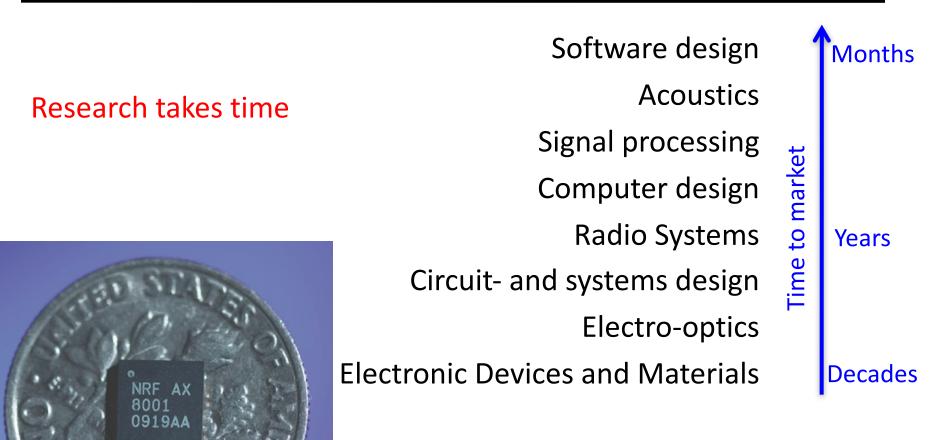
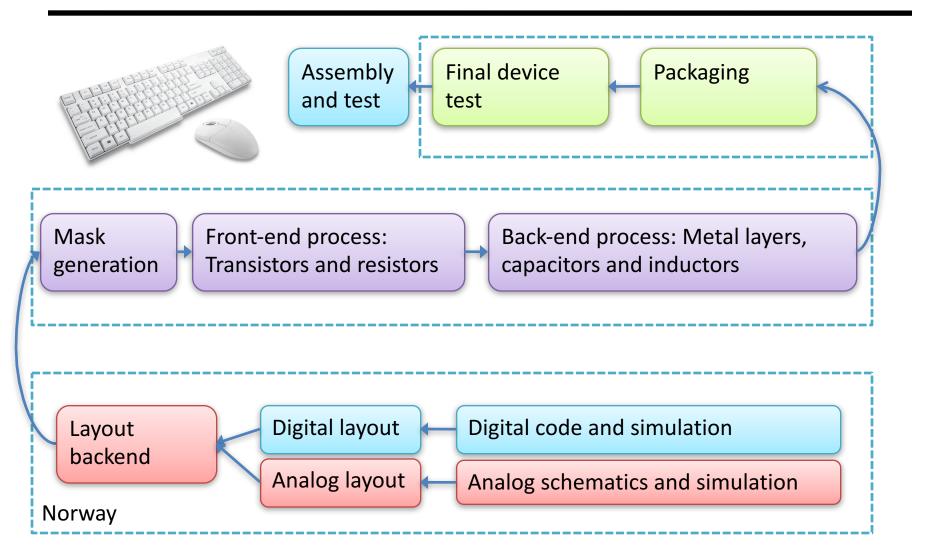
Making integrated circuits

2012-03-14 Carsten Wulff


Outline

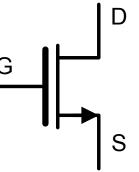
- Compulsory introduction: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students


Who am I?

- Carsten Wulff
- Born Friday 13. August 1976
- Senior R & D engineer, wireless department at Nordic Semiconductor
- Married with three kids
- Graduated from NTNU 2002 (Programmable analog integrated circuit with TOC, 0.6um AMS)
- Ph.D from NTNU in 2008 (Efficient ADCs in nano-scale CMOS technology, 90nm ST)
- Fortunate to spend a year at University of Toronto (2006-2007) during my Ph.D
- <u>http://www.scribd.com/carstenwulff</u>
- <u>http://www.wulff.no/carsten</u>

Electronics research

The story


Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

Circuit elements

Transistor – The workhorse of ICs

An extremely complicated device, but it's possible to make some assumptions

The accurate equation

 $I_D = f(W, L, \mu_n, C_{ox}, ..., V_{GS}, V_{DS}, ...)$ 284 parameters in BSIM 4.5 The equation used for hand calculation in analog circuits

$$I_D \propto (V_{GS} - V_{th})^2$$

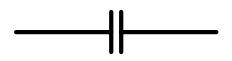
The equation sufficient for most digital designs

$$I_{D} \propto \begin{cases} high, \text{ if } V_{GS} > V_{TH} \\ 0, \text{ if } V_{GS} < V_{TH} \end{cases}$$

