε. To get only the error
estimate we add 1 to −(1 + e). For the error estimate to be accurate the path traveled must be
linear and the residue, yresidue, should be uncorrelated with rgec. If the residue is correlated with

1We use residue to mean both the signal before and after the gain. Note that the gain is there to expand the
full-scale of the residue to the full-scale input of the stage. The gain does not alter the fact that it is a residue.
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Figure 4.3: Effects of DEM on the output spectrum when mismatches are present.

Figure 4.4: First-stage DNC correction logic

rgec then (4.4) is incorrect. To correct the back-end signal we could multiply it by −e/(1 + e) and
add it to the ADC output signal, but if we assume that the gain error is small then 1+ e ≈ 1 [11].
As we see from the figure we multiply the residue by the gain error estimate and add it to the
overall output.

4.4 Example of DNC and GEC

In [11] they present a 15-bit 40Msamples/s pipelined ADC with a peak SNR of 72 dB2. They
achieve a FOM of 3.0pJ per conversion step. One of the problems with techniques like GEC and
DNC is the time it takes for the converter converge. One adjustment of the estimate, e, might
take up to 220 − 230 clock cycles [7]. To our knowledge this type of calibration has yet to be used
in a commercial product.

4.5 Reference Scaling

In contrast to GEC where correction of interstage gain error is performed in the digital domain
one can do the correction of the gain error in the analog domain. In [14] they used reference
scaling, in other words changing the reference voltage of the DAC in the pipelined stage. They
prove that scaling the reference voltages of the DAC is equal to correcting the gain error as was
shown for GEC. The detection of a gain error used in [14] is similar to GEC. A pseudo-random test
signal was injected into the residue path to measure the gain error. The error estimate was used

2An ENOB of 11.67-bit
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Figure 4.5: A pipelined ADC implementing gain error calibration (GEC)

to adjust the reference voltages of the DAC. A slow-but-accurate ADC was used to quantify the
actual value of the adjusted reference value. In [14] the pipelined ADC achieved a performance
of 8-bit, 80Msamples/s with a power dissipation 250mW if the calibration was frozen. This is
equivalent to a FOM of 23.1 pJ per conversion step.

4.6 Calibration of Third-Order Distortion in Interstage Gain

The conventional GEC corrects for a linear error, a gain error, in the interstage gain. In [15]
they present a method of detecting and calibrating gain error and third order distortion in the
interstage gain. They show that by calculating the covariance of the square of the backend signal
and the pseudo-random test signal, it is possible to get an estimate that quantifies the amount
of the third-order distortion in interstage gain. This estimate is used to correct for third-order
distortion.

Another approach to third-order distortion calibration was presented in [16]. Here they ran-
domly changed the residue transfer function of the pipelined stages, giving two distinct transfer
functions. In Figure (4.6) [16] a section of the the two transfer functions is shown. A statistics-
based distance estimation was used to estimate the distances h1 and h2. If these two distances
are unequal, there is a non-linearity present. They tweak the output from each stage so that
the non-linearity no longer appears. In [16] they used an open loop amplifier as the gain in the
pipelined stage. With the third-order distortion calibration in addition to more conventional gain
calibration they achieved a performance of 12-bit 75Msamples/s with a power consumption of
290mW. This result in a FOM of only 2pJ per conversion step.

4.7 Skip & Fill

Skip and fill is a technique where one steals conversion cycles from the normal operation of the
ADC to do calibration. This requires that the missing sample is replaced. In [17] they used a
non-linear interpolation to estimate the missing sample, which is the same as fitting the output to
a high-order polynomial. Both causal and non-causal taps were used, which means that samples
from before and after the missing sample were used to estimate the value of the missing sample.
Each sample before and after the missing sample was multiplied by a coefficient, and then summed
as

x(0) =
−n∑

k=−1

x(k)C(k) +
n∑

k=1

x(k)C(k) (4.5)
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Fig. 9. Pipeline stage with two-residue transfer characteristics.

A particularly interesting property of the technique de-
scribed herein is that it does not require the generation of an
analog domain test signal, unlike other background calibration
approaches. Instead, the calibration is based on evaluation of
signal statistics, similar to the technique described in [24].
Conceptually, the estimation uses the fundamental property
that perfectly linear systems at most scale, but never distort
a signal’s amplitude distribution. Deviations from this ideal
case can be used to obtain information about the presence and
magnitude of any nonlinearity. In some sense, the (arbitrary)
input amplitude distribution of the converter assumes the role
of the calibration test signal.

In this section, we describe the basic elements of the proposed
calibration technique, followed by an overview of the complete
digital postprocessing scheme and a brief discussion of its fun-
damental properties and limitations.

