
ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN NOV 16 20:20:55 UTC 2025 FROM 9463AC8D4A73A943AD0A19E9BDE85D72BAF669DA 1

Thoughts and Advice
Carsten Wulff, carsten@wulff.no

I. ADVICE

This is some advice, use it, or ignore it, who cares.

Try to figure out what makes you happy, and do more of that

If you don’t know how to say sorry when you do something
stupid, learn.

When life sucks, run, or exercise, it’s the only thing that works

Get a mac, time machine, and offsite backup. That ensures
you’ll never loose data.

Find a problem that you really want to solve, and learn a
programming language to solve it. There is absolutely no point
in saying “I want to learn programming”, then sitting down
with a book to read about programming, and expect that you
will learn programming that way. It will not happen. The only
way to learn programming is to program, a lot.

Learn to check your assumptions. You will make mistakes, and
you need to get good at finding the mistakes you made.

Take your time to write a verification plan. And stick to it.
Without sufficient simulation your circuit will not work.
Status Abstraction Design Layout Why
:construc-
tion:

Chip SystemVerilogdigital Complex connections, few analog
interfaces

:construction: Module SystemVerilogdigital Large amount of digital signals,
few analog signals

:warning: Block Schematic programmaticLarge amount of critical analog
interfaces, few digital

:white_check_mark:Cell Netlist/JSON compiled Few analog interfaces, few digital
interfaces

:white_check_mark:Device JSON compiled Polygon pushing
:white_check_mark:Technology JSON/Rules compiled Custom for each technology

A. What the team needs to know to design ICs

There are a multitude of tools and skills needed to design
professional ICs. It’s not likely that you’ll find all the skills in
one human, and even if you could, one human does not have
sufficient bandwidth to design ICs with all it’s aspects in a
reasonable timeline

That is, unless we can find a way to make ICs easier.

The skills needed are

• Project flow support: Confluence, JIRA, risk management
(DFMEA), failure analysis (8D)

• Language: English, Writing English (Latex, Word,
Email)

• Psychology: Personalities, convincing people, presenta-
tions (Powerpoint, Deckset), stress management (what
makes your brain turn off?)

• DevOps: Linux, bulid systems (CMake, make, ninja),
continuous integration (bamboo, jenkins), version control

(git), containers (docker), container orchestration (swarm,
kubernetes)

• Programming: Python, C, C++, Matlab Since 1999 I’ve
programmed in Python, Go, Visual BASIC, PHP, Ruby,
Perl, C#, SKILL, Ocean, Verilog-A, C++, BASH, AWK,
VHDL, SPICE, MATLAB, ASP, Java, C, SystemC, Verilog,
Assembler, and probably a few I’ve forgotten.

• Firmware: signal processing, algorithms, software archi-
tecture, security

• Infrastructure: Power management, reset, bias, clocks
• Domains: CPUs, peripherals, memories, bus systems
• Sub-systems: Radio’s, analog-to-digital converters, com-

parators
• Blocks: Analog Radio, Digital radio baseband
• Modules: Transmitter, receiver, de-modulator, timing

recovery, state machines
• Designs: Opamps, amplifiers, current-mirrors, adders,

random access memory blocks, standard cells
• Tools: schematic, layout, parasitic extraction, synthesis,

place-and-route, simulation, (System)Verilog, netlist
• Physics: transistor, pn junctions, quantum mechanics

B. Zen of IC design (stolen from Zen of Python)

When you learn something new, it’s good to listen to someone
that has done whatever it is before.

Here is some guiding principles that you’ll likely forget.

• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Readability counts (especially schematics).
• Special cases aren’t special enough to break the rules.
• Although practicality beats purity.
• In the face of ambiguity, refuse the temptation to guess.
• There should be one and preferably only one obvious

way to do it.
• Now is better than never.
• Although never is often better than right now.
• If the implementation is hard to explain, it’s a bad idea.
• If the implementation is easy to explain, it may be a good

idea.