Parameters for one transistor in BSIM 4.5

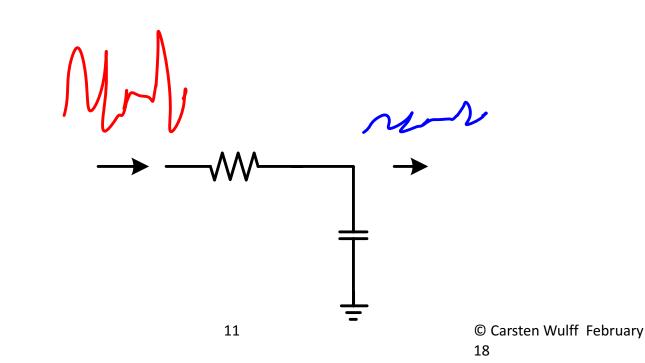
.MODEL N1 NMOS LEVEL=14 VERSION=4.5.0 BINUNIT=1 PARAMCHK=1 MOBMOD=0 CAPMOD=2 IGCMOD=1 IGBMOD=1 GEOMOD=1 DIOMOD=1 RDSMOD=0 RBODYMOD=0 RGATEMOD=3 PERMOD=1 ACNQSMOD=0 TRNQSMOD=0 TEMPMOD=0 TNOM=27 TOXE=1.8E-009 TOXP=10E-010 TOXM=1.8E-009 DTOX=8E-10 EPSROX=3.9 WINT=5E-009 LINT=1E-009 LL=0 WL=0 LLN=1 WLN=1 LW=0 WM=0 LWN=1 WWN=1 LWL=0 WWL=0 XPART=0 TOXREF=1.4E-009 SAREF=5E-6 SBREF=5E-6 WLOD=2E-6 KU0=-4E-6 KVSAT=0.2 KVTH0 -2E-8 TKU0=0.0 LLODKU0=1.1 WLODKU0=1.1 LLODVTH=1.0 WLODVTH=1.0 LKU0=1E-6 WKU0=1E-6 PKU0=0.0 LKVTH0=1.1E-6 WKVTH0=1.1E-6 PKVTH0=0.0 STK2=0.0 LODK2=1.0 STETA0=0.0 LODETA0=1.0 LAMBDA=4E-10 VSAT=1.1E 005 VTL=2.0E5 XN=6.0 LC=5E-9 RNOIA=0.577 RNOIB=0.37 LINTNOI=1E-009 WPEMOD=0 WEB=0.0 WEC=0.0 KVTH0WE=1.0 K2WE=1.0 KU0WE=1.0 SCREF=5.0E-6 TVOFF=0.0 TVFBSDOFF=0.0 VTH0=0.25 K1=0.35 K2=0.05 K3=0 K3B=0 W0=2.5E-006 DVT0=1.8 DVT1=0.52 DVT2=-0.032 DVT0W=0 DVT1W=0 DVT2W=0 DSUB=2 MINV=0.05_VOFFL=0 DVTP0=1E-007_DVTP1=0.05_LPE0=5.75E-008_LPEB=2.3E-010_XJ=2E-008_NGATE=5E_020_NDEP=2.8E_018_NSD=1E_020_ PHIN=0 CDSC=0.0002 CDSCB=0 CDSCD=0 CIT=0 VOFF=-0.15 NFACTOR=1.2 ETA0=0.05 ETAB=0 UC=-3E-021 VFB=-0.55 U0=0.032 UA=5.0E-011 UB=3.5E-018 A0=2 AGS=1E-020 A1=0 A2=1 B0=-1E-020 B1=0 KETA=0.04 DWG=0 DWB=0 PCLM=0.08 PDIBLC2=0.028 PDIBLC2=0.022 PDIBLCB=-0.005 DROUT=0.45 PVAG=1E-020 DELTA=0.01 PSCBE1=8.14E 008 PSCBE2=5E-008 RSH=0 RDW=0 RDW=0 FPROUT=0.2 PDITS=0.2 PDITSD=0.23 PDITSL=2.3E 006 