A. Two-Residue Characteristics

One key ingredient in the proposed background calibration
technique is the addition of a second, redundant residue mode as
shown in Fig. 9. Through the addition of a simple digital logic
block and one bit of extra resolution in the stage’s sub-ADC
and sub-DAC, the open-loop converter stage can switch be-
tween two distinct overlapping residue transfer functions. In
principle, the two residues of Fig. 9 can be used interchange-
ably and would yield identical conversion results in the case
of ideal stage operation. The power penalty for the additional
transfer function is low, since the redundant comparators needed
in the sub-flash-ADC typically consume only a small fraction
of the total stage power [4]. The redundant states needed in the
sub-DAC can be generated at even lower cost by simply splitting
up its unit elements. In designs with small unit capacitors, this
may adversely affect the sub-DAC element matching. In the de-
sign presented here, the minimum capacitor size used still met
the precision requirements.

B. Parameter Estimation From Residue Distances

Fig. 10 shows a single enlarged segment of the overlapping
gain compressive stage transfer characteristic. Also shown are
the residue differences and for two input voltages near
the center and edge of the segment, respectively. The digital
linearity correction in the converter back-end operates on both

Fig. 10. Segment detail.

residues, controlled by parameter. Perfect adjustment of
maps both residues onto straight lines. In this case, the differ-
ence between the two residues is constant and independent of
measurement location, consequently yielding . On the
contrary, a measurement of, e.g., indicates incom-
plete nonlinearity error cancellation. Based on this argument, it
is conceptually possible to construct a recursive algorithm that
converges to the optimum solution for by repeatedly mea-
suring the two residue differences and .

After the optimum value for is found, and assuming ideal
sub-DAC operation, it can be seen from Fig. 10 that both
and take on precisely 1/2 of the transition heightof the lin-
earized residue. Therefore, the distance estimates directly relate
to the required correction parameterfor linear gain error cor-
rection, as described in [21].

C. Statistics-Based Distance Estimation

If it were possible to process constant input voltages using
both characteristics, the distances could be directly determined
from the individual back-end conversion results. In this work,
we have developed a statistics based estimation technique that
avoids the need for constant inputs and, therefore, allows cal-
ibration in the background during normal converter operation.
Fig. 11 illustrates the general concepts of the approach for the
simplified case of a single residue segment and estimation of
only. As a further simplification in this discussion, we assume
that the input signal to the segment is a stationary and “white”
discrete time random process, whose samples are described by
a well behaved but otherwise arbitrary probability density func-
tion (PDF).

The distance estimation process is based on evaluating cu-
mulative histograms of the digital back-end conversion results
( in Fig. 8). Fig. 11(a) introduces the basic concept of
a cumulative histogram. In this simple example, we consider
only one of the two residue curves and one histogram bin at
a particular code location. The cumulative histogram count

is found by counting the number of samples seen
in the back-end that are less than or equal to the reference code
. Hence, the expected value ofwill be proportional to the

total number of samples processed times the hatched area un-
derneath the PDF, which represents the probability of an input
sample being below the code threshold.

Figure 4.6: Section of stage transfer function

where n was the index of the sample, C the coefficient and x(0) the missing sample. C(k) was
defined as

C(k) =
n!n!

(n + k)!(n− k)!
(−1)k+1 (4.6)

To get 16-bit accuracy, they needed n = 22, resulting in 44 multiplications and summations of
16-bit numbers to get an estimate of the missing sample. This might lead to significant power
dissipation in the non-linear interpolation filter.

4.8 Calibration of Memory Effects

Memory effects in pipelined converters can stem from

1. Capacitor dielectric absorption/relaxation effects

2. Incomplete stage reset effects

3. Opamp sharing

These memory effects can lead to non-linearities in a pipelined ADC [18]. In [18] they propose
two methods to reduce memory effects. One is a Least Mean Square (LMS) algorithm with a
slow but accurate ADC in parallel with the main ADC. The other uses DAC dithering akin to the
GEC technique. Least Mean Square has faster settling and gives best results, but the tracking
is dependent on the input signal statistics. In general one do not want a calibration algorithm
which is dependent on the input signal statistics [10]. The dither method is independent of
signal statistics, and does not require an accurate parallel ADC. On the other hand it has slow
convergence and requires additional levels in the ADC and the DAC in the pipelined stages.
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4.9 Calibration of Pipelined ADC Using Stage Alteration

Two multiplying DACs (MDACs) can be placed in parallel within the stage and ran at fs/2.
This effectivly produces a back-end ADC that has the same properties as a time-interleaved
converter [19]. According to theory of time-interleaved converters gain mismatches between the
two paths produce in-band images at kfs/2±fin, k is an integer, fs is the sampling frequency and
fin is the input frequency. By using previously published techniques to correct for gain mismatches
between paths in time interleaved ADCs and alternating the configuration of the MDAC between
a radix = 2 and radix < 2, it is possible to extract estimates for the gain errors and correct
them [19].

