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Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
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Attention Is All You Need
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https://arxiv.org/abs/1706.03762


Neural Nets 3blue1brown
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https://www.3blue1brown.com/topics/neural-networks


A NN consists of addition, multiplication, 
and a non-linear function
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Assume N neurons

• N multiplications per neuron 

• N + 1 additions per neuron

• 1 sigmoid per neuron

For efficient inference, additions and 
multiplications should be low power!

Carsten Wulff 2025 7



Addition
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Kirchoff's circuit laws
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https://en.wikipedia.org/wiki/Kirchhoff%27s_circuit_laws


Kirchoff's voltage law

The directed sum of the potential 
differences around any closed loop is zero
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Kirchoff's current law

The algebraic sum of currents in a 
network of conductors meeting at a point 

is
zero 
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Charge concervation

See Charge concervation on Wikipedia 

Carsten Wulff 2025 14

https://en.wikipedia.org/wiki/Charge_conservation


Multiplication
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Digital capacitance

Make capacitors digitally controlled, then 

Might have a slight problem with variable gain as a function of total 
capacitance 
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Mixing
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Translinear principle
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MOSFET in sub-threshold
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Il Iz Is It
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Il Iz Is It
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Demo

JNW_SV_SKY130A
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https://github.com/wulffern/jnw_sv_sky130a


Want to learn more?
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An Always-On 3.8 u J/86 % CIFAR-10 Mixed-Signal Binary CNN 
Processor With All Memory on Chip in 28-nm CMOS

CAP-RAM: A Charge-Domain In-Memory Computing 6T-SRAM for 
Accurate and Precision-Programmable CNN Inference

ARCHON: A 332.7TOPS/W 5b Variation-Tolerant Analog CNN 
Processor Featuring Analog Neuronal Computation Unit and Analog 
Memory

IMPACT: A 1-to-4b 813-TOPS/W 22-nm FD-SOI Compute-in-Memory 
CNN Accelerator Featuring a 4.2-POPS/W 146-TOPS/mm2 CIM-
SRAM With Multi-Bit Analog Batch-Normalization
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https://ieeexplore.ieee.org/document/8480105
https://ieeexplore.ieee.org/document/8480105
https://ieeexplore.ieee.org/document/9441013
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Thanks!
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