RSH=0 RDSW=50 RSW=150 RDW=150 RDSWMIN=0 RDWMIN=0 PRWG=0 PRWB=6.8E-011 WR=1 ALPHA0=0.074 ALPHA1=0.005 BETA0=30 AGIDL=0.0002 BGIDL=2.1E 009 CGIDL=0.0002 EGIDL=0.8 AIGBACC=0.012 BIGBACC=0.0028 CIGBACC=0.002 NIGBACC=1 AIGBINV=0.014 BIGBINV=0.004 CIGBINV=0.004 EIGBINV=1.1 NIGBINV=3 AIGC=0.012 BIGC=0.0028 CIGC=0.002 AIGSD=0.012 BIGSD=0.0028 CIGSD=0.002 NIGC=1 POXEDGE=1 PGCD=1 NTOX=1 VFBSDOFF=0.0 XRCRG1=12 XRCRG2=5 CGSO=6.238E-010 CGDO=6.238E-010 CGBO=2.56E-011 CGDL=2.495E-10 CG5L=2.495E-10 CKAPPAS=0.03 CKAPPAD=0.03 ACDE=1 MOIN=15 NOFF=0.9 VOFFCV=0.02 RT1=-0.37 KT1L=0.0 KT2=-0.042 UTE=-1.5 UA1=1E-009 UB1=-3.5E-019 UC1=0 PRT=0 AT=53000 FNOIMOD=1 TNOIMOD=0 JSS=0.0001 SWS=1E-011 JSWGS=1E-010 NJS=1 JJTHSFWD=0.01 JJTHSREV=0.001 BVS=10 XJBVS=1 JSD=0.0001 JSWD=1E-011 JSWGD=1E-010 NJD=1 JJTNDFWD=0.01 JJTHDREV=0.001 BVD=10 XJBVD=1 PBS=1 CJS=0.0005 MJS=0.5 PBSWS=1 CJSWS=5E-010 MJSWS=0.33 PBSWGS=1 CJSWGS=3E-010 MJSWGS=0.33 PBD=1 CJD=0.0005 MJD=0.5 PBSWD=1 CJSWD=5E-010 MJSWD=0.33 PBSWGD=1 CJSWGD=5E-010 MJSWGD=0.33 TPB=0.005 TCJ=0.001 TPBSW=0.005 TCJSW=0.001 TPBSWG=0.005 TCJSWG=0.001 XTIS=3 XTID=3 DMCG=0E-006 DMCI=0E-006 DMQG=0E-006 DMCGT=0E-007 DWJ=0.0E-008 XGW=0E-007 XGL=0E-008 RSHG=0.4 GBMIN=1E-010 RBPB=5 RBPD=15 RBPS=15 RBDB=15 RB3B=15 NGCON=1 JTSS=1E-4 JTSD=1E-4 JTSSWS=1E-10 JTSSWD=1E-10 JTSSWGS=1E-7 JTSSWGD=1E-7 NJTS=20.0 NJTSSW=20 NJTSSWG=6 JTSS-10 VTSD=10 VTSSWS=10 VTSSWD=10 VTSSWGS=2 VTSSWGD=2 XTSS=0.02 XTSD=0.02 XTSSWS=0.02 XTSSWD=0.02 XTSSWG8=0.02 XTSSWGD=0.02

