Making integrated circuits

2011-03-14 Carsten Wulff

Nomenclature

IC=Integrated circuit

MOS=Metal oxide semiconductor

FET=Field effect transistor

NMOS=n-type MOS enhancement MOS

PMOS=p-type MOS enhancement MOS

Outline

- Compulsory introduction: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

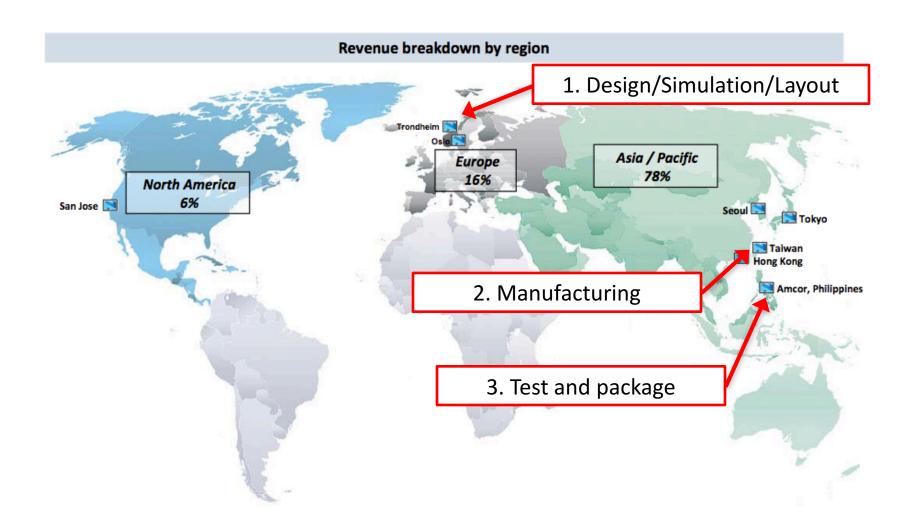
Who am I?

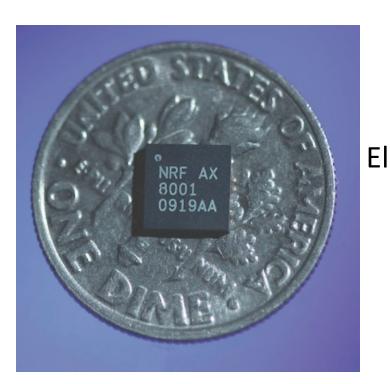
- Carsten Wulff
- Born Friday 13. August 1976
- R & D engineer wireless department at Nordic Semiconductor
- Married with three kids
- Graduated from NTNU 2002 (Programmable analog integrated circuit with TOC, 0.6um AMS)
- Ph.D from NTNU in 2008 (Efficient ADCs in nano-scale CMOS technology, 90nm ST)
- Fortunate to spend a year at University of Toronto (2006-2007) during my Ph.D
- http://www.scribd.com/carstenwulff
- http://www.wulff.no/carsten

About Nordic Semiconductor

- 151 employees in March 2011
- Revenue of 141.8 MUSD in 2010 (762 MNOK on 2011-03-12)
- Specialist on ultra-low power 2.4GHz radio circuits

wireless living ...



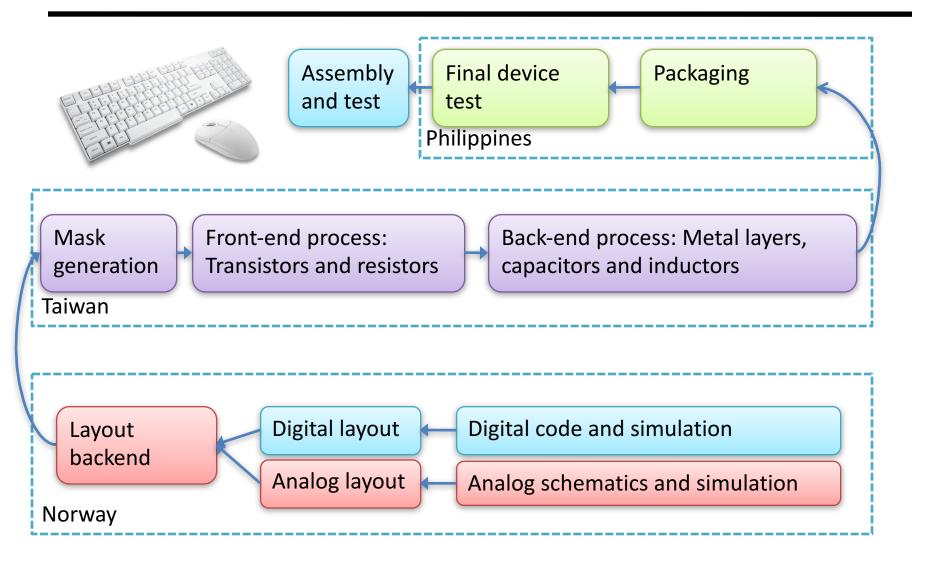


What Nordic Semiconductor does and where

Electronics research

Research takes time

Software design
Acoustics
Signal processing
Computer design
Radio Systems
Circuit- and systems design
Electro-optics
Electronic Devices and Materials


