
ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 1

Oversampling and Sigma-Delta ADCs
Carsten Wulff, carsten@wulff.no

Keywords: Quantization, OSR, NEG FB, STF, NTF, SAR, First
Order, SC SD, CT SD, INCR, FOM

I. ADC STATE-OF-THE-ART

The performance of an analog-to-digital converter is determined
by the effective number of bits (ENOB), the power consump-
tion, and the maximum bandwidth. The effective number of bits
contain information on the linearity of the ADC. The power
consumption shows how efficient the ADC is. The maximum
bandwidth limits what signals we can sample and reconstruct
in digital domain.

Many years ago, Robert Walden did a study of ADCs, one of
the plot’s is shown below.

1999, R. Walden: Analog-to-digital converter survey and
analysis

There are obvious trends, the faster an ADC is, the less precise
the ADC is (lower SNDR). There are also fundamental limits,
Heisenberg tells us that a 20-bit 10 GS/s ADC is impossible,
according to Walden.

The uncertainty principle states that the precision we can
determine position and the momentum of a particle is

σxσp ≥ ℏ
2

. There is a similar relation of energy and time, given by

∆E∆t >
h

2π

where ∆E is the difference in energy, and ∆t is the difference
in time.

You should take these limits with a grain of salt. The
plot assumes 50 Ohm and 1 V full-scale. As a result, the
“Heisenberg” line that appears to be unbreakable certainly is
breakable. Just change the voltage to 100 V, and the number
of bits can be much higher. Always check the assumptions.

A more recent survey of ADCs comes from Boris Murmann.
He still maintains a list of the best ADCs from ISSCC and
VLSI Symposium.

B. Murmann, ADC Performance Survey 1997-2023

A common figure of merit for low-to-medium resolution ADCs
is the Walden figure of merit, defined as

FOMW =
P

2Bfs

Below 10 fJ/conv.step is good.

Below 1 fJ/conv.step is extreme.

In the plot below you can see the ISSCC and VLSI ADCs.

2.E-01

2.E+00

2.E+01

2.E+02

2.E+03

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

FO
M
W
,h
f
[fJ
/c
on
v-
st
ep
]

fsnyq [Hz]

ISSCC 2021

VLSI 2021

ISSCC 1997-2020

VLSI 1997-2020

Envelope

A. What makes a state-of-the-art ADC

People from NTNU have made some of the worlds best ADCs

If you ever want to make an ADC, and you want to publish
the measurements, then you must be better than most. A good
algorithm for state-of-the-art ADC design is to first pick a
sample rate with low number of data (blank spaces in the plot
above), then read the papers in the vicinity of the blank space
to understand the application, then set a target FOM which is
best in world, then try and find a ADC architecture that can
achieve that FOM.

That’s pretty much the algorithm I, and others, have followed
to make state-of-the-art ADCs. A few of the NTNU ADCs are:

[1] A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC in
28-nm FDSOI for Bluetooth Low Energy Receivers

[2] A 68 dB SNDR Compiled Noise-Shaping SAR ADC With
On-Chip CDAC Calibration

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=761034
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=761034
https://github.com/bmurmann/ADC-survey
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/9056925
https://ieeexplore.ieee.org/document/9056925

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 2

In order to publish, there must be something new. Preferably
a new circuit. Below is the circuit from [1]. It’s a standard
successive-approximation register (SAR) analog-to-digital con-
verter.

The differential input signal is sampled on a capacitor array
where the bottom plate is connected to either VSS or VREF.
Once the voltage is sampled, the comparator will decide
whether the differential voltage is larger, or smaller than 0.
Depending on the decision, the MSB capacitors (left-most)
in figure will switch the bottom plate in order to effectively
subtract a voltage equivalent to half the VREF voltage.

The comparator makes another decision, and 1/4’th the VREF
voltage is subtracted or added. Then 1/8’th and so on imple-
menting a binary search to find the input voltage.

The “bit-cycling” (binary-search) loop is self-timed, as such,
when the comparator has made a decision, the next cycle starts.

In (b) we can see the enable flip-flop for the next stage. The
CK bar is the sample clock, as such, A is high during sampling.
The output of the comparator (P and N) is low.

As soon as the comparator makes a decision, P or N goes high,
A will be pulled low, if EI is enabled.

In (c) we can see that the bottom plate of the capacitors DP0,
DP1, DN0, and DN1, are controlled by P and N.

In (d) we can see that the bottom plate of the capacitors also
used to set the comparator clock low again (CO), resetting the
comparator, and pulling P and N low, which in (b) enables the
next SAR logic state.

How fast the DXX settle depend on the size of the capacitors,
as such, the comparator clock will be slow for the MSB, and
very fast for the LSB. This was my main circuit contribution
in the paper. I think it’s quite clever, because both the VDD
and the capacitor corner will change the settling time. It’s
important that the capacitor values fully settle before the next
comparator decision, and as a result of the circuit in (c,d) the
delay is automatically adjusted.

For further details see the paper.

(a)

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D8

DP1 P N

LOGIC[8]

28 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D7

DP1 P N

LOGIC[7]

27 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D6

DP1 P N

LOGIC[6]

26 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D5

DP1 P N

LOGIC[5]

25 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D4

DP1 P N

LOGIC[4]

24 · CUNIT

EI EO

CI CO

DP1 DN0

CK D3

DP1 P N

LOGIC[3]

23 · CUNIT

EI EO

CI CO

DP1 DN0

CK D2

DP1 P N

LOGIC[2]

22 · CUNIT

EI EO

CI CO

DP1 DN0

CK D1

DP1 P N

LOGIC[1]

21 · CUNIT

EI EO

CI CO

DP1 DN0

CK D0

DP1 P N

LOGIC[0]

20 · CUNIT

+
P

N
−

CK

VP

VN
Bootstrapped

NMOS switches

CK

CK

CK CMP

X1

X2

(b)

MN1 MN2

MN0

MP0

VDD

MN3

EO

MP1

MP2

MP3

VDD

A

P N

EI P

N

CK

(c)

MN4

MN5

MN6

MP4

VDD

P

EI

CK

DP0 DN0

VREF

MN7

MN8

MN9

MP5

VDD

N

EI

CK

DN1 DP1

VREF

(d)

MN10

B

MP6

VDD

MP7

VDD

CK
CI CO

For state-of-the-art ADC papers it’s not sufficient with the idea,
and simulation. There must be proof that it actually works.
No-one will really believe that the ADC works until there is
measurements of an actual taped out IC.