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - V_{th} \right)^2$$


Integrated resistor – Master of ratios

- Most of the time a simple device
 - 1V reference voltage 1R 1R R = 20k **O** VRP = 0.8V +- 30mV V = I R0.8V+- 0.1% 3R Very good matching • VCM = 0.5V +- 30mV 0.5V +- 0.1% 1p : between two resistors, so 3R we can make very O VRN = 0.2V +- 30mV 0.2V+- 0.1% accurate voltage dividers Load compensated current mirror OTA (see Johns & Martin) 2R

÷


Integrated capacitor – Master of silence

• Not to hard either

i = C dv/dt

• Perfect for silencing a noisy power supply

Integrated inductor – Master of radio frequencies

• Principle is simple, not so easy to integrate on chip

V = L di/dt

• Used in sine wave generators, and radio frequency circuits

Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

Processing – Making an integrated circuit

Search terms: integrated circuit processing

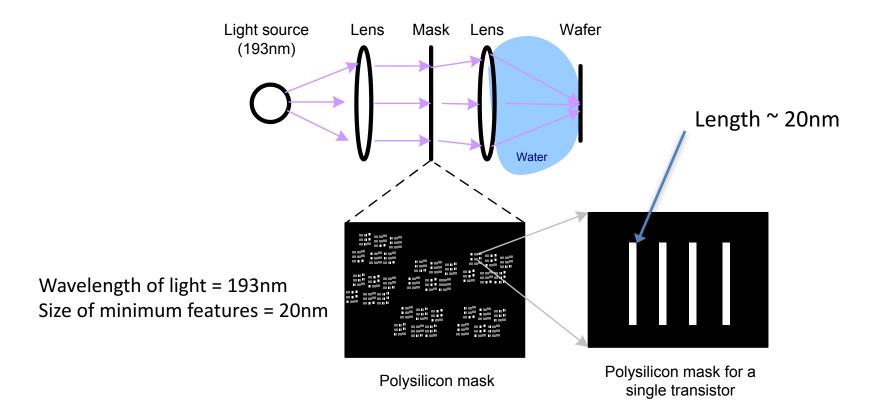
The raw materials

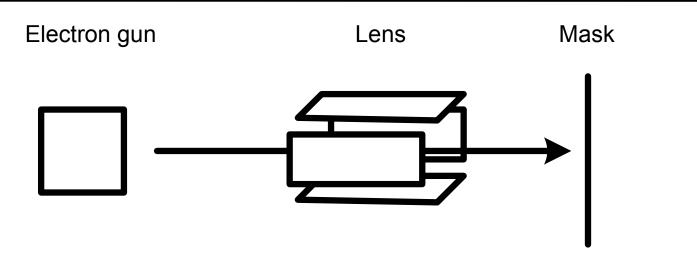
hydrogen	- 27		177	1577	250	1	10.53	5	19420	-	1 dia	100	March.	1005	1995	1070	81. S	helium
Ĥ.																		² He
1.0079																		4.0026
lithium	beryllium													carbon	nitrogen	oxygen	fluorine	neon
3	4													6	7	8	9	10
Li	Be													C	N	0	F	Ne
6.941	9.0122													12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium												aluminium	silicon		sulfur	chlorine	argon 18
	12												13	14		16	17	
Na	Mg												A	Si		S	CI	Ar
22.990	24.305												26.982	28.086		32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium		arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31		33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga		As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58,933	58.693	63.546	65.39	69.723		74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
	1000		V	12. 221	32.000 bri				CON 2217311							-	33	200000000000000000000000000000000000000
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	le		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	F7 70	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	_71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208,98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
				555550550					1000000									
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	uun	Uuu	UUD		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthanide Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

 A chip is made layer by layer by adding dopants, metal, insulators and conductors 15 © Carsten With Conductors

Search terms: Czochralski process, dicing

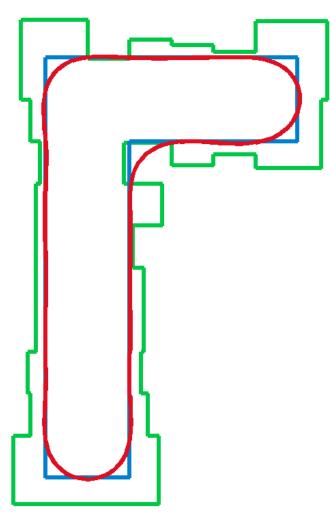

The wafer – the fundamental building block


http://www.tomshardware.com/reviews/semiconductor-production-101,1590-3.html

- Ingot = An ultra pure, single crystal of silicon
- Wafer = A very thin slice of an ingot, used as the first layer in processing

Search terms: DUV immersion lithography, Fraunhofer diffraction Photolithography

Search terms: electron beam lithography, reticle enhancement techniques Mask generation



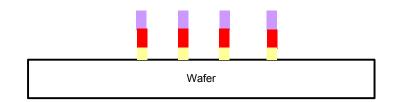
- Extremely expensive
- Must have higher accuracy that what we want to develop

Minimum feature	Mask cost NOK
180nm	600 000
65nm	6 000 000
28nm	30 000 000

Search terms: optical proximity correction, OPC friendlyness

Optical proximity correction (What you see is not what you get)

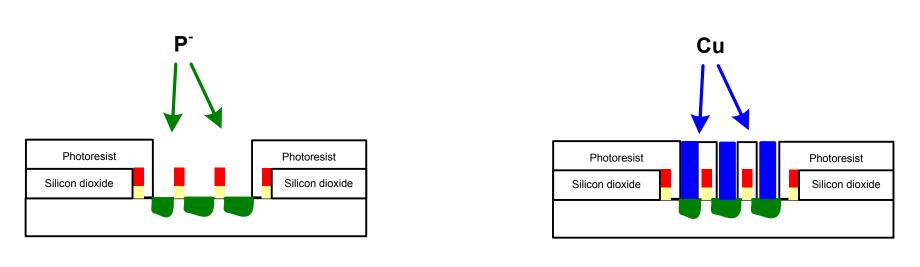
- The wavelength of the developing light is larger than minimum features (193nm > 20nm)
- Diffraction patterns affect the light intensity on the photo-resist
- Extensive calculations need to calculate how the mask should look to compensate for diffraction and processing inaccuracies


