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Background 1
In the spring of 2025 I lectured Advanced Integrated Circuits for
the fourth time. I have an inherent need to make things better, and
the course is no different.

In 2022 I noticed that little of what I had on slides, or said in
lectures, made it into the student brain. That annoyed me, and I
realized that probably a few things needed to change.

In 2023 I moved to complete open source project, and the project
was without grade. There should have been a grade on the
project.

I feel the lectures have gotten better. I did not take attendance in
2023, but there were 19 students that took the exam in 2024. I don’t
have all the dates, but an average attendance of 76 %.

Date Attendance

2024-02-02 19
2024-02-09 17
2024-02-16 16
2024-03-01 14
2024-03-07 14
2024-03-15 12
2024-03-22 13
2024-04-12 16
2024-04-19 10

In 2025 there were 23 students that took the exam, however, 26
different students showed up to the lectures (more than a few
times). The average attendance was around 80 %.

Wk Attendance

2 21
3 21
4 23
5 20
6 22
7 24
9 20
9 24
11 20
12 17
14 16
15 14

In 2024 I finally felt I achieved a balance. I spent Thursday’s
preparing for the lecture, writing these notes, making a YouTube
video (so I’ll remember next year what I wanted to talk about). I
passed 1k subscribers on Youtube. Friday’s I had the lecture and
the group work.



2 1 Background

For the group work I forced students into groups, and I forced that
they for the first 5-10 minutes do a check-in. That I need to do next
year too.

For the check in, they had go around in the group and answer one
of the following questions:

▶ What is one thing that is going on in your life (personal or
professional)?

▶ What is one thing that you’re grateful for right now?
▶ What is something funny that happened?

The check-in led to excellent team work for those students that
showed up.

In 2025 I made a few tweaks. One change was the grading of the
project, I used github actions to do the GDS,DRC,LVS,SIM and
docs. The grading did not really work that well, although, it was a
good way to get students to get the designs correct on github. The
first milestones with the sim and the doc did not work. The last
milestone actions worked well.

For 2026 I should do the following changes:

▶ Wait until after M0 for group selection
▶ Talk about layout early. Force full M0 tutorial
▶ Make them do TR layout early
▶ Re-introduce milestone 3
▶ Write a detailed project description and milestone and ex-

pectation description
▶ Reduce time for milestone 1. Maybe make a ready schematic

hierarchy to force names? ideal OTA?
▶ Find a good sigma delta intro circuit
▶ Add to analog systemverilog

I love programming and automation. Not much makes me more
happy than using the same source (the slide markdowns), to
generate the lecture notes, to translate into the book your looking
at right now.

If you find an error in what I’ve made, then fork aic2024, fix ,
commit, push and create a pull request. That way, we use the
global brain power most efficiently, and avoid multiple humans
spending time on discovering the same error.

https://github.com/wulffern/aic2024/tree/main/lectures
https://analogicus.com/aic2024/
https://analogicus.com/aic2024/assets/aic.pdf
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://github.com/wulffern/aic2024
https://git-scm.com/docs/git-commit
https://git-scm.com/docs/git-push
https://docs.github.com/en/desktop/contributing-and-collaborating-using-github-desktop/working-with-your-remote-repository-on-github-or-github-enterprise/creating-an-issue-or-pull-request
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Status: 1.0

2.1 Who

My name is

Carsten Wulff carstenw@ntnu.no

I finished my Masters in 2002, and did a Ph.D on analog-to-digital
converters finished in 2008.

Since that time, I’ve had a three axis in my work/hobby life.

I work at Nordic Semiconductor where I’ve been since 2008. The
first 7 years I did analog design (ADCs, DC/DCs, GPIO). The next
7 years I was the Wireless Group Manager. The Wireless group
make most of the analog and RF designs for Nordic’s short-range
products. Now I’m the IC Scientist, and focus on technical issues
with our integrated circuits that occur before we go into volume
production.