Below you can see the layout of the IC I made for the paper.
Notice that there are 9 ADCs. I had many ideas that I wanted
to try out, and I was not sure what would actually be state of
the art. As a result, I taped out multiple ADCS.

The two ADCs that I ended up using in the paper is shown
below. The one on the left was made with 180 nm IO transistors,
while the one on the right was made with core-transistors.
Notice that the layout of the two is quite similar.

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 3

(b)(a)

39µm

40µm

8
0
µ
m1

0
6
µ
m CDAC

Logic

Comparator

Switch

Once taped out, and many months of waiting, a few months
of measurement in the lab, I had some results that would be
good enough to qualify for the best conference, and luckily
the best journal.

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

−80

−60

−40

−20

0

Amplitude = -0.42 dBFS, ENOB = 7.82 b
SNDR = 48.84 dB, SFDR = 63.11 dBc
Samples = 16384
VDD = 0.69 V, IDD = 23 µA
FoM = 3.51 fJ/conv.step

Frequency [MHz]

M
ag

ni
tu

de
[d

B
FS

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−80

−60

−40

−20

0

Amplitude = -0.60 dBFS, ENOB = 7.42 b
SNDR = 46.43 dB, SFDR = 61.72 dBc
Samples = 16384
VDD = 0.47 V, IDD = 2 µA
FoM = 2.73 fJ/conv.step

Frequency [MHz]

M
ag

ni
tu

de
[d

B
FS

]

(c) (d)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
6.5

7

7.5

8

8.5

VDD [V]

Pe
ak

E
N

O
B

@
fs

/2
[b

it]

80 kS/s
2 MS/s
20 MS/s
80 MS/s

0 1 2 3 4 5 6 7 8 9 10
40

50

60

70

Input frequency [MHz]

M
ag

ni
tu

de
[d

B
]

SNDR [dB]
SFDR [dBc]

Comparing my ADCs to others, we can see that the FOM is
similar to others. Based on the FOM it might not be clear why
the paper was considered state-of-the-art.

The circuit technique mentioned above would not have been
enough to qualify. The big thing was the “Compiled” line.
Compared to the other “Compiled” mine was 300 times better,
and on par with other state-of-the-art.

Weaver [5] Harpe [9] Patil [10] Liu [11] This work

Technology (nm) 90 90 28 FDSOI 28 28 FDSOI
Fsample (MS/s) 21 2 No sampling 100 2 20
Core area (mm2) 0.18 0.047 0.0032 0.0047 0.00312

SNDR (dB) 34.61 57.79 40 64.43 46.43 48.84
SFDR (dBc) 40.81 72.33 30 75.42 61.72 63.11
ENOB (bits) 5.45 6.7 - 9.4 6.35 10.41 7.42 7.82

Supply (V) 0.7 0.7 0.65 0.9 0.47 0.69
Pwr (µW) 1110 1.64 -3.56 24 350 0.94 15.87

Compiled Yes No No No Yes
FoM (fJ/c.step) 838 2.8 - 6.6 3.7 2.6 2.7 3.5

The big thing was how I made the ADC. I started with a
definition of a transistor, as shown below

G

S

B

D

Vertical Grid

Horizontal Grid

COOD PO M1

And then wrote a compiler (in Perl, later C++ ciccreator)
to compile a object definition file, a SPICE netlist and a
technology rule file into the full ADC layout.

In (a) you can see one of the cells in the SAR logic, (b) is the
spice file, and (c) is the definition of the routing. The numbers
to the right in the routing creates the paths shown in (d).

(d)

MN0

MN1

MN2

MN3

MP0

MP1

MP2

MP3

N

P

CKEI

EO

V DDV SS

1
2

3

1

4

5

6

7

8

(a) (c)

{ "name": "SAREMX1_CV",
"class" : "Layout::LayoutDigitalCell",
"addConnectivityRoutes": [

["M1","N1|N2","||",""], 1
["M1","N3","-|",""], 2
["M1","EO","--|-","onTopR"] 3

],
"addDirectedRoutes" : [

["PO","P","MN1:G-MP1:G"], 4
["PO","N","MN2:G-MP2:G"], 5
["PO","A","MN3:G-MP3:G"], 6
["M1","A","MN0:S-MP0:S"], 7
["M1","A","MP0:S-|--MP3:G"] 8
]

}
}

(b)

.SUBCKT SAREMX1_CV P N EI EO CK_N AVDD AVSS
MN0 N3 EI A AVSS NCHDL
MN1 N3 P AVSS AVSS NCHDL
MN2 AVSS N N3 AVSS NCHDL
MN3 EO A AVSS AVSS NCHDL
MP0 AVDD CK_N A AVSS PCHDL
MP1 N2 P EO AVSS PCHDL
MP2 N1 N N2 AVSS PCHDL
MP3 AVDD A N1 AVSS PCHDL

.ENDS

COOD PO M1 M2 M3 M4

The implementation is the SPICE netlist, and the object
definition file (JSON) and the rule file.

What I really like is the fact that the compilation could generate
GDSII or SKILL, or these days, Xschem schematics and Magic
layout.

Architecture

Hand Analysis

Schematic

Testbench

Simulation

Implementation

SPICE netlist

Object definition file

Technology file

Compilation

Compiler

GDSII SKILL

Loading
SKILL into

Cadence
Virtuoso
(minutes)

Initial
visual

inspection
(seconds)

Physical
verification

Simulation

Testbench

Parasitic netlist

LVS DRC
Visual

inspection

Compiled schematics and layout (OpenAccess database)

Initial netlist

C
om

pi
le

d
ce

lls

The cool thing with a compiled ADC is that it’s easy to port
between technologies. Since the original ADC, I’ve ported the
ADC to multiple closed PDKs (22 nm FDSOI, 22 nm, 28 nm,

https://github.com/wulffern/ciccreator
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.spi
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.json
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.json
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/sky130.tech

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 4

55 nm, 65 nm and 130nm). In the summer of 2022 I made an
open source port to skywater 130nm.

SUN_SAR9B_SKY130NM

One of my Ph.D students built on-top on my work, and made
a noise-shaped compiled SAR ADC, shown below, more on
that later.

194

� �
�

�

� �

6$5 DFW��
PHDQV

FRQQHFWLRQ
WR QHJDWLYH
EUDQFK�

0 BW=5M 10M 15M 20M
-60

-40

-20

0

20

Frequency [Hz]

M
ag

ni
tu

e
[d

B
]

|NTF|0→BW -27.8 dB

NTF(z) =
1 + (g − 2)z−1 + z−2

1 + (g + a1 − 2) + (a2 − a1 + 1)z−2

Fig. 2. Loop filter implementation and noise transfer function.

first integrator [5]. This is a noise-effective solution because
the residue is neither attenuated, buffered or resampled.