Blue = Pattern we draw in our CAD programs Green = How the mask actually looks Red = Pattern on chip

http://upload.wikimedia.org/wikipedia/en/6/65/Optical_proximity_correction.png

Photo resist and development

Photoresist					
Polysilicon					
Silicon oxide					
Wafer					

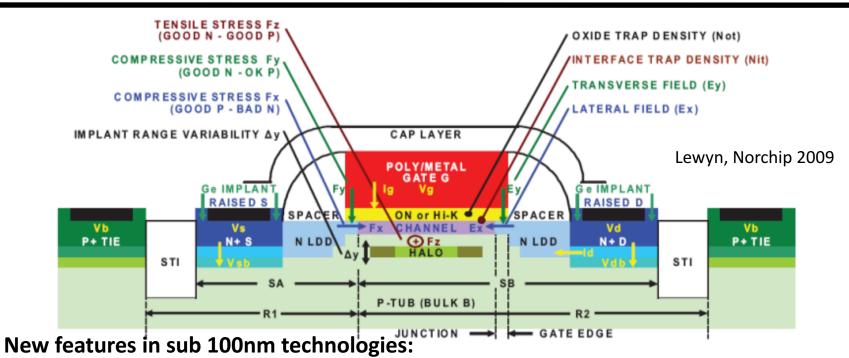

1) Expose photoresist

2) Remove photoresist and etch polysilicon

Toolbox

- Negative and positive photoresist
- Doping, etching, electroplating, vapor deposition

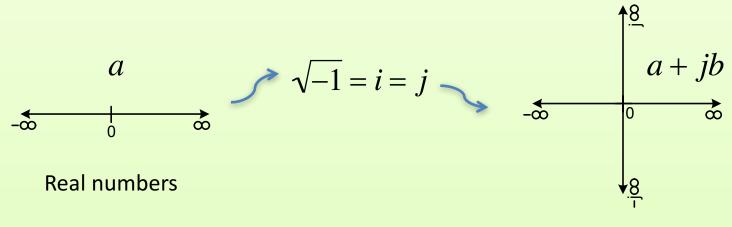
Doping and metal


3) Add doping

4) Add metal

- Dopants change electrical properties of the silicon substrate
- Metal is added to wire up the circuit. In most processes the metal is copper.
- Up to nine metal layers in advanced processes

Search terms: analog circuit design in nanoscale CMOS technologies


Nanoscale transistor

- Stress is actively used to increase mobility
- Very thin oxide, reduced power supply to keep vertical field in check
- Halo implant that increases drain-source conductance at longer channel lengths
- Hot carrier effects
- Stress from the STI (shallow trench isolation)
- Proximity to well edge
- Lithography issues since the minimum dimensions are less than the $_{\mathbb{C} Carsten Wulff February}^{22}$ wavelength used to expose the photoresist (λ =193nm) 18

Search terms: complex signal processing is not complex

We digress: Complex math

Complex numbers

Y(t) = I(t) + jQ(t)

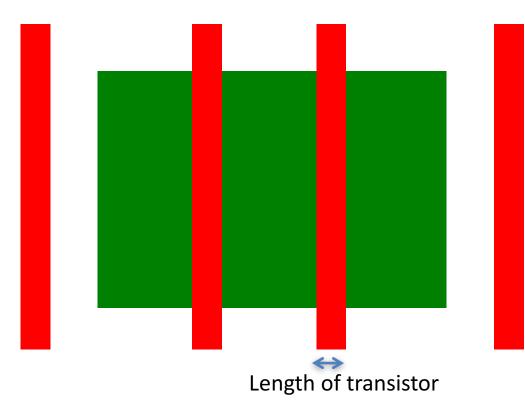
Our radio uses a complex reciever (one path for I and one for Q), so you need to understand complex mathematics

Outline

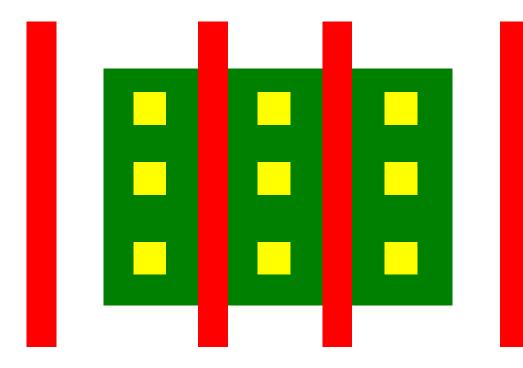
- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