I work at NTNU where I did a part time postdoc from 2014 - 2017.
From 2020 I’ve been working on and teaching Advanced Integrated
Circuits

I have a hobby trying to figure out how to make a new analog
circuit design paradigm. The one we have today with schemat-
ic/simulation/layout/verification/simulation is too slow
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Figure 1: My life

2.2 How I see our roles

In Figure 2 you can see how I think about the research universe.
There are things we know to be possible, things that actually are
impossible (travel back in time, breaking thermodynamics, travel
with a speed beyond light).

carstenw@ntnu.no
https://www.nordicsemi.com
https://ntnu.no
https://www.ntnu.edu/studies/courses/TFE4188#tab=omEmnet
https://www.ntnu.edu/studies/courses/TFE4188#tab=omEmnet


4 2 Introduction

Between the impossible, and the possible, lies the unknown. I
consider our roles as follows:

Professors: Guide students on what is impossible, possible, and
hints on what might be possible

Ph.D students: Venture into the unknown and make something
(more) possible

Master students: Learn all that is currently possible

Bachelor students: Learn how to make complicated into easy

Industry: Take what is possible, and/or complicated, and make it
easy

Figure 2: Research Universe

2.3 I want you to learn the skills necessary to
make your own ICs

In 2020 the global integrated circuit market was 437.7 billion
dollars! The market is expected to grow to 1136 billion in 2028.
Integrated circuits enable all technologies.

I will be dead in approximately 50 years, and will retire in approx-
imately 20 years. Everything I know will be gone (except for the
small pieces I’ve left behind in videos or written word)

Someone must take over, and to do that, they need to know most
of what I know, and hopefully a bit more.

https://www.fortunebusinessinsights.com/integrated-circuit-market-106522
https://www.fortunebusinessinsights.com/integrated-circuit-market-106522


2.4 There will always be analog circuits, because the real world is analog 5

That’s were some of you come in. Some of you will find integrated
circuits interesting to make, and in addition, you have the stamina,
patience, and brain necessary to learn some of the hardest topics
in the world.

Making integrated circuits (that work reliably) is not
rocket science, it’s much harder.

2.4 There will always be analog circuits,
because the real world is analog

In this course, we’ll focus on analog ICs, because the real world is
analog, and all ICs must have some analog components, otherwise
they won’t work.

The steps to make integrated circuits is split in two. We have an
analog flow, and a digital flow, as shown in Figure 3.

It’s rare to find a single human that do both flows well. Usually
people choose, and I think it’s based on what they like and their
personality.

If you like the world to be ordered, with definite answers, then it’s
likely that you’ll find the digital flow interesting.

If you’re comfortable with not knowing, and an insatiable desire
to understand how the world really works at a fundamental level,
then it’s likely that you’ll find analog flow interesting.

Idea

Digital Design
SystemVerilog

Analog Design
Xschem

Digital Simulation
iverilog/vpp/verilator/gtkwave

RTL to GDSII
OpenLane

Tapeout

Analog Model
SystemVerilog

Analog Simulation
ngspice

Analog Layout
Magic

LVS
netgen

Parasitics
MagicGDSII



6 2 Introduction

Figure 3: Analog and Digital design process

–>

2.5 Will you tape-out an IC?

Something that would make me really happy is if someone is able
to tapeout an IC in this course.

It’s now possible without signing an NDA or buying expensive
software licenses.

In 2020 Google and Skywater joined forces to release a 130 nm
process design kit to the public. In addition, they have fueled a
renaissance of open source software tools.

Together with Efabless there are cheap alternatives, like tinytapeout,
which makes it possible for a private citizen to tape-out their own
integrated circuit.

2.5.1 What the team needs to know to design ICs

There are a multitude of tools and skills needed to design pro-
fessional ICs. It’s not likely that you’ll find all the skills in one
human, and even if you could, one human does not have suffi-
cient bandwidth to design ICs with all it’s aspects in a reasonable
timeline

That is, unless we can find a way to make ICs easier.

The skills needed are

▶ Project flow support: Confluence, JIRA, risk management
(DFMEA), failure analysis (8D)

▶ Language: English, Writing English (Latex, Word, Email)
▶ Psychology: Personalities, convincing people, presentations

(Powerpoint, Deckset), stress management (what makes
your brain turn off?)

▶ DevOps: Linux, bulid systems (CMake, make, ninja), con-
tinuous integration (bamboo, jenkins), version control (git),
containers (docker), container orchestration (swarm, kuber-
netes)

▶ Programming: Python, C, C++, Matlab Since 1999 I’ve pro-
grammed in Python, Go, Visual BASIC, PHP, Ruby, Perl, C#,
SKILL, Ocean, Verilog-A, C++, BASH, AWK, VHDL, SPICE,
MATLAB, ASP, Java, C, SystemC, Verilog, Assembler, and
probably a few I’ve forgotten.