4.10 Slow But Accurate ADC

A slow but accurate ADC can be connected in parallel to the high speed ADC. The slow ADC will
produce an accurate value at fs/M where M is the speed difference between the two converters.
In [20] they connect the output of the fast ADC through a non-linear filter where the coefficients are
adjusted by a least mean square algorithm that compare the output of the slow-but-accurate ADC
with the output of the non-linear filter. This bear a resemblance to equalization of communication
channels [20]. The system corrects for linear stage errors like capacitor mismatch, finite opamp-
gain and input-referred offsets.



Chapter 5

State-of-the-art ADCs

This chapter presents some of the recent state-of-the-art ADC publications.

5.1 Power and Speed Programmable Pipelined ADC

One of the key elements in display systems is a low power ADC with an ENOB exceeding 9-
bits [21]. The ERWB is proportional to the number of pixels and refresh rate. The ADC in the
system may not be running at full capacity all the time, and it is an advantage to scale the power
consumption. In [21] they present“A 90nm CMOS 1.2V 10-bit power and speed programmable
pipelined ADC with 0.5pJ/Conversion-Step”. A block diagram of the converter can be seen in
Figure 5.1. The converter architecture is a pipelined ADC with stage scaling.
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Figure 12.1.1: Block diagram of the proposed pipelined ADC. Figure 12.1.2: Sampling schemes.

Figure 12.1.3: Schematic of the two-stage Miller opamp with variable Ibias.

Figure 12.1.5: Measured dynamic performance. Figure 12.1.6: Measured FOM compared to previously published ADCs.

Figure 12.1.4: The complete layout of the ADC.
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Figure 5.1: Block diagram of the ADC

The first stage has 2.5-bit resolution, the middle stages are 1.5-bits and the last stage is a 2-bit
flash. In addition to an over-range in each stage, they have also used an over-range in the last
flash stage. The stage is implemented using a conventional switched-capacitor multiplying digital
to analog converter (MDAC).

One of the keys to the performance of [21] is the implemented opamp with a constant gain over
a large bias range. It is a two-stage miller compensated opamp with a folded cascode as the first

35
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stage, shown in 5.2. For this architecture the gain, A0, is proportional to the transconductance,
gm, over the output conductance, go

A0 ∝
gm

go
(5.1)

They achieved a gain of A0 > 65dB over a large bias range. The bandwidth of the opamp roughly
determined by

ωb =
gm

Cmiller
(5.2)

where ωb is the angular frequency of the dominate pole, gm is the transconductance and Cmiller

is the Miller capacitance. The bandwidth of the opamp is one of the determining factors for the
sampling frequency, fs. To achieve a certain resolution without calibration, the bandwidth of the
opamp needs to be a certain multiple of fs, otherwise the ENOB is degraded [1].
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Figure 5.2: Schematic of the differential two-stage miller opamp

A comparison of this converter versus other previously published converters is shown in 5.3.
We can see how the FOM of this converter is lower than the FOM of others. However, it has been
commented that it might not be a fair comparison since [22] (ISSCC04 Hernes) was designed to
work at almost double the sampling frequency of [21].
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Figure 5.3: Measured FOM of previously published ADCs
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The performance summary is shown in 5.4 [21]. Other interesting things about this converter
is for example the input swing of 0.8V peak to peak differential. With this differential swing only
1
3 of the supply voltage ( 0.8V

2 = 0.4V ) is used. One might speculate that this low swing is to get
good linearity.
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Figure 12.1.7: Summary of the ADC performance.
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Figure 5.4: Performance summary of 10-bit pipelined power and speed programmable ADC

5.2 Pipelined ADC with Opamp Current Reuse

In [23] they present “A 10-bit 50MS/s Pipelined ADC with Opamp Current Reuse”. Two tech-
niques used to reduce power dissipation in pipelined ADC’s are opamp sharing and switched-
opamp. Both techniques take advantage of the fact that the opamp is only used during half the
clock period. Opamp current reuse bear a resemblance to these techniques. A block diagram of the
ADC is shown in Figure 5.5. It is a 10-bit pipelined ADC where two opamps are shared between
the MDACs. Each stage has 3-bit resolution and a 2-bit flash is used to convert the LSB’s. The
opamp current reuse idea is based on the fact that a differential opamp is often designed with a
NMOS differential input and a PMOS differential active load, or visa versa. The opamp current
reuse stems from switching which of the transistor pairs serve as the input stage. For the MSBs
the NMOS differential pair is used as input and input of the PMOS transistors are connect to
a reference voltage, thus serving as an active load. For the LSB’s the PMOS differential pair is
used as input and the NMOS stage is used as active load. A schematic of the telescopic cascode
opamp with gain boosting used is shown in Figure 5.6. Since the input transistors change, it
is possible to reset the summing node in the MDAC of the individual stages. Inability to reset
input is a problem in conventional opamp sharing [23]. The gain boosting cascode uses capacitive
level shifting so that a NMOS cascode amplifier can be used for both the PMOS and NMOS gain
boosting cascodes [23].