III. MEASUREMENT RESULTS

The prototype is implemented in 28 nm FDSOI, and Fig. 3
shows the die photo, layout and dimensions. The entire region
marked ”ADC core” is compiled from a netlist, rule file, and
object definition file using the layout compiler presented in [7].
Fig. 4a shows a measured power spectrum with on-chip code
correction. Because the correction module cannot be disabled,
uncorrected and offline corrected spectrums from another ADC
instance are shown in Fig. 4b.2 On eight measured chips, mean
uncalibrated/calibrated SNDR and SFDR are 65.6 dB/67.3 dB,
and 74.4 dB/83.1 dB, respectively. The ADC is compared
to prior NS-SARs in Table I. To the best of the authors’
knowledge, the Walden FOM of 5.2 fJ/conv.step is currently
the lowest reported for a noise-shaping SAR.

REFERENCES

[1] J. Fredenburg and M. Flynn, “A 90-MS/s 11-MHz-Bandwidth 62-dB
SNDR Noise-Shaping SAR ADC,” IEEE Journal of Solid-State Circuits,
vol. 47, no. 12, pp. 2898–2904, Dec. 2012.

[2] C. Liu and M. Huang, “28.1 A 0.46mW 5MHz-BW 79.7dB-SNDR noise-
shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter,” in 2017
IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2017,
pp. 466–467.

[3] S. Li, B. Qiao, M. Gandara, D. Z. Pan, and N. Sun, “A 13-ENOB Second-
Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using
the Error-Feedback Structure,” IEEE Journal of Solid-State Circuits,
vol. 53, no. 12, pp. 3484–3496, Dec. 2018.

[4] Y. Lin, C. Lin, S. Tsou, C. Tsai, and C. Lu, “20.2 A 40MHz-BW
320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue
Summation in 14nm FinFET,” in 2019 IEEE International Solid- State
Circuits Conference - (ISSCC), Feb. 2019, pp. 330–332.

2The ADC instance only contains the ADC core, and is marked in Fig. 3.
Accumulation/calculation of capacitor measurements and code correction are
performed on a PC using the same algorithms as in the correction module.

&'$&

6$5 ORJLF

&DO� ORJLF &.

/RRS ÀOWHU

27$ �

27$ �

&0
3

%66:

��� ƫP

��
�
ƫP

$'& FRUH

3RZHU VZ�
2XWSXW UHJ�

&RGH
FRUUHFWLRQ

$'& LQVWDQFH ZLWK
FRGH FRUUHFWLRQ�

,QVWDQFH ZLWK
$'& FRUH RQO\�

Fig. 3. Die photo and ADC layout.

10k 100k 1M 5M 20M
-100

-75

-50

-25

0
SNDR 68.2 dB
SNR 68.3 dB

SFDR 84.6 dB

Frequency [Hz]

Po
w

er
[d

B
FS

] Cal.

Corrected on-chip:
SNDR 68.2 dB
SNR 68.3 dB

SFDR 84.6 dB

(a)

10k 100k 1M 5M 20M
-100

-75

-50

-25

0

Frequency [Hz]

Po
w

er
[d

B
FS

] Uncal.
Cal.

Corrected offline:
Uncal. Cal.

SNDR 64.3 dB 67.7 dB
SFDR 69.6 dB 83.9 dB

(b)

Fig. 4. Measured results and power spectrums: (a): On-chip correction, (b):
offline correction. The power spectra have 212 bins from DC to fs/2.

TABLE I
COMPARISON TO PRIOR STATE-OF-THE-ART NOISE-SHAPING SARS.

[1] [2] [3] [4] This work

CDAC correction None DWA Off-chip cal None On-chip cal
NTF type 1z, 2p 1z, 2p 2z opt 1z, 1p 2z opt, 2p
OSR 4 13.2 8 4 4

Technology (nm) 65 28 40 14 28
Area (mm2) 0.03 0.0049 0.024 0.0021 0.0234
Supply (V) 1.2 1 1.1 0.9 0.8
Bandwidth (MHz) 11 5 0.625 40 5

SNDR (dB) 62.0 79.7 79.0 66.6 68.2
SFDR (dB) 72.5 92.6 89.0 77.4 84.6
Power (µW) 806 .0 460.0 84.0 1250.0 108.7

FOMw (fJ/c.step) 35.8 5.8 9.2 8.9 5.2
FOMs (dB) 163.3 180.1 177.7 171.7 174.8

FOMw = P/(2(SNDR−1.76)/6.02 · 2 BW), FOMs = SNDR + 10 log (BW/P)

[5] K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto, and K. Sushihara, “A
97.99 db sndr, 2 khz bw, 37.1 µw noise-shaping sar adc with dynamic
element matching and modulation dither effect,” in 2016 IEEE Symposium
on VLSI Circuits (VLSI-Circuits), Jun. 2016, pp. 1–2.

[6] H. S. Lee, D. A. Hodges, and P. R. Gray, “A self-calibrating 15 bit CMOS
A/D converter,” IEEE Journal of Solid-State Circuits, vol. 19, no. 6, pp.
813–819, Dec. 1984.

[7] C. Wulff and T. Ytterdal, “A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step
SAR ADC in 28-nm FDSOI for Bluetooth Low Energy Receivers,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 7, pp. 1915–1926, Jul. 2017.

IEEE Asian Solid-State Circuits Conference
November 4 – 6, 2019

The Parisian Macao, Macao SAR, China

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on January 07,2022 at 10:13:28 UTC from IEEE Xplore. Restrictions apply.

B. High resolution FOM

For high-resolution ADCs, it’s more common to use the
Schreier figure of merit, which can also be found in

B. Murmann, ADC Performance Survey 1997-2022 (ISSCC &
VLSI Symposium)

The Walden figure of merit assumes that thermal noise does
not constrain the power consumption of the ADC, which is
usually true for low-to-medium resolution ADCs. To keep the
Walden FOM you can double the power for a one-bit increase
in ENOB. If the ADC is limited by thermal noise, however,

then you must quadruple the capacitance (reduce kT/C noise
power) for each 1-bit ENOB increase. Accordingly, the power
must also go up four times.

For higher resolution ADC the power consumption is set by
thermal noise, and the Schreier FOM allows for a 4x power
consumption increase for each added bit.