▶ Firmware: signal processing, algorithms, software architec-
ture, security

▶ Infrastructure: Power management, reset, bias, clocks
▶ Domains: CPUs, peripherals, memories, bus systems

https://https://efabless.com
https://tinytapeout.com
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▶ Sub-systems: Radio’s, analog-to-digital converters, compara-
tors

▶ Blocks: Analog Radio, Digital radio baseband
▶ Modules: Transmitter, receiver, de-modulator, timing recov-

ery, state machines
▶ Designs: Opamps, amplifiers, current-mirrors, adders, ran-

dom access memory blocks, standard cells
▶ Tools: schematic, layout, parasitic extraction, synthesis, place-

and-route, simulation, (System)Verilog, netlist
▶ Physics: transistor, pn junctions, quantum mechanics

2.5.2 Zen of IC design (stolen from Zen of Python)

When you learn something new, it’s good to listen to someone that
has done whatever it is before.

Here is some guiding principles that you’ll likely forget.

▶ Beautiful is better than ugly.
▶ Explicit is better than implicit.
▶ Simple is better than complex.
▶ Complex is better than complicated.
▶ Readability counts (especially schematics).
▶ Special cases aren’t special enough to break the rules.
▶ Although practicality beats purity.
▶ In the face of ambiguity, refuse the temptation to guess.
▶ There should be one and preferably only one obvious way

to do it.
▶ Now is better than never.
▶ Although never is often better than right now.
▶ If the implementation is hard to explain, it’s a bad idea.
▶ If the implementation is easy to explain, it may be a good

idea.

2.5.3 IC design mantra

To copy an old mantra I have on learning programming

Find a problem that you really want to solve, and learn
programming to solve it. There is no point in saying
“I want to learn programming”, then sit down with a
book to read about programming, and expect that you
will learn programming that way. It will not happen.
The only way to learn programming is to do it, a lot. –
Carsten Wulff

And run the perl program

s/programming/analog design/ig
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2.5.4 Analog Design Process

▶ Define the problem, what are you trying to solve?
▶ Find a circuit that can solve the problem (papers, books)
▶ Find right transistor sizes. What transistors should be weak

inversion, strong inversion, or don’t care?
▶ Write a verification plan. Plan to simulate everything that

could go wrong.
▶ Check operating region of transistors (.op)
▶ Check key parameters (.dc, .ac, .tran)
▶ Check function. Exercise all inputs. Check all control signals
▶ Check key parameters in all corners. Check mismatch (Monte-

Carlo simulation)
▶ Do layout, and check it’s error free. Run design rule checks

(DRC). Check layout versus schematic (LVS)
▶ Extract parasitics from layout. Resistance, capacitance, and

inductance if necessary.
▶ On extracted parasitic netlist, check key parameters in all

corners and mismatch (if possible).
▶ If everything works, then your done.

On failure, go back as far as necessary

2.6 My Goal

Don’t expect that I’ll magically take information and put it inside
your head, and you’ll suddenly understand everything about
making ICs.

You are the one that must teach yourself everything.

I consider my role as a guide, similar to a mountain guide. I can’t
carry you up the mountain, you need to walk up the mountain ,
but I know the safe path to take and increase the likelihood that
you’ll come back alive.

I want to:

▶ Enable you to read the books on integrated circuits
▶ Enable you to read papers (latest research)
▶ Correct misunderstandings on the topic
▶ Answer any questions you have on the chapters

I’m not a mind reader, I can’t see inside your head. That means,
you must ask questions. Only by your questions can I start to
understand what pieces of information is missing from your head,
or maybe somehow correct your understanding.

At the same time, and similar to a mountain guide, you should not
assume I’m always right. I’m human, and I will make mistakes.
And maybe you can correct my understanding of something. All I
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care about is to really understand how the world works, so if you
think my understanding is wrong, then I’ll happily discuss.

2.7 Syllabus

The syllabus will be from Analog Integrated Circuit Design (CJM)
and Circuits for all seasons.

These lecture notes are a supplement to the book. I try to give some
background, and how to think about electronics. It’s not my goal
to repeat information that you can find in the book.