C. IC design mantra

To copy an old mantra I have on learning programming

Find a problem that you really want to solve, and
learn programming to solve it. There is no point in
saying “I want to learn programming”, then sit down
with a book to read about programming, and expect

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN NOV 16 20:20:55 UTC 2025 FROM 9463AC8D4A73A943AD0A19E9BDE85D72BAF669DA 2

that you will learn programming that way. It will not
happen. The only way to learn programming is to
do it, a lot. – Carsten Wulff

And run the perl program
s/programming/analog design/ig

D. Analog Design Process

• Define the problem, what are you trying to solve?
• Find a circuit that can solve the problem (papers, books)
• Find right transistor sizes. What transistors should be

weak inversion, strong inversion, or don’t care?
• Write a verification plan. Plan to simulate everything that

could go wrong.
• Check operating region of transistors (.op)
• Check key parameters (.dc, .ac, .tran)
• Check function. Exercise all inputs. Check all control

signals
• Check key parameters in all corners. Check mismatch

(Monte-Carlo simulation)
• Do layout, and check it’s error free. Run design rule

checks (DRC). Check layout versus schematic (LVS)
• Extract parasitics from layout. Resistance, capacitance,

and inductance if necessary.
• On extracted parasitic netlist, check key parameters in all

corners and mismatch (if possible).
• If everything works, then your done.

On failure, go back as far as necessary

II. STUFF TO PONDER

Over a period of 10 months I was fortunate to spend some
time at Electronics and Computer Engineering Department,
University of Toronto. I was there as a grad student doing
research on Comparator Based Switched Capacitor Circuits.
Each Wednesday we had a meeting with the other Ph.D. and
Master students, which was attended by Professor Ken Martin,
Professor David Johns and Professor Trond Ytterdal. The quotes
and tips here should not be taken as facts, but rather as “heads-
up’ ’ statements. Take these tips as something that should
be checked and thought about. I do not remember which
quotes/tips came from which professor, or indeed which student.
So here goes

*This is important:** Do not worry about unknowns. Make a
list of unknowns and find a test to check whether the unknown
is a problem. Fixing things based on guesses will cause trouble.
1) AC open, DC closed switch: In SPICE there is usually a
switch or capacitor/inductor that has the behavior of being
open at AC and closed at DC or visa versa. Useful for setting
common mode voltages in simulation of differential operational
transconductance amplifiers.
2) Measure capacitance: To measure capacitance on a node
in a circuit simulation.

Bias the block Put a small dc current into the node Measure
the delta V over a short time period Calculate capacitance from
i = C dv/dt Always include a replica with a know capacitance
value, i.e. a capacitor, to check your testbench.

3) On Analog Design: Normally source jitter will dominate

This comment was made in reference to a 10-bit 50MHz ADC.
So if you’re designing such a ADC you probably don’t have
to worry about jitter in the clock circuit. However, you should
be careful about your clock input. I know some people do
differential sinusoidal clocks and create a square wave clock
on the inside of the chip. Using differential signaling will help
with possible interference from nearby lines.
4) Distortion from ESD protection circuits: When you go to
high resolutions (> 10 bit) and high speed (>50MHz) the non-
linear capacitance of the ESD protection starts to matter. If
you’re doing an ADC above this area you should read Analysis
and Measurement of Signal Distortion due to ESD Protection
Circuits.
5) Add net names in layout: Always add net names to layout
nets, this will help LVS to match nets. It will also save you
when tracking down shorts.
6) Decouple to source node: In current mirrors, decouple
to the source node. By decoupling between source and for
example vss, any high frequency jumps on vss will also appear
on the gate, thus the gate source voltage will stay constant and
current will not change
7) Worry about current densities when routing > 20um:
Metal wires on-chip have a maximum allowed dc current.
This is due, among other things, to electromigration. At high
current densities the aluminum atoms may migrate, and thus
leave a void that might grow over time into to a discontinuity.
Why exactly >20um I don’t know, but it was mentioned in
a meeting as a rule of thumb. Current densities are usually
around 1mA/square, but varies with technology
8) Always shield signal lines above 10 bit level: If you’re
doing an ADC, or indeed any circuit, that requires > 10 bit
accuracy you should shield your signal lines. On chip you use
metal below, above and sides. The same for PCBs. Sensitive
signals can be routed in in-between layers.
9) Use a current source to feed inverter based oscillators:
Check non-overlapping clocks in slow, high temp and low vdd