FOMS = SNDR+ 10 log

(
fs/2

P

)

Above 180 dB is extreme

120

130

140

150

160

170

180

190

1.E+02 1.E+04 1.E+06 1.E+08 1.E+10 1.E+12

FO
M
S,
hf
[d
B
]

fsnyq [Hz]

ISSCC 2021

VLSI 2021

ISSCC 1997-2020

VLSI 1997-2020

Envelope

II. QUANTIZATION

Sampling turns continuous time into discrete time. Quantization
turns continuous value into discrete value. Any complete ADC
is always a combination of sampling and quantization.

In our mathematical drawings of quantization we often define
y[n] as the output, the quantized signal, and x[n] as the discrete
time, continuous value input, and we add some “noise”, or
“quantization noise” e[n], where x[n] = y[n]− e[n].

X D a y

een
XED o gEn

It

É

x d a y

É

I 1 i t t t t t t t
EBI

TIFFTeen

ElseI

Maybe you’ve even heard the phrase “Quantization noise is
white” or “Quantization noise is a random Gaussian process”?

I’m here to tell you that you’ve been lied to. Quantization noise
is not white, nor is it a Gaussian process. Those that have
lied to you may say “yes, sure, but for high number of bits it
can be considered white noise”. I would say that’s similar to

https://github.com/wulffern/sun_sar9b_sky130nm/
https://web.stanford.edu/~murmann/adcsurvey.html
https://web.stanford.edu/~murmann/adcsurvey.html

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 5

saying “when you look at the earth from the moon, the surface
looks pretty smooth without bumps, so let’s say the earth is
smooth with no mountains”.

I would claim that it’s an unnecessary simplification. It’s
obvious to most that the earth would appear smooth from
really far away, but they would not be surprised by Mount
Everest, since they know it’s not smooth. An Alien that has
been told that the earth is smooth, would be surprised to see
Mount Everest.

But if Quantization noise is not white, what is it?

The figure below shows the input signal x and the quantized
signal y.

X D a y

een
XED o gEn

It

É

x d a y

É

I 1 i t t t t t t t
EBI

TIFFTeen

ElseI

To see the quantization noise, first take a look at the sample and
held version of x in green in the figure below. The difference
between the green (x at time n) and the red (y) would be our
quantization noise e

The quantization noise is contained between + 1
2 Least Signifi-

cant Bit (LSB) and − 1
2 LSB.

This noise does not look random to me, but I can’t see what
it is, and I’m pretty sure I would not be able to work it out
either.

X D a y

een
XED o gEn

It

É

x d a y

É

I 1 i t t t t t t t
EBI

TIFFTeen

ElseI

Luckily, there are people in this world that love mathematics,
and that can delve into the details and figure out what e[n]
is. A guy called Blachman wrote a paper back in 1985 on
quantization noise.

See The intermodulation and distortion due to quantization of
sinusoids for details

In short, quantization noise is defined as

en(t) =

∞∑

p=1

Ap sin pωt

where p is the harmonic index, and

Ap =

{
δp1A+

∑∞
m=1

2
mπJp(2mπA) , p = odd

0 , p = even

δp1

{
1 , p = 1

0 , p ̸= 1

and
Jp(x)

is a Bessel function of the first kind, A is the amplitude of the
input signal.

If we approximate the amplitude of the input signal as

A =
2n − 1

2
≈ 2n−1

where n is the number of bits, we can rewrite as

en(t) =

∞∑

p=1

Ap sin pωt

https://ieeexplore.ieee.org/document/1164729
https://ieeexplore.ieee.org/document/1164729

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 6

Ap = δp12
n−1 +

∞∑

m=1

2

mπ
Jp(2mπ2n−1), p = odd

Obvious, right?

I must admit, it’s not obvious to me. But I do understand the
implications. The quantization noise is an infinite sum of input
signal odd harmonics, where the amplitude of the harmonics
is determined by a sum of a Bessel function.

A Bessel function of the first kind looks like this

So I would expect the amplitude to show signs of oscillatory
behavior for the harmonics. That’s the important thing to
remember. The quantization noise is odd harmonics of the
input signal

The mean value is zero

en(t) = 0

and variance (mean square, since mean is zero), or noise power,
can be approximated as

en(t)2 =
∆2

12

A. Signal to Quantization noise ratio

Assume we wanted to figure out the resolution, or effective
number of bits for an ADC limited by quantization noise. A
power ratio, like signal-to-quantization noise ratio (SQNR) is
one way to represent resolution.

Take the signal power, and divide by the noise power

SQNR = 10 log

(
A2/2

∆2/12

)
= 10 log

(
6A2

∆2

)

∆ =
2A

2B

SQNR = 10 log

(
6A2

4A2/2B

)
= 20B log 2 + 10 log 6/4

SQNR ≈ 6.02B + 1.76

You may have seen the last equation before, now you know
where it comes from.

B. Understanding quantization

Below I’ve tried to visualize the quantization process q.py.

The left most plot is a sinusoid signal and random Gaussian
noise. The signal is not a continuous time signal, since that’s
not possible on a digital computer, but it’s an approximation.

The plots are FFTs of a sinusoidal signal combined with
noise. These are complex FFTs, so they show both negative
and positive frequencies. The x-axis is the FFT bin (not the
frequency). Notice that there are two spikes, which should not
be surprising, since a sinusoidal signal is a combination of two
frequencies.

sin(x) =
eix − e−ix

2i

The second plot from the left is after sampling, notice that the
noise level increases. The increase in the noise level should
be due to noise folding, and reduced number of points in the
FFT, but I have not confirmed (maybe you could confirm?).

The right plot is after quantization, where I’ve used the function
below.
def adc(x,bits):

levels = 2**bits
y = np.round(x*levels)/levels
return y

I really need you to internalize a few things from the right
most plot. Really think through what I’m about to say.

Can you see how the noise (what is not the two spikes) is not
white? White noise would be flat in the frequency domain, but
the noise is not flat.

4000 2000 0 2000 4000
Continuous time, continuous value

160

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Do

m
ai

n

1000 500 0 500 1000
Discrete time, continuous value

160

140

120

100

80

60

40

20

0

1000 500 0 500 1000
Discrete time, Discrete value

160

140

120

100

80

60

40

20

0
1-bit
f =127

https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind
https://github.com/wulffern/aic2023/blob/main/ex/q.py

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 7

If you run the python script you can zoom in and check the
highest spikes. The fundamental is at 127, so odd harmonics
would be 381, 635, 889, and from the function of the
quantization noise we would expect those to be the highest
harmonics (at least when we look at the Bessel function),
however, we can see that it’s close, but that bin 396 is the
highest. Is the math’s wrong?