Buy a hard-copy of the book if you don’t have that. Don’t expect to
understand the book by reading the PDF.

Figure 4: The book we’ll use

2.8 Project JNW (2025)

“You can use logic to justify almost anything. That’s its power.
And its flaw.” - Kathryn Janeway, Star Trek Voyager: Prime Fac-
tors

The project for 2025 is to

Design a integrated temperature sensor with digital read-out

An outline of the plan is shown below.
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At the end of the project you will have a function that converts
temperature to a digital value.

𝐷 = 𝑓0(𝑇)

I’ve broken down the challenge into three steps, first convert
Temperature into a current

𝐼 = 𝑓1(𝑇)

Then convert current into a time

𝑡 = 𝑓2(𝐼)

then time to digital

𝐷 = 𝑓3(𝑡) = 𝑓3( 𝑓2( 𝑓1(𝑇))) = 𝑓0(𝑇)

The third milestone is the layout, while the fourth milestone is the
report.

You can find an example of last years designs at cnr_gr02_-
sky130nm

You will be using a repository on github for all your design data.
In that repository I’ve made it possible to run github actions, or
github workflows. For each of the milestones there are associated
workflows (SIM/DOCS/GDS/DRC/LVS).

 

MI MY
RESET PDF
Pursue putb

I
1414

Emmet
Report

iAnna

µ
REPO

Layout

M3

Milestone 0: The zero milestone is not really part of the project, but
it does introduce you too how you will work with the files in the
project. It’s important that you do this right away. To complete the
milestone, upload a link to blackboard with your github repository
for the tutorial Skywater 130 nm Tutorial

Milestone 1: The first milestone is to make a circuit that can convert
from a temperature, to a current that is proportional to temperature.
You will run a simulation on github that demonstrates that the
circuit works. That is the SIM workflow.

https://github.com/analogicus/cnr_gr02_sky130nm
https://github.com/analogicus/cnr_gr02_sky130nm
https://analogicus.com/aic2025/2025/01/01/Sky130nm-tutorial.html
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Milestone 2: In the second milestone you will complete the
schematic design of the circuit, and possibly also do some Sys-
temVerilog to demonstrate that you get a digital value out that
is proportional to temperature. Here, the simulations on github
may be too long, so it’s sufficient to describe the circuit, and how it
works in detail in the documentation. This is the DOC workflow.

Milestone 3: The third milestone, making the layout, is optional,
however, it will be impossible to get an A without getting some
points from the layout milestone. Once the layout is complete, I
expect that the design rule checks (DRC), Layout versus Schematic
(LVS), and GDS (stream out to a GDSII file) is passing on github.

Milestone 4: I will force you to work in groups. As such, it may be
that some contribute more than others. To ensure that the grading
is fair, the report will be individual. It’s OK to share figures, tables,
and so on, but the PDF shall be written by you and you alone.

2.8.1 Grading

MilestoneWhat does it mean
Condition for more
than 0 points

Possible
Points

M1
I=f(T)

Circuit that can convert a temperature
into a current

SIM passing 10

M2
D=f(T)

Circuit that can convert from
temperature into a digital value

DOC passing 20

M3
Lay-
out

Layout of your circuit DRC/LVS/GDS
passing

20

M4
Re-
port

Individual report Uploaded to
blackboard

48

Coolness Extra points that I may choose to award 10
Total 108

2.8.2 Group dynamics

How you work together is important. No-one can do everything by
them self. I know from experience it can be magical when bright
brains come together. The collective brain can be smarter, better,
faster, than anyone in the group.

That’s why I think it’s important not to just work in groups, but
also focus on how we work in groups.

A group shall be maximum 4 members. There must be at least 3
that don’t know each-other that well.

The group will meet once per week in the exercise hours.

https://en.wikipedia.org/wiki/GDSII
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2.8.2.1 Check-in

All group session must start with a Check-in (10 minutes)

Some example questions could be

▶ Share one thing that is going on in your life (personal or
professional.)

▶ What is one thing that you are grateful for right now?
▶ What is something funny that happened?

Some examples answers could be:

▶ My dog died yesterday, so I’m not feeling great today.
▶ I woke up early, had an omelet, and went running, so I feel

motivated and fantastic.
▶ I feel blaaah today, motivation is lacking.
▶ I went running yesterday and did not discover before I got

home that I’d forgotten to put my pants on, even though it
was -10 C.