Months

Time to market

Years

Decades

The story

18


Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

Circuit elements

Transistor – The workhorse of ICs

 An extremely complicated device, but it's possible to make some assumptions

The accurate equation

$$I_D = f(W, L, \mu_n, C_{ox}, ..., V_{GS}, V_{DS}, ...)$$
 284 parameters in BSIM 4.5

The equation used for hand calculation in analog circuits

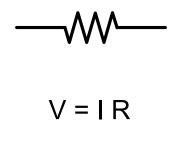
$$I_D \propto (V_{GS} - V_{th})^2$$

The equation sufficient for most digital designs

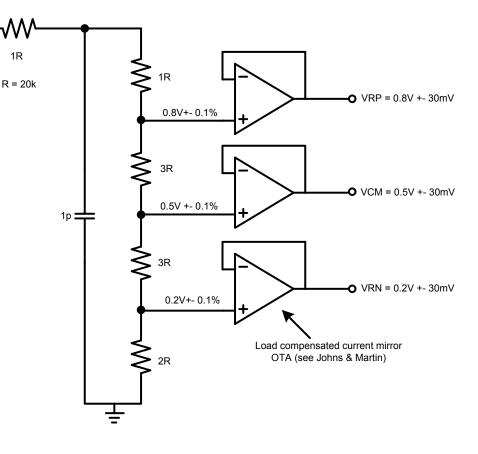
$$I_D \propto \begin{cases} high, & \text{if } V_{GS} > V_{TH} \\ 0, & \text{if } V_{GS} < V_{TH} \end{cases}$$