No, the math is correct. Never bet against mathematics.
If you change the python script to reduce the frequency,
fdivide=2**9, and increase number of points, N=2**16,
as in the plot below, you’ll see it’s the 11’th harmonic that is
highest.

All the other spikes are the odd harmonics above the sample
rate that fold. The infinite sum of harmonics will fold, some
in-phase, some out of phase, depending on the sign of the
Bessel function.

From the function for the amplitude of the quantization noise
for harmonic indices higher than p = 1

Ap =

∞∑

m=1

2

mπ
Jp(2mπ2n−1), p=odd

we can see that the input to the Bessel function increases
faster for a higher number of bits n. As such, from the Bessel
function figure above, I would expect that the sum of the Bessel
function is a lower value. Accordingly, the quantization noise
reduces at higher number of bits.

A consequence is that the quantization noise becomes more
and more uniform, as can be seen from the plot of a 10-bit
quantizer below. That’s why people say “Quantization noise is
white”, because for a high number of bits, it looks white in
the FFT.

4000 2000 0 2000 4000
Continuous time, continuous value

160

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Do

m
ai

n

1000 500 0 500 1000
Discrete time, continuous value

160

140

120

100

80

60

40

20

0

1000 500 0 500 1000
Discrete time, Discrete value

160

140

120

100

80

60

40

20

0
10-bit
f =127

C. Why you should care about quantization noise

So why should you care whether the quantization noise looks
white, or actually is white? A class of ADCs called oversam-
pling and sigma-delta modulators rely on the assumption that
quantization noise is white. In other words, the cross-correlation
between noise components at different time points is zero. As
such the noise power sums as a sum of variance, and we can
increase the signal-to-noise ratio.

We know that assumption to be wrong though, quantization
noise is not white. For noise components at harmonic
frequencies the cross-correlation will be high. As such, when
we design oversampling or sigma-delta based ADC we will
include some form of dithering (making quantization noise
whiter). For example, before the actual quantizer we inject
noise, or we make sure that the thermal noise is high enough
to dither the quantizer.

Everybody that thinks that quantization noise is white will
design non-functioning (or sub-optimal) oversampling and
sigma-delta ADCs. That’s why you should care about the
details around quantization noise.

III. OVERSAMPLING

Assume a signal x[n] = a[n] + b[n] where a is a sampled
sinusoid and b is a random process where cross-correlation is
zero for any time except for n = 0. Assume that we sum two
(or more) equally spaced signal components, for example

y = x[n] + x[n+ 1]

What would the signal to noise ratio be for y?

A. Noise power

Our mathematician friends have looked at this, and as long
the noise signal b is random then the noise power for the
oversampled signal bosr = b[n] + b[n+ 1] will be

b2osr = OSR× b2

where OSR is the oversampling ratio. If we sum two time
points the OSR = 2, if we sum 4 time points the OSR = 4
and so on.

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 8

For fun, let’s go through the mathematics

Define b1 = b[n] and b2 = b[n + 1] and compute the noise
power

(b1 + b2)2 = b21 + 2b1b2 + b22

Let’s replace the mean with the actual function

1

N

N∑

n=0

(
b21 + 2b1b2 + b22

)

which can be split up into

1

N

N∑

n=0

b21 +
1

N

N∑

n=0

2b1b2 +
1

N

N∑

n=0

b22

we’ve defined the cross-correlation to be zero, as such

(b1 + b2)2 =
1

N

N∑

n=0

b21 +
1

N

N∑

n=0

b22 = b21 + b22

but the noise power of each of the b’s must be the same as b,
so

(b1 + b2)2 = 2b2

B. Signal power

For the signal a we need to calculate the increase in signal
power as OSR increases.

I like to think about it like this. a is low frequency, as such,
samples n and n + 1 is pretty much the same value. If the
sinusoid has an amplitude of 1, then the amplitude would be 2
if we sum two samples. As such, the amplitude must increase
with the OSR.

The signal power of a sinusoid is A2/2, accordingly, the signal
power of an oversampled signal must be (OSR×A)2/2.

C. Signal to Noise Ratio

Take the signal power to the noise power

(OSR×A)2/2

OSR× b2
= OSR× A2/2

b2

We can see that the signal to noise ratio increases with increased
oversampling ratio, as long as the cross-correlation of the
noise is zero

D. Signal to Quantization Noise Ratio

The in-band quantization noise for a oversampling ratio (OSR)

en(t)2 =
∆2

12OSR

And the improvement in SQNR can be calculated as

SQNR = 10 log

(
6A2

∆2/OSR

)
= 10 log

(
6A2

∆2

)
+10 log(OSR)

SQNR ≈ 6.02B + 1.76 + 10 log(OSR)

For an OSR of 2 and 4 the SQNR improves by

10 log(2) ≈ 3dB

and for OSR=4

10 log(4) ≈ 6dB

which is roughly equivalent to a 0.5-bit per doubling of OSR

E. Python oversample

There are probably more elegant (and faster) ways of imple-
menting oversampling in python, but I like to write the dumbest
code I can, simply because dumb code is easy to understand.

Below you can see an example of oversampling. The
oversample function takes in a vector and the OSR. For
each index it sums OSR future values.

def oversample(x,OSR):
N = len(x)
y = np.zeros(N)

for n in range(0,N):
for k in range(0,OSR):

m = n+k
if (m < N):

y[n] += x[m]
return y

Below we can see the plot for OSR=2, the right most plot is
the oversampled version.

The noise has all frequencies, and it’s the high frequency
components that start to cancel each other. An average filter
(sometimes called a sinc filter due to the shape in the frequency
domain) will have zeros at ±fs/2 where the noise power tends
towards zero.

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 9

0 2000 4000 6000 8000
Continuous time, continuous value

160

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Do

m
ai

n

0 500 1000 1500 2000
Discrete time, continuous value

160

140

120

100

80

60

40

20

0

0 500 1000 1500 2000
Discrete time, Discrete value

160

140

120

100

80

60

40

20

0

10-bit

0 500 1000 1500 2000
Oversampled

160

140

120

100

80

60

40

20

0

OSR=2

The low frequency components will add, and we can notice
how the noise power increases close to the zero frequency
(middle of the x-axis).

For an OSR of 4 we can notice how the noise floor has 4
zero’s.

0 2000 4000 6000 8000
Continuous time, continuous value

160

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Do

m
ai

n

0 500 1000 1500 2000
Discrete time, continuous value

160

140

120

100

80

60

40

20

0

0 500 1000 1500 2000
Discrete time, Discrete value

160

140

120

100

80

60

40

20

0

10-bit

0 500 1000 1500 2000
Oversampled

160

140

120

100

80

60

40

20

0

OSR=4

The code for the plots is osr.py. I would encourage you to play a
bit with the code, and make sure you understand oversampling.