Layout

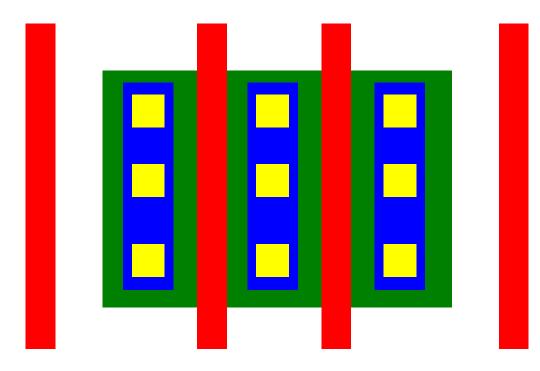
Let's make a transistor


Diffusion

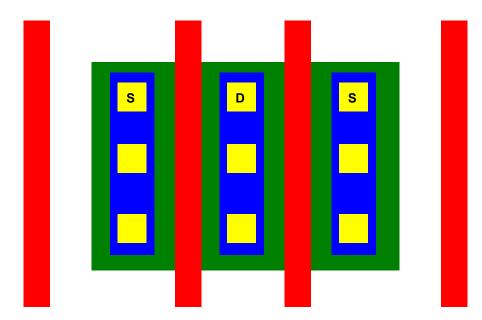
Width of transistor


- Marks the boundry of the transistor
- Defines the width of the transistor

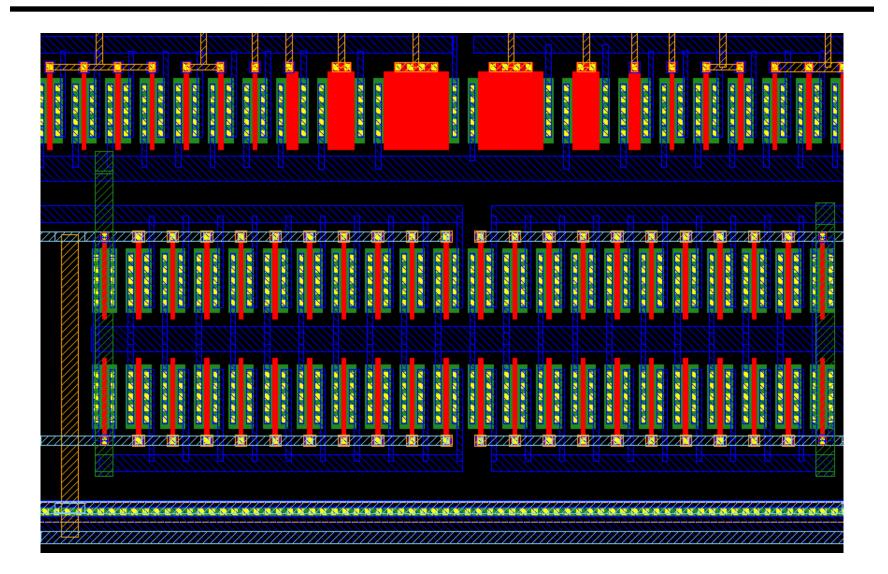
Polysilicon


- The intersection of diffusion and polysilicon defines the transistor
- Polysilicon is the gate of the transistor, and sets the length