Parameters for one transistor in BSIM 4.5

.MODEL N1 NMOS LEVEL=14 VERSION=4.5.0 BINUNIT=1 PARAMCHK=1 MOBMOD=0 CAPMOD=2 IGCMOD=1 IGBMOD=1 GEOMOD=1 DIOMOD=1 RDSMOD=0 RBODYMOD=0 RGATEMOD=3 PERMOD=1 ACNQSMOD=0 TRNQSMOD=0 TEMPMOD=0 TNOM=27 TOXE=1.8E-009 TOXP=10E-010 TOXM=1.8E-009 DTOX=8E-10 EPSROX=3.9 WINT=5E-009 LINT=1E-009 LL=0 WL=0 LLN=1 WLN=1 LW=0 W₩=0 LWN=1 WWN=1 LWL=0 WWL=0 XPART=0 TOXREF=1.4E-009 SAREF=5E-6 SBREF=5E-6 WLOD=2E-6 KU0=-4E-6 KVSAT=0.2 KVTHØ€-2E-8 TKU0=0.0 LLODKU0=1.1 WLODKU0=1.1 LLODVTH=1.0 WLODVTH=1.0 LKU0=1E-6 WKU0=1E-6 PKU0=0.0 LKVTH0=1.1E-6 WKVTH0=1.1E-6 PKVTH0=0.0 STK2=0.0 LODK2=1.0 STETA0=0.0 LODETA0=1.0 LAMBDA=4E-10 VSAT=1.1E 005 VTL=2.0E5 XN=6.0 LC=5E-9 RNOI4=0.577 RNOIB=0.37 LINTNOI=1E-009 WPEMOD=0 WEB=0.0 WEC=0.0 KVTHOWE=1.0 K2WE=1.0 KU0WE=1.0 SCREF=5.0E-6 TVOFF=0.0 TVFBSDOFF=0.0 VTH0=0.25 K1=0.35 K2=0.05 K3=0 K3B=0 W0=2.5E-006 DVT0=1.8 DVT1=0.52 DVT2=-0.032 DVT0W=0 DVT1W=0 DVT2W=0 DSUB=2 MINV=0.05 VOFFL=0 DVTP0=1E-007 DVTP1=0.05 LPE0=5.75E-008 LPEB=2.3E-010 XJ=2E-008 NGATE=5E 020 NDEP=2.8E 018 NSD=1E 020 PHIN=0 CDSC≥0,0002 CDSCB=0 CDSCD=0 CIT=0 VOFF=-0.15 NFACTOR=1.2 ETA0=0.05 ETAB=0 UC=-3E-01/1 VFB=-0.55 U0=0.032 UA=5.0E-011 UB=3.5E-018 A0=2 AGS=1E-020 A1=0 A2=1 B0=-1E-020 B1=0 KETA=0.04 DWG=0 DWB=0 PCLM=0.08 PDIBLC2=0.028 PDIBLC2=0.022 PDIBLCB=-0.005 DROOT=0.45 PVAG=1E-020 DELTA=0.01 PSCBE1=8.14E 008 PSCBE2=5E-008 RSH=0 RDSW=0 RDW=0 FPROUT=0.2 PDITS=0.2 PDITSD=0.23 PDITSL=2.3E 006 RSH=0 RDSW=50 RSW=150 RDW=150 RDSWMIN=0 RDWMIN=0 PRWG=0 PRWB=6.8E-011 WR=1 ALPHA0=0.074 ALPHA1=0.005 BETA0=30 AGIDL=0.0002 BGIDL=2.1E 009 CGIDL=0.0002 EGIDL=0.8 AIGBACC=0.012 BIGBACC=0.0028 CIGBACC=0.002 NIGBACC=1 AIGBINV=0.014 BIGBINV=0.004 CIGBINV=0.004 EIGBINV=1.1 NIGBINV=3 AIGC=0.012 BIGC=0.0028 CIGC=0.002 AIGSD=0.012 BIGSD=0.0028 CIGSD=0.002 NIGC=1 POXEDGE=1 PGCD=1 NTOX=1 VFBSDOFF=0.0 XRCRG1=12 XRCRG2=5 CGSO=6.238E-010 CGDO=6.238E-010 CGBO=2.56E-011 CGDL=2.495E-10 CGSL=2.495E-10 CKAPPAS=0.03 CKAPPAD=0.03 ACDE=1 MOIN=15 NOFF=0.9 VOFFCV=0.02 KT1=-0.37 KT1L=0.0 KT2=-0.042 UTE=-1.5 UA1=1E-009 UB1=-3.5E-019 UC1=0 PRT=0 AT=53000 FNOIMOD=1 TNOIMOD=0 JSS=0.0001 SWS=1E-011 JSWGS=1E-010 NJS=1/ JJTHSFWD=0.01 JJTHSREV=0.001 BVS=10 XJBVS=1 JSD=0.0001 JSWD=1E-011 JSWGD=1E-010 NJD=1 IJTNDFWD=0.01 IJTHDREV=0.001 BVD=10 XJBVD=1 PBS=1 CJS=0.0005 MJS=0.5 PBSWS=1 CJSWS=5E-010 MJSWS=0.33 PBSWGS=1 CJSWGS=3E-010 MJSWGS=0.33 PBD=1 CJD=0.0005 MJD=0.5 PBSWD=1 CJSWD=5E-010 MJSWD=0.33 PBSWGD=1 CJSWGD=5E-010 MJSWGD=0.33 TP8=0.005 TCJ=0.001 TPBSW=0.005 TCJSW=0.001 TPBSW=0.001 TPBSW=0.005 TCJSW=0.001 TPBSW=0.001 TCJSWG=0.001 XTIS=3 XTID=3 DMCG=0E-006 DMCI=0E-006 DMQG=0E-006 DMCGT=0E-007 DWJ=0.0E-008 XGW=0E-007 XGL=0E-008 RSHG=0.4 GBMIN=1E-010 RBPB=5 RBPD=15 RBPS=15 RBDB=15 RBSE=15 NGCON=1 JTSS=1E-4 JTSD=1E-4 JTSSWS=1E-10 JTSSWD=1E-10 JTSSWGS=1E-7 JTSSWGD=1E-7 NJTS=20.0 NJTSSW=20 NJTSSWG=6 XTSS-10 VTSD=10 VTSSWS=10 VTSSWD=10 VTSSWGS=2 VTSSWGD=2 XTSS=0.02 XTSD=0.02 XTSSWS=0.02 XTSSWD=0.02 XTSSWG8=0.02 XTSSWGD=0.02


$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2$$

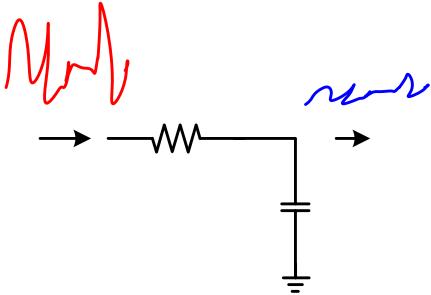
18


Integrated resistor – Master of ratios

voltage

Most of the time a simple device

 Very good matching between two resistors, so we can make very accurate voltage dividers