IV. NOISE SHAPING

Look at the OSR=4 plot above. The OSR=4 does decrease
the noise compared to the discrete time discrete value plot,
however, the noise level of the discrete time continuous value
is much lower.

What if we could do something, add some circuitry, before the
quantization such that the quantization noise was reduced?

That’s what noise shaping is all about. Adding circuits such
that we can “shape” the quantization noise. We can’t make
the quantization noise disappear, or indeed reduce the total
noise power of the quantization noise, but we can reduce the
quantization noise power for a certain frequency band.

But what circuitry can we add?

A. The magic of feedback

A generalized feedback system is shown below, it could be a
regulator, a unity-gain buffer, or something else.

The output Vo is subtracted from the input Vi, and the error
Vx is shaped by a filter H(s).

If we make H(s) infinite, then Vo = Vi. If you’ve never seen
such a circuit, you might ask “Why would we do this? Could
we not just use Vi directly?”. There are many reasons for using
a circuit like this, let me explain one instance.

Imagine we have a VDD of 1.8 V, and we want to make a 0.9
V voltage for a CPU. The CPU can consume up to 10 mA.
One way to make a divide by two circuit is with two equal
resistors connected between VDD and ground. We don’t want
the resistive divider to consume a large current, so let’s choose
1 MOhm resistors. The current in the resistor divider would
then be about 1 µA. We can’t connect the CPU directly to the
resistor divider, the CPU can draw 10 mA. As such, we need
a copy of the voltage at the mid-point of the resistor divider
that can drive 10 mA.

Do you see now why a circuit like the one below is useful?
If not, you should really come talk to me so I can help you
understand.

VI VXHcs V0

VI Vo Ux Vo Vx
HCS

VI YE
Vo E

V Hes ADC DACVI

Do

B. Sigma-delta principle

Let’s modify the feedback circuit into the one below. I’ve added
an ADC and a DAC to the feedback loop, and the Do is now
the output we’re interested in. The equation for the loop would
be

Do = adc [H(s) (dac(Do)− Vi)]

But how can we now calculate the transfer function Do

Vi
?

Both adc and dac could be non-linear functions, so we can’t
disentangle the equation. Let’s make assumptions.

VI VXHcs V0

VI Vo Ux Vo Vx
HCS

VI YE
Vo E

V Hes ADC DACVI

Do

https://github.com/wulffern/aic2023/blob/main/ex/osr.py

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 10

1) The DAC assumption: Assumption 1: the dac is linear,
such that Vo = dac(Do) = ADo + B, where A and B are
scalar values.

The DAC must be linear, otherwise our noise-shaping ADC
will not work.

One way to force linearity is to use a 1-bit DAC, which has
only two points, so should be linear. For example

Vo = A×Do

, where Do ∈ (0, 1). Even a 1-bit DAC could be non-linear if
A is time-variant, so Vo[n] = A(t)×Do[n], this could happen
if the reference voltage for the DAC changed with time.

I’ve made a couple noise shaping ADCs, and in the first one
I made I screwed up the DAC. It turned out that the DAC
current had a signal dependent component which lead to a
non-linear behavior.
2) The ADC assumption: Assumption 2: the adc can be
modeled as a linear function Do = adc(x) = x+ e, where e
is white noise source

We’ve talked about this, the e is not white, especially for low-
bit ADCs, so we usually have to add noise. Sometimes it’s
sufficient with thermal noise, but often it’s necessary to add
a random, or pseudo-random noise source at the input of the
ADC.
3) The modified equation: With the assumptions we can change
the equation into

Do = adc [H(s) (Vi − dac(Do))] = H(s) (Vi −ADo) + e

In noise-shaping texts it’s common to write the above equation
as

y = H(s)(u− y) + e

or in the sample domain

y[n] = e[n] + h ∗ (u[n]− y[n])

which could be drawn in a signal flow graph as below.

Isis Put

InB Pn

InB Paz Payaxhxxx.MX
lPSD2 tf tf

I oHa
to yen

YET een HA UET YET
YG ECz HE UG 4 z

ECHO
y HU HY

STF t

in the Z-domain the equation would turn into

Y (z) = E(z) +H(z) [U(z)− Y (z)]

The whole point of this exercise was to somehow shape the
quantization noise, and we’re almost at the point, but to show
how it works we need to look at the transfer function for the
signal U and for the noise E.

C. Signal transfer function

Assume U and E are uncorrelated, and E is zero

Y = HU −HY

STF =
Y

U
=

H

1 +H
=

1

1 + 1
H

Imagine what will happen if H is infinite. Then the signal
transfer function (STF) is 1, and the output Y is equal to our
input U . That’s exactly what we wanted from the feedback
circuit.

D. Noise transfer function

Assume U is zero

Y = E +HY → NTF =
1

1 +H

Imagine again what happens when H is infinite. In this case
the noise-transfer function becomes zero. In other words, there
is no added noise.

E. Combined transfer function

In the combined transfer function below, if we make H(z)
infinite, then Y = U and there is no added quantization
noise. I don’t know how to make H(z) infinite everywhere,
so we have to choose at what frequencies it’s “infinite”.

Y (z) = STF (z)U(z) +NTF (z)E(z)

There are a large set of different H(z) and I’m sure engineers
will invent new ones. We usually classify the filters based on
the number of zeros in the NTF, for example, first-order (one
zero), second order (two zeros) etc. There are books written
about sigma-delta modulators, and I would encourage you to
read those to get a deeper understanding. I would start with
Delta-Sigma Data Converters: Theory, Design, and Simulation.

https://ieeexplore.ieee.org/book/5273726

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 11

V. FIRST-ORDER NOISE-SHAPING

We want an infinite H(z). One way to get an infinite function
is an accumulator, for example

y[n+ 1] = x[n] + y[n]

or in the Z-domain

zY = X + Y → Y (z − 1) = X

which has the transfer function

H(z) =
1

z − 1

The signal transfer function is

STF =
1/(z − 1)

1 + 1/(z − 1)
=

1

z
= z−1

and the noise transfer function

NFT =
1

1 + 1/(z − 1)
=

z − 1

z
= 1− z−1

In order calculate the Signal to Quantization Noise Ratio we
need to have an expression for how the NTF above filters the
quantization noise.

In the book they replace the z with the continuous time variable

z = esT
s=jω→ ejωT = ej2πf/fs

inserted into the NTF we get the function below.