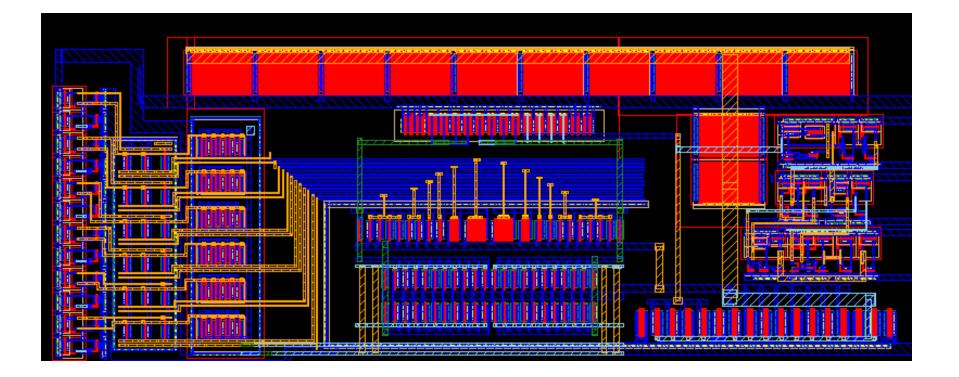
Contacts


• Contacts are needed to connect between metal and diffusion

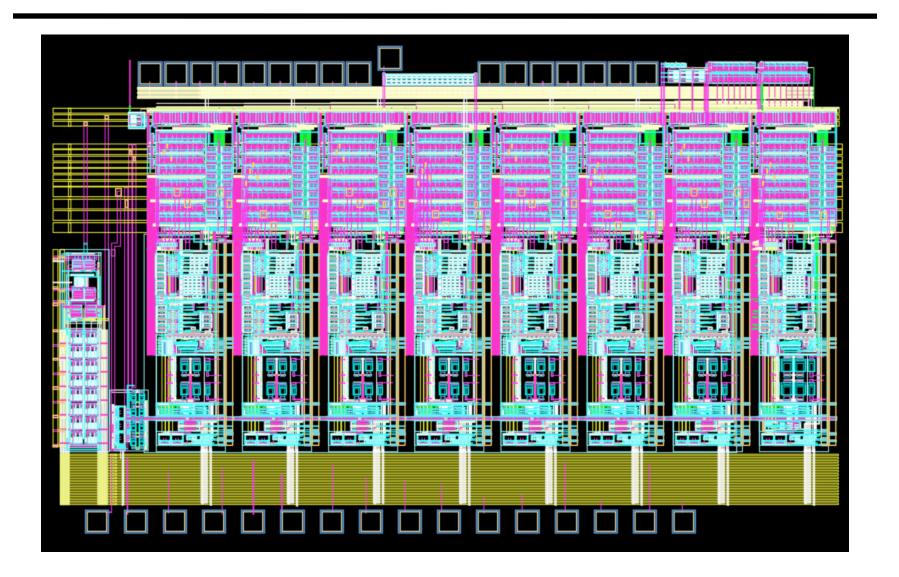
Metal

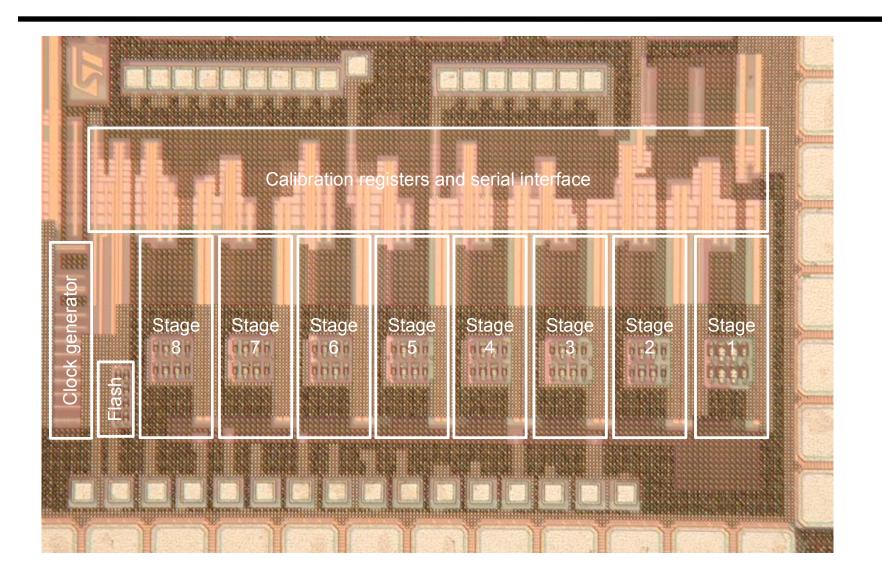

• Metal is used to connect one transistor to another

Transistor layout rules



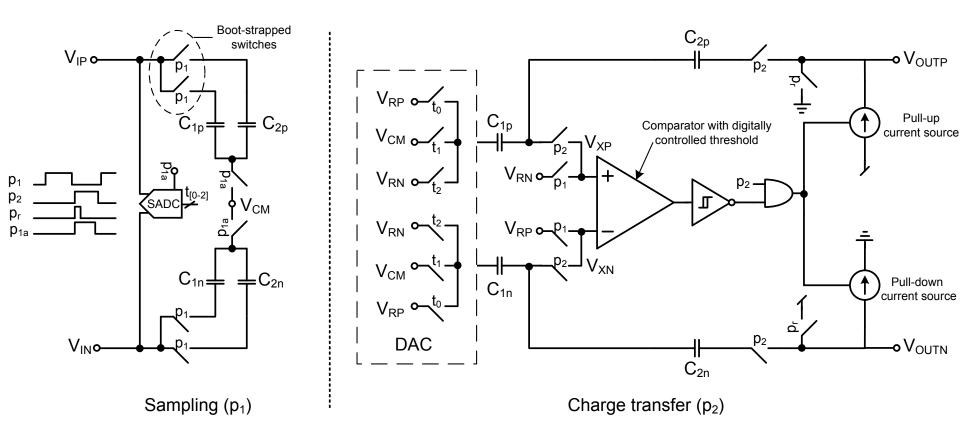
Rule	Why					
Always use two fingers	Transistor parameters change with current direction					
Always run all gates in same direction	Stress in X and Y direction affect transistor differently					
Always have dummy poly	Better poly control during processing					
Always have larger than minimum length of diffusion	Less stress from shallow trench isolation					
Always place transistors far from well edge	Reduce mismatch in threshold voltage					
Be careful with metal routing across transistors	Metal changes the stress in the channel					