This converter has a FOM of 0.8pJ per conversion step, which is slightly worse than [21].
During discussion of this opamp current reuse architecture it was commented that “This is not
something that I will be trying” [10]. Although the architecture is interesting, it is unsure if it is
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Figure 12.2.1: Block diagram of a 10b pipelined ADC with opamp current reuse. Figure 12.2.2: Tri-level 3b MDAC and its residue output.

Figure 12.2.3: MDAC operation in both phases with simplified opamp schematic.

Figure 12.2.5: Measured DNL and INL. Figure 12.2.6: Measured FFT of 1MHz/20MHz tones sampled at 50MHz.

Figure 12.2.4: Opamp with both N and P inputs for current reuse.
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Figure 5.5: Block diagram of 10-bit pipelined ADC with opamp current reuse

possible to implement in nanoscale CMOS technology due to the transistor stacking in the opamp.
Also a better result was achieved in [21] using more conventional techniques.

5.3 Comparator-Based Switched-Capacitor Circuits For Scaled
CMOS Technologies

Switched-Capacitor circuits are prevalent in analog integrated circuit implementations. An exam-
ple of a common switched-capacitor amplifier is shown in Figure 5.7 [24]. In the reset phase (not
shown), the input voltage, Vin is sampled onto capacitor C2. During the amplifying phase the
opamp forces a virtual ground in the summing node Vx. This transfers the stored charge on C2

to C1 and the output voltage, Vo, becomes

Vo = ±C2

C1
Vin (5.3)

Whether the amplifier is inverting or not, is determined by how sampling is performed in the reset
phase. In addition to the capacitor matching, the gain of the opamp determines the accuracy
of the switched-capacitor amplifier. In nanoscale CMOS technology, it has become more difficult
to implement high gain opamps, among other things due to reduced supply voltage. In addition
to this a high-gain, high-bandwidth opamp, which is needed in high-accuracy and high-speed
switched-capacitor circuits, has a high power dissipation.

What is presented in [24] is a radical approach to switched-capacitor circuits. A MDAC in a
pipelined ADC is often implemented as a switched capacitor amplifier. It is not important how the
switched-capacitor circuit arrive at the final output voltage since sampling of the output voltage
occur at the end of the clock period. Instead of forcing the summing node Vx to virtual ground
with an opamp, a comparator is used to detect when virtual ground occurs at the summing node.
A schematic of such a system is shown in Figure 5.8. In the amplifying phase a current source
is connected to the output, charging the capacitors C1 and CL. The comparator compares the
voltage Vx to the common mode VCM , and when it detects virtual ground at Vx, it turns off the
current source. The plots on the right side in Figure 5.7 and Figure 5.8 shows the voltage Vx
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Figure 12.2.1: Block diagram of a 10b pipelined ADC with opamp current reuse. Figure 12.2.2: Tri-level 3b MDAC and its residue output.

Figure 12.2.3: MDAC operation in both phases with simplified opamp schematic.
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Figure 5.6: Telescopic cascode opamp with gain boosting

versus time in the amplifying phase. It might look like the comparator-based solution reaches its
final value slower than the opamp based solution. This is a potentially erroneous conclusion. For
the opamp based solution to reach the final value within a certain accuracy it normally slews for a
while, then goes into linear settling when the opamp reaches its operating point. The comparator
based solution only slews, and might therefore reach its final value faster. Another potential
advantage of the comparator-based solution is that it is easier to implement a high accuracy (high
gain) comparator than a high gain opamp since one do not need to consider the phase margin of
the comparator.
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Figure 12.4.1: Opamp versus comparator-based switched-capacitor (CBSC) gain stage.
Figure 12.4.2: CBSC charge transfer phase (φφ2) using dual-ramp settling. Sampling
phase (φφ1) not shown.

Figure 12.4.3: CBSC pipeline stage.

Figure 12.4.5: Continuous-time comparator schematic. Figure 12.4.6: Measured INL and DNL of 8MHz 10b CBSC pipeline ADC.

Figure 12.4.4: First two stages of CBSC 1.5b/stage pipeline ADC.
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Figure 5.7: Switched-Capacitor Amplifier

In [24] the comparator-based switched capacitor MDAC was implemented using a dual ramp
settling of the output as shown in Figure 5.9. A large current is connected to the output to charge
the capacitors. After a while, virtual ground is detected, but due to finite speed of the comparator
the output voltage will overshoot. A smaller current source is connected to sink current from the
output. The virtual ground is detected again as shown plots on the right in 5.9. This architecture
thus implements a fast settling with overshoot, followed by a slow-but-accurate settling. If the
overshoot is small, the second settling need not take long.