NTF (f) = 1− e−j2πf/fs

=
ejπf/fs − e−jπf/fs

2j
× 2j × e−jπf/fs

= sin
πf

fs
× 2j × e−jπf/fs

The arithmetic magic is really to extract the 2j×e−jπf/fs from
the first expression such that the initial part can be translated
into a sinusoid.

When we take the absolute value to figure out how the NTF
changes with frequency the complex parts disappears (equal
to 1)

|NFT (f)| =
∣∣∣∣2 sin

(
πf

fs

)∣∣∣∣

The signal power for a sinusoid is

Ps = A2/2

The in-band noise power for the shaped quantization noise is

Pn =

∫ f0

−f0

∆2

12

1

fs

[
2 sin

(
πf

fs

)]2
dt

and with a bunch of tedious maths, we can get to the conclusion

...

SQNR = 6.02B + 1.76− 5.17 + 30 log(OSR)

If we compare to pure oversampling, where the SQNR
improves by 10 log(OSR), a first order sigma-delta improves
by 30 log(OSR). That’s a significant improvement.

A. SQNR and ENOB

Below is the signal-to-quantization noise ratio’s for Nyquist
up to second order sigma-delta.

SQNRnyquist ≈ 6.02B + 1.76

SQNRoversample ≈ 6.02B + 1.76 + 10 log(OSR)

SQNRΣ∆1 ≈ 6.02B + 1.76− 5.17 + 30 log(OSR)

SQNRΣ∆2 ≈ 6.02B + 1.76− 12.9 + 50 log(OSR)

We could compute an effective number of bits, as shown below.

ENOB = (SQNR− 1.76)/6.02

The table below shows the effective number of bits for
oversampling, and sigma-delta modulators. For a 1-bit quantizer,
pure oversampling does not make sense at all. For first-order
and second-order sigma delta modulators, and a OSR of 1024
we can get high resolution ADCs.

Assume 1-bit quantizer, what would be the maximum ENOB?

OSR Oversampling First-Order Second Order
4 2 3.1 3.9
64 4 9.1 13.9

1024 6 15.1 23.9

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 12

VI. EXAMPLES

A. Python noise-shaping

I want to demystify noise-shaping modulators. I think one way
to do that is to show some code. You can find the code at
sd_1st.py

Below we can see an excerpt. Again pretty stupid code, and
I’m sure it’s possible to make a faster version (for loops in
python are notoriously slow).

For each sample in the input vector u I compute the input to
the quantizer x, which is the sum of the previous input to the
quantizer and the difference between the current input and the
previous output ysd.

The quantizer generates the next ysd and I have the option to
add dither.

u is discrete time, continuous value input
M = len(u)
y_sd = np.zeros(M)
x = np.zeros(M)
for n in range(1,M):

x[n] = x[n-1] + (u[n]-y_sd[n-1])
y_sd[n] = np.round(x[n]*2**bits
+ dither*np.random.randn()/4)/2**bits

The right-most plot is the one with noise-shaping. We can
observe that the noise seems to tend towards zero at zero
frequency, as we would expect. The accumulator above would
have an infinite gain at infinite time (it’s the sum of all previous
values), as such, the NTF goes towards zero at 0 frequency.

If we look at the noise we can also see the non-white
quantization noise, which will degrade our performance. I
hope by now, you’ve grown tired of me harping on the point
that quantization noise is not white

0 1000 2000 3000 4000
Continuous time, continuous value

160

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Do

m
ai

n

0 250 500 750 1000
Discrete time, continuous value

160

140

120

100

80

60

40

20

0

0 250 500 750 1000
Discrete time, Discrete value

160

140

120

100

80

60

40

20

0

1-bit

0 250 500 750 1000
Noise-shaped

160

140

120

100

80

60

40

20

0

dither=0

In the figure below I’ve turned on dither, and we can see how
the noise looks “better”, which I know is not a qualitative
statement, but ask anyone that’s done 1-bit quantizers. It’s
important to have enough random noise.

0 1000 2000 3000 4000
Continuous time, continuous value

160

140

120

100

80

60

40

20

0

Fr
eq

ue
nc

y
Do

m
ai

n

0 250 500 750 1000
Discrete time, continuous value

160

140

120

100

80

60

40

20

0

0 250 500 750 1000
Discrete time, Discrete value

160

140

120

100

80

60

40

20

0

1-bit

0 250 500 750 1000
Noise-shaped

160

140

120

100

80

60

40

20

0

dither=1

In papers it’s common to use a logarithmic x-axis for the
power spectral density, as shown below. In the plot I only show
the positive frequencies of the FFT. From the shape of the
quantization noise we can also see the first order behavior.

10 3 10 2 10 1

Normalized frequency

120

100

80

60

40

20

0

M
ag

ni
tu

de
 [d

B2
0]

B. The wonderful world of SD modulators

1) Open-Loop Sigma-Delta: On my Ph.D I did some work on

Resonators in Open-Loop Sigma-Delta Modulators

which was a pure theoretical work. The idea was to use modulo
integrators (local control of integrator output swing) in front
of large latency multi-bit quantizers to achieve a high SNR.

The plot below shows a fifth order NFT where there are two
complex conjugate zeros, and a zero at zero frequency. With a
higher order filter one can use a lower OSR, and still achieve
high ENOB.

https://github.com/wulffern/aic2023/blob/main/ex/sd_1st.py
https://ieeexplore.ieee.org/document/4783042

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 13

10
−4

10
−3

10
−2

10
−1

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Normalized Frequency, f
s
 = 1

M
a

g
n

it
u

d
e

 [
d

B
]

A=−3dB ENOB=13.8 SNDR=84.9dB M=32768

Output

Bandwidth

2) Noise Shaped SAR: One of my Ph.d students made a

A 68 dB SNDR Compiled Noise-Shaping SAR ADC With
On-Chip CDAC Calibration

In a SAR ADC, once the bit-cycling is complete, the analog
value on the capacitors is the actual quantization error. That
error can be fed to a loop filter, H(z), and amplified in the
next conversion, accordingly a combination of SAR and noise-
shaping.

In the paper the SD modulator was also used to calibrate the
non-linearity in the CDAC, as the MSB capacitor won’t be
exactly N times larger than the smallest capacitor.

The loop filter was a switched cap loop filter, and we can see
the NTF below. The first OTA made use of chopping to reduce
the offset.

3) Control-Bounded ADCs: One of my current Ph.D students
is working an even more advanced type of sigma-delta ADC.
Actually, it’s more a super-set of SD ADCs called control-
bounded ADCs.