Integrated capacitor – Master of silence

Not to hard either

$$i = C dv/dt$$

Perfect for silencing a noisy power supply

Integrated inductor – Master of radio frequencies

• Principle is simple, not so easy to integrate on chip

$$V = L di/dt$$

Used in sine wave generators, and radio frequency circuits

Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

Processing – Making an integrated circuit

The raw materials

hydrogen 1	-		2578	e [®] e	227	8	19 <u>2</u> 8	Ø	070	100	ST.	155	\$175X	705	新 第分	\$3F)	##G 9	helium 2
1.0079		•																He 4.0026
lithium 3	beryllium 4													carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be													С	N	0	F	Ne
6.941	9.0122												aluminium	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												13	silicon 14		sulfur 16	chlorine 17	argon 18
Na	Mg												Al	Si		S	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26,982 gallium	28.086	arsenic	32,065 selenium	35,453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31		33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga		As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58,933 rhodium	58,693 palladium	63.546 silver	65.39 cadmium	69,723 indium	tin I	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununquadium	208,98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

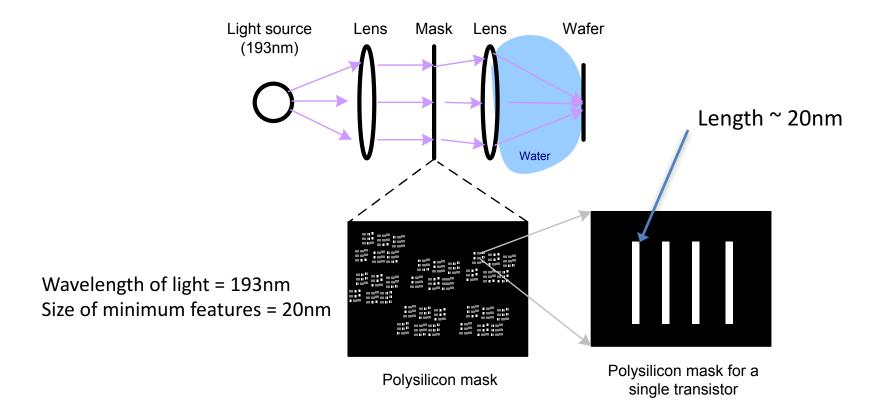
*Lanthanide series

* * Actinide series

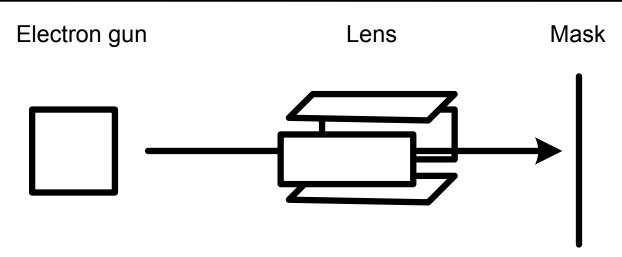
ſ	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
1	37	36	33		5		2550	04		500			-03	10
ı	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ιb	Dy	НО	Er	Im	Yb
L	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
Т	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
١	89	90	91	92	93	94	95	96	97	98	99	100	101	102
١	۸۵	Th	Pa	11	Nn	Dir	Λm	Cm	DL	Cf	Ec	Em	MA	No
1	AC	111	Га	U	IAD	ГU	Am	CIII	DN	C	LS	1 111	IVIU	140
L	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

A chip is made layer by layer by adding dopants, metal, insulators and conductors 18

18

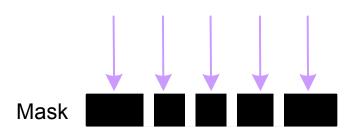

The wafer – the fundamental building block

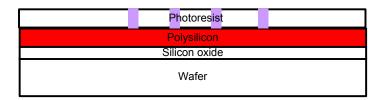
http://www.tomshardware.com/reviews/semiconductor-production-101,1590-3.html

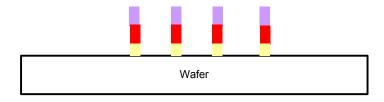

- Ingot = An ultra pure, single crystal of silicon
- Wafer = A very thin slice of an ingot, used as the first layer in processing

Photolithography

18

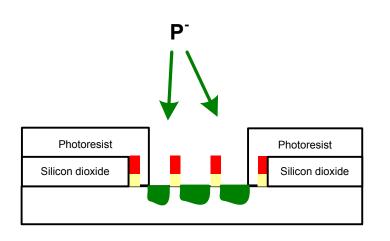

Mask generation

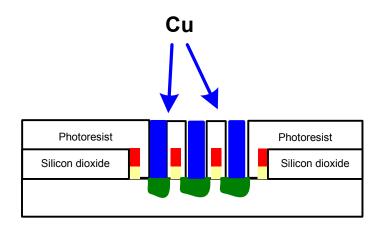



- Extremely expensive
- Must have higher accuracy that what we want to develop
- Extensive calculations need to calculate how the mask should look to compensate for diffraction and processing inaccuracies