For non overlapping clocks you should check that the two
clocks just meet in slow corner, high temperature and low vdd.
By meet I mean one clock should start to rise when the other
is almost at zero. Supposedly this PVT corner is the worst for
non-overlap, but I have not checked.
10) Analog Sampling: If possible, you should sample analog
just before digital IO switches. In other words, sample during
quiet time.
11) Cascode devices should be minimum size: You get less
capacitance this way.
12) The unit transistor W/L should be around 10-20:
13) Place noisy digital blocks in deep N-well: By separating
substrates you improve noise immunity
14) Shield analog blocks with deep N-well ring: Same thing
as above
15) Always route differential signals differentially: Mismatch
between parasitic capacitances/resistors in differential signal
routing (differential means; two signals where one signal is
phase shifted 180 degrees) can introduce errors. The error is

https://ieeexplore.ieee.org/document/1703690
https://ieeexplore.ieee.org/document/1703690
https://ieeexplore.ieee.org/document/1703690

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN NOV 16 20:20:55 UTC 2025 FROM 9463AC8D4A73A943AD0A19E9BDE85D72BAF669DA 3

reduced if the parasitics are matched, since the differential
system cancels some of the errors.
16) On-chip decoupling: Remember to check whether you
need on-chip decoupling of references and power. In most
designs you do need decoupling, especially if you run at high
speeds (> 10MHz).
17) Variable delayed clock: If jitter is not important, and you
want a variable delayed clock, you can use a current starved
inverter Place a current source inside or on the outside of your
inverter, and use a current mirror to control the maximum
current.
18) On Calibration & Test: Use serial shift registers for
calibration bits

It is common to include some off-line startup calibration circuits
in ICs. For example to tune transconductances, resistances,
capacitances, offset voltages etc. Usually this leads to some
form of DAC that needs a digital input. For these digital inputs
a serial shift register should be used. Indeed for any digital
input that does not have to be synchronous, use serial shifting.
The best is to have a commercial bus like SPI or I2S, but this
might be overkill.

Two registers should be used, one long shift register and one
parallel load register. First you shift in all you calibration bits,
then you load them into the parallel register. The calibration
DACs are connected to the parallel register. This is to avoid
any funny stuff happening when you load your bits. It’s good
to have control over the state of your circuit at all times. A
long shift register is not a problem, it does not cost much to
add some more bits. In a recent ADC I made, the shift register
was 272 bits long.

The calibration register should have 4 inputs: data, data clock,
reset, load. The load signal is used to do the parallel load after
shifting in all the bits. You should also include a data output
so you can check what was loaded in.

On all inputs you should use a Schmitt trigger to improve
noise immunity. Especially since the input data and clock may
be feed from a computer with slow rise and fall times.
19) Design for test: Make sure that all on-chip DC voltages
(bias points, power, references) are available off-chip for mea-
surement. Either through probe pads or analog test multiplexers.

Use analog test multiplexer

Use an analog test multiplexer with T-switches to give you
access to internal nodes. A T-switch has two transmission gates
and one NMOS. The first transmission gate is placed close
to the analog node you want to test, the second close the test
output. The NMOS is placed on the output side (not analog
node side) of the first transmission gate. When the T-switch is
ON the two transmission gates are closed and the NMOS is
open. When the T-switch is OFF the NMOS grounds the long
line between the transmission gates, thus preventing leakage
between different test points of the analog multiplexer.
20) Calibration currents: If you have a current source with
off-line calibration, the calibration current should be +- 50%
versus nominal.