A prototype 10-bit pipelined ADC was implemented using the comparator-based switched
capacitor circuit technique and they achieved a FOM of 0.3pJ per conversion step. Although the
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Figure 12.4.1: Opamp versus comparator-based switched-capacitor (CBSC) gain stage.
Figure 12.4.2: CBSC charge transfer phase (φφ2) using dual-ramp settling. Sampling
phase (φφ1) not shown.

Figure 12.4.3: CBSC pipeline stage.

Figure 12.4.5: Continuous-time comparator schematic. Figure 12.4.6: Measured INL and DNL of 8MHz 10b CBSC pipeline ADC.

Figure 12.4.4: First two stages of CBSC 1.5b/stage pipeline ADC.
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Figure 5.8: Comparator-Based Switched-Capacitor Amplifier

FOM is better than [21] it is to soon to declare the comparator-based switched-capacitor technique
as superior to conventional switched-capacitor circuits. More research is needed on the limitations
of this technique. However, it has the potential of rendering calibration techniques developed to
compensate for insufficient gain in opamps a thing of the past.
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Figure 12.4.1: Opamp versus comparator-based switched-capacitor (CBSC) gain stage.
Figure 12.4.2: CBSC charge transfer phase (φφ2) using dual-ramp settling. Sampling
phase (φφ1) not shown.

Figure 12.4.3: CBSC pipeline stage.
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Figure 5.9: CBSC charge transfer phase using dual-ramp settling. Sampling phase not shown.

5.4 1GS/s 11b Time-Interleaved ADC

Time-Interleaved converters are presently the only method available to achieve ADCs with high-
resolution and high conversion rates in the multi gigahertz range. Time-Interleaving converters
have problems with offset, gain mismatch and timing mismatch error between the interleaved
ADCs. In [12] they focus on the timing errors in time-interleaved ADCs. A block diagram of the
ADC can be seen in Figure 5.10. The input is sampled by a bootstrapped sample and hold (SH
switch in Figure) operating at the full sampling frequency fs. The output from the first switch is
sampled by N sub sample and holds (Sub-SH in figure). These Sub-SH are timed so that no more
than one Sub-SH loads the SH switch for any appreciable time. Thus the bandwidth and linearity
of the SH switch is not limited by Sub-SH [12]. The Sub-SH is turned off during off phase of the
SH switch, thus the Sub-SH do not limit SNR. A pipelined ADC is used as the interleaved ADC.
To reduce power dissipation, a double sampling technique is used in the interleaved ADCs. In
effect double sampling entails that one have two parallel pipelined ADCs running out of phase.
The opamps in the MDACs can be shared between the two pipelined ADCs since in a normal
pipelined ADC the opamp is only used during half the clock period.
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The converter has the best SNR and SNDR of any converter with a sampling speed above
500MHz. It has a FOM of below 0.5pJ per conversion step.
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Figure 31.6.1: Two conventional architectures for time-interleaved converters. Figure 31.6.2: The proposed time-interleaved ADC architecture block diagram. 

Figure 31.6.4: Clocks showing Sub-S/H clocks and 1GS/s fs clock.
Figure 31.6.5: Measured FFTs at 5MHz and at 470 and 471MHz (dual tone) inputs, and
DNL, and INL.
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Figure 5.10: Proposed Time-Interleaved ADC architecture block diagram



Chapter 6

Concluding Remarks

This chapter contain some informal thoughts about the topics in this report. Thoughts like these
might fly in the face of the accepted standard of report writing, but we believe they are appropriate.

6.1 Thoughts on ADC Architectures

To gauge the popularity of the different architectures we did an informal search on IEEE Xplore
web site in the conference proceedings of ISSCC. Table 6.1 shows how many papers the different
architectures have. This is by no means a proper sampling of all papers presented at ISSCC. For
example, we would not say that folding is more popular than sub-ranging. But it gives an idea of
where most research is being performed.

Architecture Words searched Latest reference Hits
Full-flash flash adc 2004 20
Two-Step Flash two-step adc 2001 6
Sub-ranging subranging adc 2004 5
Folding folding adc 2004 6
Pipelined pipelined adc 2005 25
Time Interleaved time interleaved adc 2004 2

Table 6.1: Popularity of different architectures at International Solid State Circuit Conference.

6.2 Thoughts on Calibration

There has been several publications in the last years on calibration algorithms for pipelined ADCs.
When reading calibration papers, it is easy to loose track of the point of calibration. Calibration
is supposed to make the performance of ADCs better. The FOMs of the three calibration ADCs
presented in this report are 3.0pJ [11], 23.1 pJ [14] and 2.0pJ [16]. Two of these figures are
quite good, but in [16] it is unclear whether the calibration algorithm is included in the power
calculations. The argument could be made that calibration is needed to achieve high ENOB above
the 10-bit mark. But as previously mentioned, it is unknown whether any commercial products
has been made using one of these calibration algorithms.
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Appendix A

Code

This appendix is a collection of code examples that have produced some of the graphics in this
report.