Minimum feature	Mask cost NOK
180nm	600 000
65nm	6 000 000
28nm	30 000 000

Photo resist and development

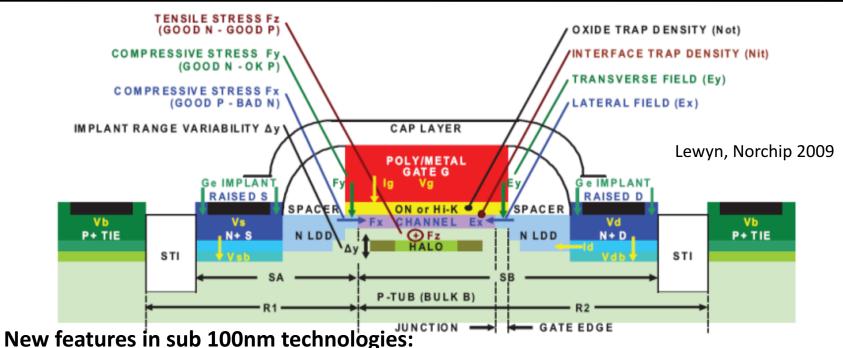

1) Expose photoresist


2) Remove photoresist and etch polysilicon

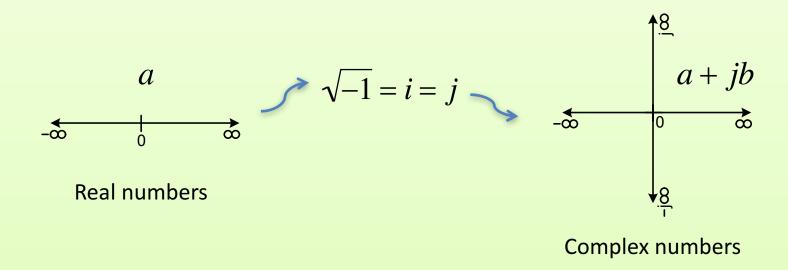
Toolbox

- Negative and positive photoresist
- Doping, etching, electroplating, vapor deposition

Doping and metal



3) Add doping


- 4) Add metal
- Dopants change electrical properties of the silicon substrate
- Metal is added to wire up the circuit. In most processes the metal is copper.
- Up to nine metal layers in advanced processes

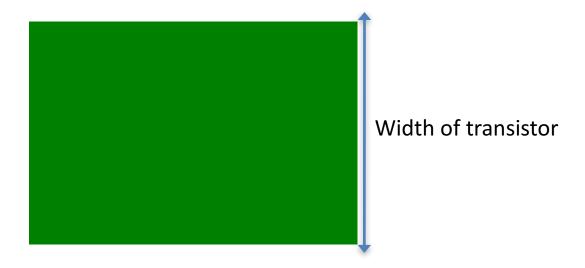
Nanoscale transistor

- Stress is actively used to increase mobility
- Very thin oxide, reduced power supply to keep vertical field in check
- Halo implant that increases drain-source conductance at longer channel lengths
- Hot carrier effects
- Stress from the STI (shallow trench isolation)
- Proximity to well edge
- Lithography issues since the minimum dimensions are less than the Carsten Wulff February wavelength used to expose the photoresist (λ =193nm) 18

We digress: Complex math

$$Y(t) = I(t) + jQ(t)$$

Our radio uses a complex reciever (one path for I and one for Q), so you need to understand complex mathematics

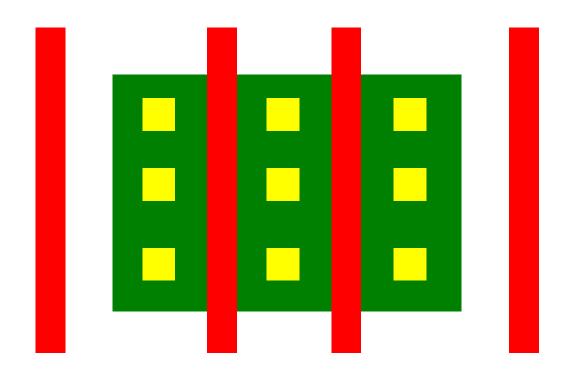

Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- Circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