21) Calibration DACs: For calibration DACs use 3 or 4
thermometer encoded bits and the LSBs binary encoded.
22) Access to gain boosters: If you’re using gain boosters the
boost voltage should be accessible off-chip.
23) Default calibration state: The calibration DACs should
start up in a default state close to the expected state. Use
inverters between the calibration register and calibration DACs
to set the default state.
24) Crystal Oscillators: Crystal oscillators are used to generate
a clean, low phase noise (low jitter), clock signal.
25) Careful circuit board design: If you move into the +10
bit accuracy range the circuit board (PCB) becomes important.
Especially if you’re running at high frequencies. If you have
designed and produced an ADC, you want to test the ADC
performance, not the PCB. So you might want to exclude the
circuit board as an error source. To do this you can include
a parallel ADC of same or higher resolution to test the PCB
performance.

I know of cases where a guy did a 12 bit ADC, made a circuit
board, and tested. The test showed very poor performance <
10 bit, and it turned out to be the circuit board. Most of the
extra noise was because he hadn’t shielded his input signal
and taken care of routing of input signal. He spent in excess of
3 months to track down the problem. And the solution was to
redo the circuit board and take better care of the input signal.

Short circuit input on your ADC to measure noise floor
26) Single ended to differential converter: In the range 0Hz -
2MHz you can use ADC driver, AD8138 Analog Devices For
single ended to differential conversion in the range > 2MHz a
transformer should be used.
27) Non-harmonic spurs: When measuring your ADC, if you
have spurs that are not harmonics in your FFT you should try
to change the clock frequency (sampling frequency) to see if
the spurs change frequency as well. If they do, they may be
aliased interference from nearby RF transmitters.
28) Low capacitance probes are available, as low as 0.1pF -
2pF:
29) Information sources: Handbook on filter synthezising:
Martin Snelgrove Phd thesis

State-Space Adaptive IIR Filters, David A. Johns

The Data Conversion Handbook, Walt Kester

Carsten Wulff received the M.Sc.
and Ph.D. degrees in electrical
engineering from the Department
of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,
he worked on open-loop sigma-

delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN NOV 16 20:20:55 UTC 2025 FROM 9463AC8D4A73A943AD0A19E9BDE85D72BAF669DA 4

roles, from analog designer, to Wireless Group Manager, to
currently Principle IC Scientist. From 2014-2017 he did a
part time Post.Doc focusing on compiled, ultra low power,
SAR ADCs in nanoscale technologies. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of
high-efficiency analog-to-digital converters and low-power
wireless transceivers. He is the developer of Custom IC
Compiler, a general purpose integrated circuit compiler, and
makes the occational video on analog integrated circuits at
https://www.youtube.com/@analogicus. For full CV see
https://analogicus.com/markdown-cv/.

https://www.youtube.com/@analogicus
https://analogicus.com/markdown-cv/

	Advice
	What the team needs to know to design ICs
	Zen of IC design (stolen from Zen of Python)
	IC design mantra
	Analog Design Process

	Stuff to ponder
	AC open, DC closed switch
	Measure capacitance
	On Analog Design
	Distortion from ESD protection circuits
	Add net names in layout
	Decouple to source node
	Worry about current densities when routing > 20um
	Always shield signal lines above 10 bit level
	Use a current source to feed inverter based oscillators
	Analog Sampling
	Cascode devices should be minimum size
	The unit transistor W/L should be around 10-20
	Place noisy digital blocks in deep N-well
	Shield analog blocks with deep N-well ring
	Always route differential signals differentially
	On-chip decoupling
	Variable delayed clock
	On Calibration & Test
	Design for test
	Calibration currents
	Calibration DACs
	Access to gain boosters
	Default calibration state
	Crystal Oscillators
	Careful circuit board design
	Single ended to differential converter
	Non-harmonic spurs
	Low capacitance probes are available, as low as 0.1pF - 2pF
	Information sources