Layout of an opamp


Layout of opamp

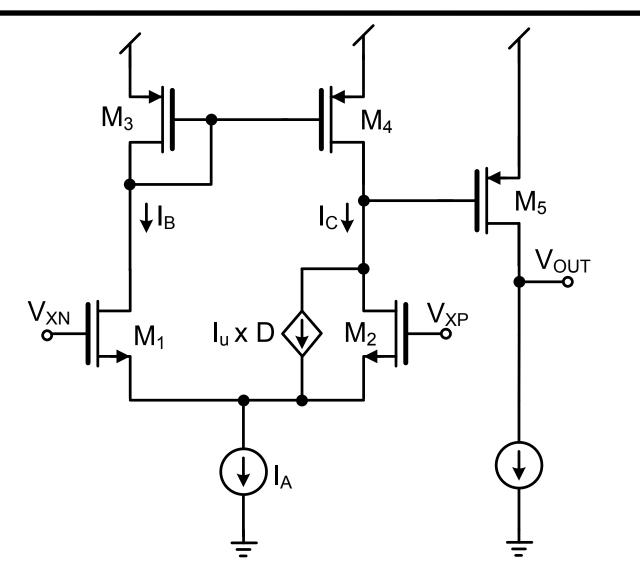
Layout of an ADC

Image of an ADC

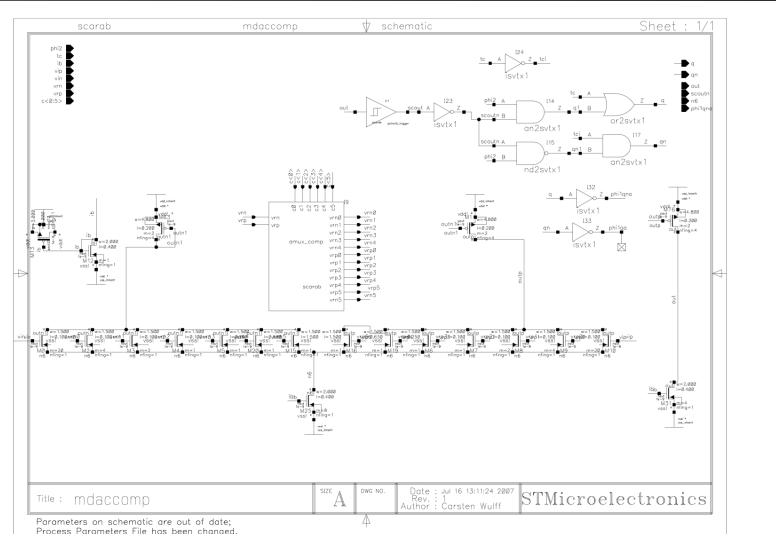


Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- The circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students


Schematics

Search terms: http://www.springerlink.com/content/558m275702840188/ Typical block diagram


DNTNU

Opamp schematic in Visio

Search terms: http://www.springerlink.com/content/558m275702840188/

Opamp schematic in Cadence

http://www.wulff.no/carsten/lib/exe/fetch.php/carsten/pub/scarab.pdf

© Carsten Wulff February

- Simulation, corner verification, monte-carlo simulation
- Digital design (Verilog)
- System level design (Matlab)
- Project management
- Lab testing
- Writing documentation

Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- The circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

- Break complex stuff down into smaller pieces
- Ignore the difficult stuff, and try to get an approximate understanding, then add inn the difficult stuff
- Don't be afraid if something is difficult
- Don't think your stupid and won't be able to understand
- Don't think that everybody else is smarter than you

- Ask someone
- Don't be afraid to show that you don't know something, not knowing is OK (except on the exam, and in a job interview)
- Use wikipedia

- Assumption is your friend
- Assumption is your worst enemy
- Assumption is the mother of all mistakes

- Ability to work hard (constant speed)
- Programming
- Report writing
- Explaining things to other people
- Convincing people that your right through persuasive arguments

- Assumptions are important (but handle with care)
- Learn your courses, they are important
- The world is your playground, if you're good enough you can make a lot of money, and make the world a better place

Questions?

Software:

- Schematic (Mentor graphics, Cadence, Synopsys, Tanner tools)
- Layout (Mentor graphics, Cadence, Synopsys, Tanner tools)
- Simulation (Eldo, Spectre, Hspice, SMASH)
- Scripting (Bash, Perl, Python, TCL, LISP)
- Editors (Emacs)
- Math software (Matlab, Maple, Octave)

Information sources:

http://ieeexplore.ieee.org

http://webcast.berkeley.edu/

EE240 spring 2007 to spring 2010