A.1 Matlab Example On the Effects of Jitter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Fjitter.m
%%% Description: Example of effects of jitter
%%% Author: <wulff@iet.ntnu.no>
%%% Created at: Fri Apr 21 12:35:42 2006
%%% Modified at: Fri Apr 21 12:36:56 2006
%%% Modified by: <wulff@iet.ntnu.no>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
samp = 2^10;
P = 2^10; %Samples that should be taken from input signal
N = P*samp; %Samples in input signal
R = 2^-10;
x = sin (2 * pi * 109 * (1:N)/N) + R*(1- rand(1,N));;
out1 = zeros(1,P/2+1);
out2 = zeros(1,P/2+1);
y1 = zeros(1,P);
y2 = zeros(1,P);
r =round(samp/10*(1- rand(1,P)));
for i=1:P

index = i*samp + r(i);
if (index > N-1)

break;
end
y1(i) = x(index);
y2(i) = x(i*samp);

end

out1 = myfft(y1,P);
out2 = myfft(y2,P);

%--------------------------------------------------------------
%Create figure
%--------------------------------------------------------------

I



APPENDIX A. CODE II

figure1 = figure(1);
axes1 = axes(...
’XGrid’,’on’,...
’YGrid’,’on’,...
’Parent’,figure1);

axis(axes1,[0 0.5 -120 0]);
xlabel(axes1,’Samples’);
ylabel(axes1,’Magnitude’);
box(axes1,’on’);
hold(axes1,’all’);
plot1 = plot(linspace(0,0.5,P/2+1),20*log10(out1),linspace(0,0.5,P/2+1),20*log10(out2));
set(plot1(1),...
’Color’,[0.5 0.5 0],...
’LineWidth’,2);

set(plot1(2),’LineWidth’,2,’Color’,[0.6 0.2 0]);
legend1 = legend(axes1,{’With jitter’,’Without jitter’});
figure2 = figure(2);
axes2 = axes(...
’XGrid’,’on’,...
’YGrid’,’on’,...
’Parent’,figure2);

xlabel(axes2,’Sample’);
ylabel(axes2,’Normalized voltage’);
box(axes2,’on’);
axis(axes2,[0 50 -1 1]);
hold(axes2,’all’);
x2 = x(P:N);
plot1 = plot(...
linspace(0,P,length(x2)),x2,...
’Color’,[1 0.4 0],...
’LineWidth’,2);

stairs1 = stairs(...
linspace(0,P,P),y1,...
’DisplayName’,’With jitter’,...
’Color’,[0.5 0.5 0],...
’LineWidth’,2);

stairs2 = stairs(...
linspace(0,P,P),y2,...
’DisplayName’,’Without jitter’,...
’Color’,[0.6 0.4 0],...
’LineWidth’,2);

legend1 = legend(axes2,{’Input signal’,’With jitter’,’Without jitter’});

function y=myfft(x,N);
w = hanning(N);
x = x - mean(x);
y = fft(times(x,w’));
y = 2 * y(1:N/2+1);
y = y * 2/N;
y = abs(y);



Appendix B

Introduction to Mathematics of
Noise Sources

This is a compilation of different books [1,3,25] and their introduction to noise analysis of electronic
circuits.

B.1 Noise

Noise is a phenomena that occurs in all electronic circuits. It places a lower limit on the smallest
signal we can use. Many now have super audio compact disc (SACD) players with 24bit converters,
24 bits is around 224 = 16.78 Million different levels. If 5V is the maximum voltage, the minimum
would have to be 5V

224 ≈ 298nV . That level is roughly equivalent to the noise in a 50 Ohm resistor
with a bandwith of 96kHz. There exist an equation that relates number of bits to signal to noise
ratio [1], the equation specifies that SNR = 6.02∗Bits+1.76 = 146.24dB. As of 12.2005 the best
digital to analog converter (DAC) that Analog Devices (a very big semiconductor company) has
is a DAC with 120dB SNR, that equals around Bits = (120− 1.76)/6.02 = 19.64. In other words,
the last four bits of your SACD player is probably noise!