The point of this exercise is to get to know each other a bit, and
attempt to create psychological safety in the group.

2.9 Software

We’ll use professional Open source software (xschem, ngspice,
sky130A PDK, Magic VLSI, netgen)

I’ve made a rather detailed (at least I think so myself) tutorial on
how to make a current mirror with the open source tools. I strongly
recommend you start with that first.

Skywater 130 nm Tutorial

I’ve also made some more complex examples, that can be found at
the link below. There are digital logic cells, standard transistors,
and few other blocks.

aicex

https://analogicus.com/aic2025/2025/01/01/Sky130nm-tutorial.html
https://wulffern.github.io/aicex


A Refresher 3
3.1 There are standard

units of measurement 13
3.2 Electrons . . . . . . . . . 14
3.3 Probability . . . . . . . 15
3.4 Uncertainty principle . 15
3.5 States as a function of

time and space . . . . . 15
3.6 Allowed energy levels

in atoms . . . . . . . . . 16
3.7 Allowed energy levels

in solids . . . . . . . . . 16
3.8 Silicon Unit Cell . . . . 17
3.9 Band structure . . . . . 18
3.10 Valence band and

Conduction band . . . 19
3.11 Fermi level . . . . . . . 19
3.12 Metals . . . . . . . . . . 20
3.13 Insulators . . . . . . . . 20
3.14 Semiconductors . . . . 21
3.15 Band diagrams . . . . . 21
3.16 Density of electrons/-

holes . . . . . . . . . . . 21
3.17 Fields . . . . . . . . . . . 22
3.18 Permittivity and Per-

meability . . . . . . . . 22
3.19 Quantum electrody-

namics . . . . . . . . . . 23
3.20 Voltage . . . . . . . . . . 23
3.21 Current . . . . . . . . . 23
3.22 Drift current . . . . . . 24
3.23 Diffusion current . . . 25
3.24 Why are there two

currents? . . . . . . . . . 25
3.25 Currents in a semicon-

ductor . . . . . . . . . . 25
3.26 Resistors . . . . . . . . . 26
3.27 Capacitors . . . . . . . . 26
3.28 Inductors . . . . . . . . 26

Status: 0.8

3.1 There are standard units of measurement

All known physical quantities are derived from 7 base units (SI
units)

▶ second (s) : time
▶ meter (m) : space
▶ kg (kilogram) : weight
▶ ampere (A) : current
▶ kelvin (K) : temperature
▶ candela (cd) : luminous intensity

All other units (for example volts), are derived from the base
units.

I don’t go around remembering all of them, they are easily available
online. When you forget the equation for charge (Q), voltage (V)
and capacitance (C), look at the units below, and you can see it’s
𝑄 = 𝐶𝑉 ‗

‗ Although you do have to keep your symbols straight. We use “C” for Capacitance,
but C can also mean Columbs. Context matters.

https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/International_System_of_Units
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Figure 1: Si base units, from https://www.nist.gov/pml/owm/m
etric-si/si-units

3.2 Electrons

Electrons are fundamental, they cannot (as far as we know), be
divided into smaller parts. Explained further in the standard model
of particle physics

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
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Figure 2: Standard model of particle physics, Wikipedia

Electrons have a negative charge of 𝑞 ≈ 1.602 × 10−19. The proton
a positive charge. The two charges balance exactly! If you have
a trillion electrons and a trillion protons inside a volume, the
net external charge will be 0 (assuming we measure from some
distance away). I find this fact absolutely incredible. There must be
a fundamental connection between the charge of the proton and
electron. It’s insane that the charges balance out so exactly.

All electrons are the same, although the quantum state can be
different.

An electron cannot occupy the same quantum state as another.
This rule that applies to all Fermions (particles with spin of 1/2)

The quantum state of an electron is fully described by it’s spin,
momentum (p) and position in space (r).

https://www.nist.gov/pml/owm/metric-si/si-units
https://www.nist.gov/pml/owm/metric-si/si-units
https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Standard_Model
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3.3 Probability

The probability of finding an electron in a state as a function of
space and time is

𝑃 = |𝜓(𝑟, 𝑡)|2

, where 𝜓 is named the probability amplitude, and is a complex
function of space and time. In some special cases, it’s

𝜓(𝑟, 𝑡) = 𝐴𝑒 𝑖(𝑘𝑟−𝜔𝑡)

, where A is complex number, k is the wave number, r is the position
vector from some origin, 𝜔 is the frequency and 𝑡 is time.