Design Considerations for a Low-Power Control-Bounded A/D
Converter

A block diagram of a Leapfrog ADC version of a control-
bounded ADC is shown below.

Here we’re walking into advanced maths territory, but to
simplify, I think it’s correct to say that a control-bounded
ADC seeks to control the local analog state, xn(t) such that no
voltage is saturated. The digital control signals sn(t) are used
to infer the state of the input u(t) using a form of Bayesian
Statistics.

High-Level Architecture

u(t) + �1
s+⇢1

1

<

x1(t)
+ �2

s+⇢2

2

<

x2(t)
+ �3

s+⇢3

3

<

x3(t)
+ �N

s+⇢N

N

<

xN(t)

↵2 ↵3 ↵N

s1(t)

fclk

s2(t)

fclk

s3(t)

fclk

· · ·

sN(t)

fclk

· · ·

Figure 3.1: The general structure of the Leapfrog ADC

by A0i = �i/⇢i.

The Leapfrog ADC di↵ers from the Chain-of-integrators by the addi-
tional feedback paths between neighboring states. The feedback from xi

to xi�1 is achieved through ↵i, feeding a portion of xi back to the input of
integrator (i� 1). Each integrator is stabilized by a local digital control,
which is represented by a clocked comparator in figure 3.1. The output of
comparator i is the control-contribution si(t) which is scaled by a factor
i before entering the integrator input.

3.2 Parametrization

The evolution of the state vector is described by

ẋ(t) = Ax(t) + Bu(t) + �s(t), (3.1)

where

A =

0
BBBBB@

�⇢1 �1↵2

�2 �⇢2 �2↵3

�3 �⇢3
. . .

. �N�1↵N

�N �⇢N

1
CCCCCA

, (3.2)

B =
�
�1 · · · 0

�T
, (3.3)

and

� =

0
B@
1�1

. . .

N�N

1
CA . (3.4)

For this local digital control, the control observation s̃(t) coincides with
the state vector x(t) meaning that the control observation matrix �̃T =

22

Below we can see a power spectral density plot of the ADC,
and we can observe how the quantization noise is shaped. I
think it’s a third order NTF with a zero at zero frequency and
a complex conjugate pole at 8 MHzish.

https://ieeexplore.ieee.org/document/9056925/
https://ieeexplore.ieee.org/document/9056925/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Bayesian_statistics

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 14

Design Considerations

105 106 107

�160

�140

�120

�100

�80

�60

�40

�20

0

Frequency [Hz]

P
S
D

[d
B

]

û(t)
NTF

Figure 5.6: Estimated PSD of û(t) plotted together with corresponding
theoretical NTF. Obtained from an ideal circuit simulation of a 4th order
Leapfrog ADC with LNA driven, passive integrator and floating-gate
voltage summation

58

4) Complex Sigma-Delta: There are cool sigma-delta mod-
ulators with crazy configurations and that may look like an
exercise in “Let’s make something complex”, however, most
of them have a reasonable application. One example is the one
below for radio recievers

A 56 mW Continuous-Time Quadrature Cascaded Sigma-Delta
Modulator With 77 dB DR in a Near Zero-IF 20 MHz Band

5) My first Sigma-Delta: The first sigma-delta modulator I
made in “real-life” was similar to the one shown below.

The input voltage is translated into a current, and the current
is integrated on capacitor C. The Roffset is to change the
mid-level voltage, while Rref is the 1-bit feedback DAC.
The comparator is the quantizer. When the clock strikes the
comparator compares the Vo and Vref/2 and outputs a 1-bit
digital output D

The complete ADC is operated in a “incremental mode”, which
is a fancy way of saying

Reset your sigma-delta modulator, run the sigma
delta modulator for a fixed number of cycles (i.e
1024), and count the number of ones at D

The effect of an “incremental mode” is to combine the
modulator and a output filter so the ADC appears to be a
slow Nyquist ADC.

For more information, ask me, or see the patent at Analogue-
to-digital converter

VII. WANT TO LEARN MORE?

The design of sigma-delta modulation analog-to-digital con-
verters

Delta-sigma modulation in fractional-N frequency synthesis

A CMOS Temperature Sensor With a Voltage-Calibrated
Inaccuracy of ± 0.15 C (3sigma) From -55 Cto 125 C

A 20-mW 640-MHz CMOS Continuous-Time Sigma-Delta
ADC With 20-MHz Signal Bandwidth, 80-dB Dynamic Range
and 12-bit ENOB

A Micro-Power Two-Step Incremental Analog-to-Digital Con-
verter

Carsten Wulff received the M.Sc.
and Ph.D. degrees in electrical
engineering from the Department
of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,
he worked on open-loop sigma-

delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various
roles, from analog designer, to Wireless Group Manager,
to currently Principle IC Scientist. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of high-
efficiency analog-to-digital converters and low-power wireless
transceivers. He is the developer of Custom IC Compiler, a
general purpose integrated circuit compiler.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
https://patents.google.com/patent/US8947280B2/en?inventor=carsten+wulff&oq=carsten+wulff
https://patents.google.com/patent/US8947280B2/en?inventor=carsten+wulff&oq=carsten+wulff
https://ieeexplore.ieee.org/document/90025
https://ieeexplore.ieee.org/document/90025
https://ieeexplore.ieee.org/document/229400
https://ieeexplore.ieee.org/document/6323049
https://ieeexplore.ieee.org/document/6323049
https://ieeexplore.ieee.org/document/4014623
https://ieeexplore.ieee.org/document/4014623
https://ieeexplore.ieee.org/document/4014623
https://ieeexplore.ieee.org/document/7078971
https://ieeexplore.ieee.org/document/7078971

	ADC state-of-the-art
	What makes a state-of-the-art ADC
	High resolution FOM

	Quantization
	Signal to Quantization noise ratio
	Understanding quantization
	Why you should care about quantization noise

	Oversampling
	Noise power
	Signal power
	Signal to Noise Ratio
	Signal to Quantization Noise Ratio
	Python oversample

	Noise Shaping
	The magic of feedback
	Sigma-delta principle
	The DAC assumption
	The ADC assumption
	The modified equation

	Signal transfer function
	Noise transfer function
	Combined transfer function

	First-Order Noise-Shaping
	SQNR and ENOB

	Examples
	Python noise-shaping
	The wonderful world of SD modulators
	Open-Loop Sigma-Delta
	Noise Shaped SAR
	Control-Bounded ADCs
	Complex Sigma-Delta
	My first Sigma-Delta

	Want to learn more?