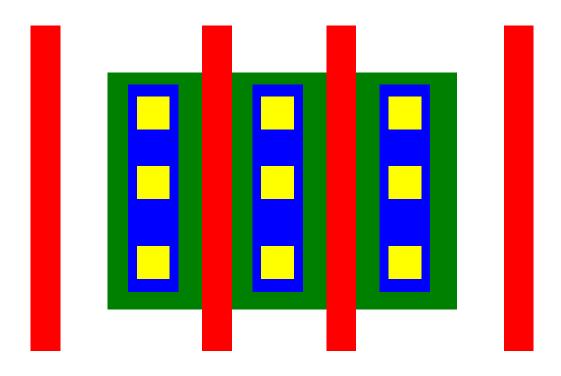
Layout


Lets make a transistor

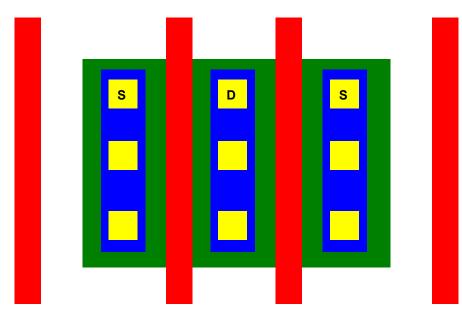
Diffusion


- Marks the boundry of the transistor
- Defines the width of the transistor

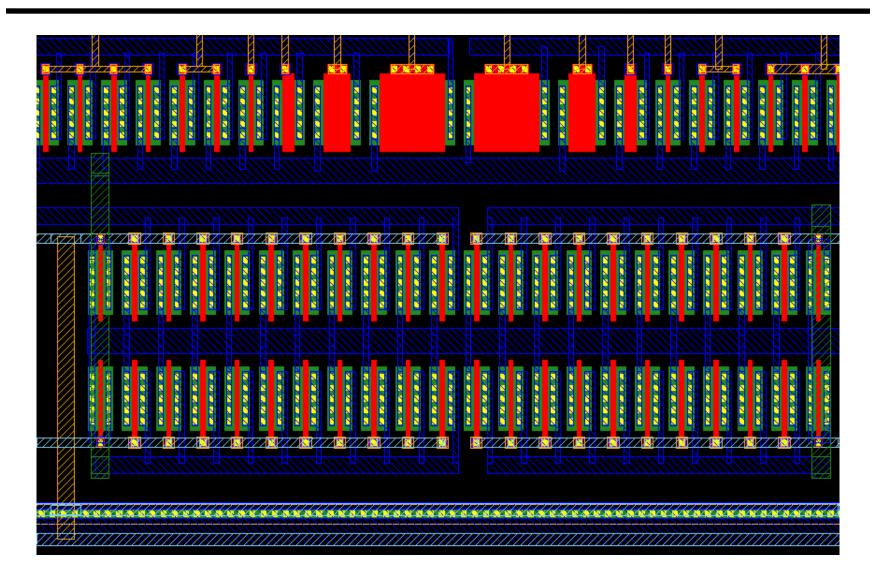
Polysilicon


- The intersection of diffusion and polysilicon defines the transistor
- Polysilicon is the gate of the transistor, and sets the length