B.2 Statistics

The mean of a signal x(t) is defined as

x(t) = lim
T→∞

1
T

∫ +T/2

−T/2

x(t)dt (B.1)

The mean square of x(t) defined as

x2(t) = lim
T→∞

1
T

∫ +T/2

−T/2

x2(t)dt (B.2)

The variance of x(t) defined as
σ2 = x2(t)− x(t)

2
(B.3)

For a signals with a mean of zero the variance is equal to the mean square. The auto-correlation
of x(t) is defined as

Rx(τ) = x(t)x(t + τ)

= lim
T→∞

1
T

∫ +T/2

−T/2

x(t)x(t + τ)dt (B.4)

III



APPENDIX B. INTRODUCTION TO MATHEMATICS OF NOISE SOURCES IV

B.3 Average Power

Average power is defined for a continuous system as (B.5) and for discrete samples it can be defined
as (B.6). Pav usually has the unit A2 or V 2, so we have to multiply/devide by the impedance
to get the power in Watts. To get Volts and Amperes we use the root-mean-square (RMS) value
which is defined as

√
Pav.

Pav = lim
T→∞

1
T

∫ +T/2

−T/2

x2(t)dt (B.5)

Pav =
1
N

N∑
i=0

x2(i) (B.6)

If x(t) has a mean of zero then, according to (B.3), Pav is equal to the variance of x(t).
Many different notations are used to denote average power and RMS value of voltage or current,

some of them are listed in Table B.1 and Table B.2. Notation can be a confusing thing, it changes
from book to book and makes expressions look different. It is important to realize that it does
not matter how you write average power and RMS value. If you want you can invent your own
notation for average power and RMS value. However, if you are presenting your calculations to
other people it is convenient if they understand what you have written. In the remainder of this
paper we will use e2

n for average power when we talk about voltage noise source and i2n for average
power when we talk about current noise source. The n subscript is used to identify different
sources and can be whatever.

Table B.1: Notations for average power
Voltage Current

V 2
rms I2

rms

V 2
n I2

n

v2
n i2n

Table B.2: Notations for RMS
Voltage Current

Vrms Irms√
V 2

n

√
I2
n√

v2
n

√
i2n

B.4 Noise Spectrum

With random noise it is useful to relate the average power to frequency. We call this Power Spectral
Density (PSD). A PSD plots how much power a signal carries at each frequency. In literature
Sx(f) is often used to denote the PSD. In the same way that we use V 2 as unit of average power,
the unit of the PSD is V 2

Hz for voltage and A2

Hz current. The root spectral density is defined as√
Sx(f) and has unit V√

Hz
for voltage and I√

Hz
for current.

The power spectral density is defined as two times the Fourier transform of the auto-correlation
function [3]

Sx(f) = 2
∫ ∞
−∞

Rx(τ)e−j2πfτdτ (B.7)
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This can also be written as

Sx(f) = 2
[∫ ∞
−∞

Rx(τ) cos(ωτ)dτ −
∫ ∞
−∞

Rx(τ)j sin(ωτ)dτ

]
= 2

[∫ 0

−∞
Rx(τ) cos(ωτ)dτ +

∫ ∞
0

Rx(τ) cos(ωτ)dτ

]
− 2j

[∫ 0

−∞
Rx(τ) sin(ωτ)dτ +

∫ ∞
0

Rx(τ) sin(ωτ)dτ

]
= 4

∫ ∞
0

Rx(τ) cos(ωτ)dτ

− 2j

[
−
∫ ∞

0

Rx(τ) sin(ωτ)dτ +
∫ ∞

0

Rx(τ) sin(ωτ)dτ

]
= 4

∫ ∞
0

Rx(τ) cos(ωτ)dτ (B.8)

, since e−jωτ = cos(ωτ)−j sin(ωτ), Rx(τ) and cos(ωτ) are symmetric around τ = 0 while sin(ωτ)
is asymmetric around τ = 0.

The inverse of power spectral density is defined as

Rx(τ) =
1
2

∫ ∞
−∞

Sx(f)ej2πfτdf =
∫ ∞

0

Sx(f) cos(ωτ)df (B.9)

If we set τ = 0 we get

x2(t) =
∫ ∞

0

Sx(f)df (B.10)

which means we can easily calculate the average power if we know the power spectral density. As
we will see later it is common to express noise sources in PSD form.

Another very useful theorem when working with noise in the frequency domain is this

Sy(f) = Sx(f)|H(f)|2 (B.11)

, where Sy(f) is the output power spectral density, Sx(f) is the input power spectral density and
H(f) is the transfer function of a time-invariant linear system.

If we insert (B.11) into (B.10), with Sx(f) = a constant = Dv we get

x2(t) =
∫

Sy(f)df = Dv

∫
|H(f)|2df = Dvfx (B.12)

, where fx is what we call the noise bandwidth. For a single time constant RC network the noise
bandwidth is equal to

fx =
πf0

2
=

1
4RC

(B.13)

where fx is the noise bandwidth and f0 is the 3dB frequency.
We haven’t told you this yet, but thermal noise is white and white means that the power

spectral density is flat (constant over all frequencies). If Sx(f) is our thermal noise source and
H(f) is a standard low pass filter, then equation (B.11) tells us that the output spectral density
will be shaped by H(f). At frequencies above the fx in H(f) we expect the root power spectral
density to fall by 20dB per decade.