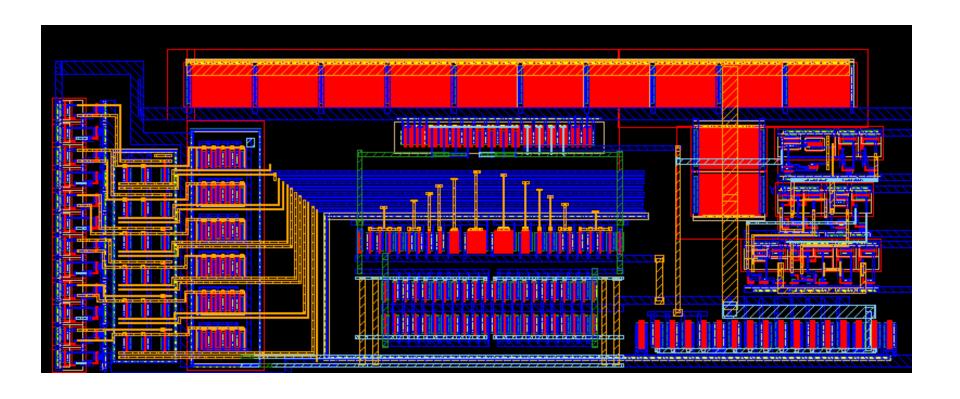
Contacts


• Contacts are needed to connect between metal and diffusion

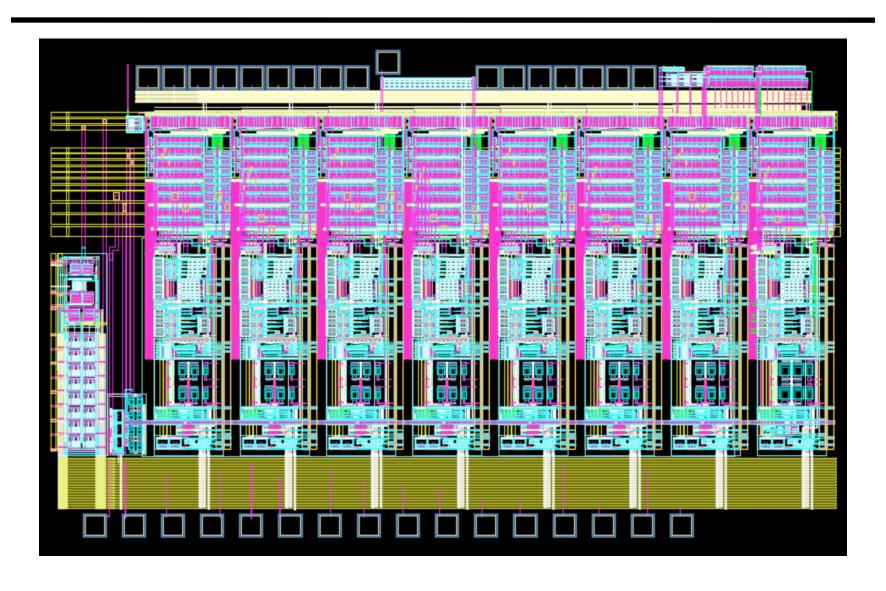
Metal


• Metal is used to connect one transistor to another

Transistor layout rules

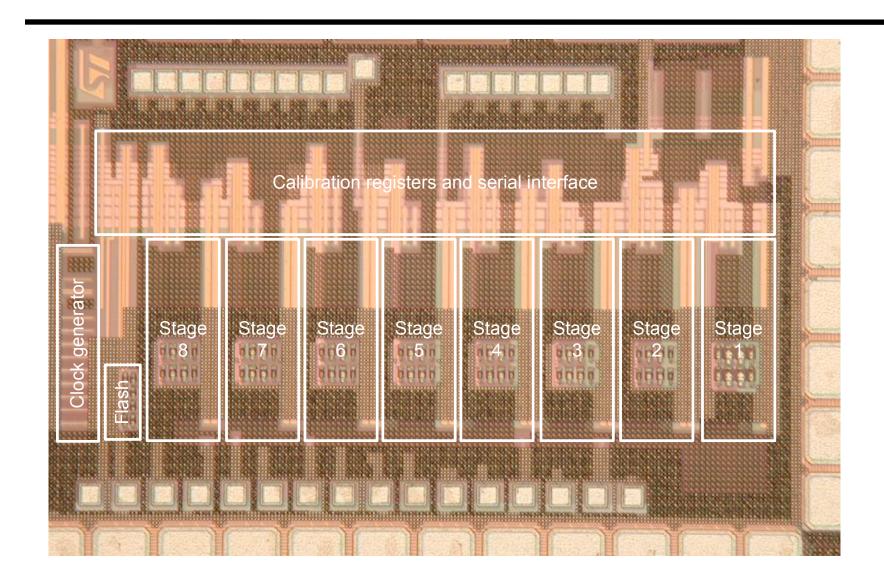

Rule	Why
Always use two fingers	Transistor parameters change with current direction
Always run all gates in same direction	Stress in X and Y direction affect transistor differently
Always have dummy poly	Better poly control during processing
Always have larger than minimum length of diffusion	Less stress from shallow trench isolation
Always place transistors far from well edge	Reduce mismatch in threshold voltage
Be careful with metal routing across transistors	Metal changes the stress in the channel