B.5 Probability Distribution

Theorem 1 (Central limit theorem) The sum of n independent random variables subjected to
the same distribution will always approach a normal distribution curve as n increases.
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This is a neat theorem, it explains why many noise sources we encounter in the real world are
white.1 Take thermal noise for example, it is generated by random motion of carriers in materials.
If we look at a single electron moving through the material the probability distribution might not
be Gaussian. But summing probability distribution of the random movments with a large number
of electrons will give us a Gaussian distribution, thus thermal noise is white.

B.6 PSD of a white noise source

If we have a true random process with Gaussian distribution we know that the autocorrelation
function only has a value for τ = 0. From equation (B.4) we have that

Rx(τ) = lim
T→∞

1
T

∫ +T/2

−T/2

x(t)x(t− τ)dt

=

[
lim

T→∞

1
T

∫ +T/2

−T/2

x2(t)dt

]
δ(τ)

= x2(t)δ(τ) (B.14)

The reason being that in a true random process x(t) is uncorrelated with x(t + τ) where τ is an
integer. If we use equation (B.7) we see that

Sx(f) = 2
∫ ∞
−∞

x2(t)δ(τ)e−j2πfτdτ

= 2x2(t)
∫ ∞
−∞

δ(τ)e−j2πfτdτ

= 2x2(t) (B.15)

, since ∫
δ(τ)e−j2πfτdτ = e0 = 1 (B.16)

This means that the power spectral density of a white noise source is flat, or in other words, the
same for all frequencies.

B.7 Summing noise sources

Summing noise sources is usually trivial, but we need to know why and when it is not. We if we
write the time dependant noise signals as

v2
tot(t) = (v1(t) + v2(t))2 = v2

1(t) + 2v1(t)v2(t) + v2
2(t) (B.17)

1Gaussian distribution = normal distribution. Noise sources with Gaussian distribution are called white
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The average power is defined as

e2
tot = lim

T→∞

1
T

∫ +T/2

−T/2

v2
tot(t)dt

= lim
T→∞

1
T

∫ +T/2

−T/2

v2
1(t)dt

+ lim
T→∞

1
T

∫ +T/2

−T/2

v2
2(t)dt

+ lim
T→∞

1
T

∫ +T/2

−T/2

2v1(t)v2(t)dt

= e2
1 + e2

2 + lim
T→∞

1
T

∫ +T/2

−T/2

2v1(t)v2(t)dt (B.18)

If e2
1 and e2

2 are uncorrelated noise sources we can skip the last term in (B.18) and just write

e2
tot = e2

1 + e2
2 (B.19)

Most natural noise sources are uncorrelated.

B.8 Signal to Noise Ratios

Signal to Noise Ratio (SNR) is a common method to specify the relation between signal power
and noise power in linear systems. It is defined as

SNR = 10 log
(

Signal power

Noise power

)
= 10 log

(
v2

sig

e2
n

)

= 20 log

vrms√
e2
n

 (B.20)

Another useful ratio is Signal to Noise and Distortion (SNDR), since most real systems exibit
non-linearities it is useful to include distortion in the ratio. One can calculate SNR and SNDR in
many ways. If we don’t know the expression for e2

n we can do a FFT of our output signal. From
this FFT we sum spectral components except at the signal frequency to get noise and distortion.
SNR is normally calculated as

SNR = 10 log
(

Signal power

Noise power − 6 first harmonics

)
(B.21)

And SNDR is calculated as

SNDR = 10 log
(

Signal power

Noise power

)
(B.22)

B.9 Noise figure and Friis formula

Noise factor is a measure on the noise performance of a system. It is defined as

F =
v2

o

source contribution to v2
o

(B.23)
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where v2
o is the total output noise.

The noise figure is defined as (noise factor in dB)

NF = 10 log(F ) (B.24)

The noise factor can also be defined as

F =
SNRinput

SNRoutput
(B.25)

This brings us right into what is known as Friis formula. If we have a multistage system, for
example several amplifiers in cascade, the total noise figure of the system is defined as

F = 1 + F1 − 1 +
F2 − 1

G1
+

F3 − 1
G1G2

+ .... (B.26)

Here Fi is the noise figures of the individual stages and Gi is the available gain of each stage. This
can be rewritten as

F = F1 +
N∑

i=1

Fi+1 − 1∏i−1
k=1 Gi

(B.27)

Friiss formula tells us that it is the noise in the first stage that is the most important if G1 is
large. We could say that in a system it is important to amplify the noise as early as possible!

B.10 Conclusion

We have looked at the properties of noise in time domain and frequency domain. The equations
in this paper are useful tools when dealing with noise sources.
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