Layout of an opamp



18

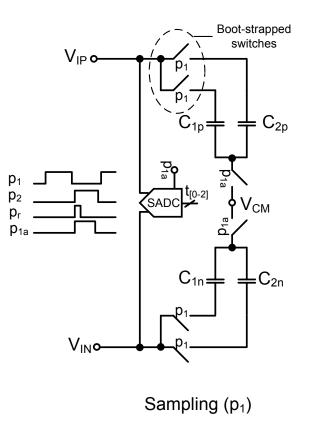
Layout of opamp

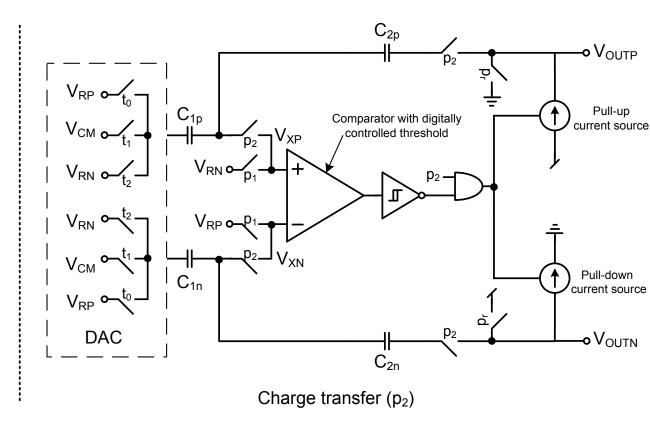


Layout of an ADC

18

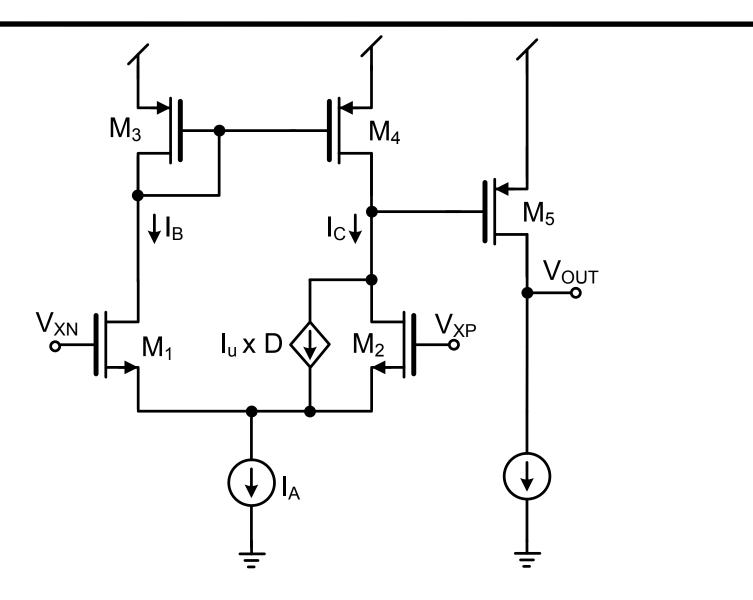
Image of an ADC

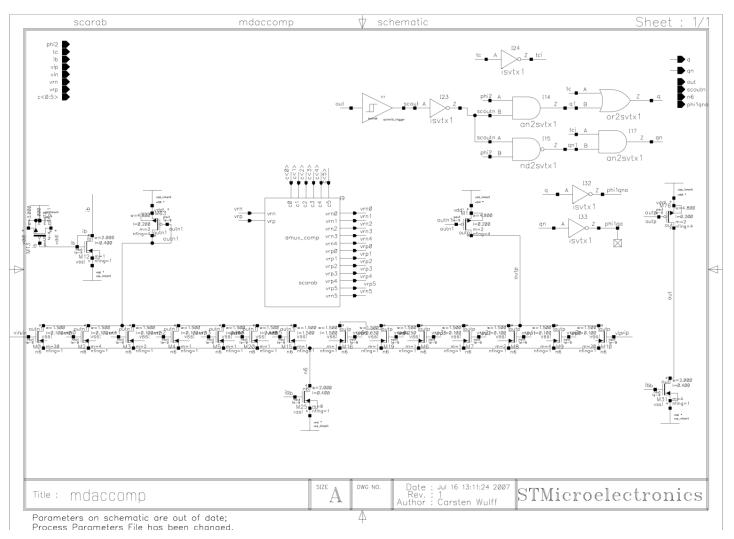



Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- The circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

Schematics


Typical block diagram



Opamp schematic in Visio

Opamp schematic in Cadence

http://www.wulff.no/carsten/lib/exe/fetch.php/carsten/pub/scarab.pdf

Topics not covered

- Simulation, corner verification, monte-carlo simulation
- Digital design (Verilog)
- System level design (Matlab)
- Project management
- Lab testing
- Writing documentation

Outline

- Compulsory introduction to: who am I, what have I done, and what do I do, where do I work, what to they do....
- The circuit elements
- Processing
- Layout
- Schematics
- Advice for electronics students

Divide and conquer

- Break complex stuff down into smaller pieces
- Ignore the difficult stuff, and try to get an approximate understanding, then add inn the difficult stuff
- Don't be afraid if something is difficult
- Don't think your stupid and won't be able to understand
- Don't think that everybody else is smarter than you

When you don't understand

Ask someone

 Don't be afraid to show that you don't know something, not knowing is OK (except on the exam, and in a job interview)

Use wikipedia

Know your assumptions

- Assumption is your friend
- Assumption is worst enemy
- Assumption is the mother of all mistakes

What you need to teach yourself

- Ability to work hard (constant speed)
- Programming
- Report writing
- Explaining things to other people
- Convincing people that your right through persuasive arguments

Last comments

- Assumptions are important (but handle with care)
- Learn your courses, they are important
- The world is your playground, if you're good enough you can make a lot of money, and make the world a better place

Things you should know about

Software:

Schematic (Mentor graphics, Cadence, Synopsys, Tanner tools)

Layout (Mentor graphics, Cadence, Synopsys, Tanner tools)

Simulation (Eldo, Spectre, Hspice, SMASH)

Scripting (Bash, Perl, Python, TCL, LISP)

Editors (Emacs)

Math software (Matlab, Maple, Octave)

Information sources:

http://ieeexplore.ieee.org

http://webcast.berkeley.edu/

EE240 spring 2007 to spring 2010

18