The energy is 𝐸 = ℏ𝜔 , where ℏ = ℎ/2𝜋 and ℎ is Planck Constant
and the momentum is 𝑝 = ℏ𝑘

The probability amplitude is also called the wave function. Type
of wave function depends on the scenario, and does not have to
take on the solution above. The possible wave functions are those
equations that fits with the time evolution of quantum states given
by the Schrodinger equation.

3.4 Uncertainty principle

We cannot, with ultimate precision, determine both the position
and the momentum of a particle, the precision is

𝜎𝑥𝜎𝑝 ≥
ℏ

2

From the uncertainty (Unschärfe) principle we can actually estimate
the size of the atom

3.5 States as a function of time and space

The time-evolution of the probability amplitude is

𝑖ℏ
𝑑

𝑑𝑡
𝜓(𝑟, 𝑡) = 𝐻𝜓(𝑟, 𝑡)

, where H is named the Hamiltonian matrix, or the energy matrix or
(if I understand correctly) the amplitude matrix of the probability
amplitude to change from one state to another.

https://en.wikipedia.org/wiki/Planck_constant
https://en.wikipedia.org/wiki/Uncertainty_principle
https://wulffern.github.io/aic2023/atom
https://wulffern.github.io/aic2023/atom
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For example, if we have a system with two states, a simplified
version of two electrons shared between two atoms, as in 𝐻2, or
hydrogen gas, or co-valent bonds, then the Hamiltonian is a 2 x 2
matrix. And the 𝜓 is a vector of [𝜓1 ,𝜓2]

Computing the solution to the Schrodinger Equation can be tricky,
because you must know the number of relevant states to know the
vector size of 𝜓 and the matrix size of 𝐻. In addition, the 𝐻 can be
a function of time and space (I think).

Compared to the equations of electric fields, however, Schrodinger
is easy, it’s a set of linear differential equations.

3.6 Allowed energy levels in atoms

Solutions to Schrodinger result in quantized energy levels for an
electron bound to an atom.

Take hydrogen, the electron bound to the proton can only exists
in quantized energy levels. The lowest energy state can have two
electrons, one with spin up, and one with spin down.

From Schrodinger you can compute the energy levels, which most
of us did at some-point, although now, I can’t remember how it
was done. That’s not important. The important is to internalize
that the energy levels in bound electrons are discrete.

Electrons can transition from one energy level to another by external
influence, i.e temperature, light, or other.

The probability of a state transition (change in energy) can be
determined from the probability amplitude and Schrodinger.

3.7 Allowed energy levels in solids

If I have two silicon atoms spaced far apart, then the electrons can
have the same spin and same momentum around their respective
nuclei. As I bring the atoms closer, however, the probability am-
plitudes start to interact (or the dimensions of the Hamiltonian
matrix grow), and there can be state transitions between the two
electrons.

The allowed energy levels will split. If I only had two states
interacting, the Hamiltonian could be

𝐻 =

[
𝐴 0
0 −𝐴

]
and the new energy levels could be

https://en.wikipedia.org/wiki/Schrödinger_equation
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𝐸1 = 𝐸0 + 𝐴

and

𝐸2 = 𝐸0 − 𝐴

In a silicon crystal we can have trillions of atoms, and those that
are close, have states that interact. That’s why crystals stay solids.
All chemical bonds are states of electrons interacting! Some are
strong (co-valent bonds), some are weaker (ionic bonds), but it’s
all quantum states interacting.

The discrete energy levels of the electron transition into bands of
allowed energy states.

Figure 3: Electronic band structure, Wikipedia

For a crystal, the allowed energy bands is captured in the band
structure

3.8 Silicon Unit Cell

A silicon crystal unit cell is a diamond faced cubic with 8 atoms in
the corners spaced at 0.543 nm, 6 at the center of the faces, and 4
atoms inside the unit cell at a nearest neighbor distance of 0.235
nm.

https://en.wikipedia.org/wiki/Electronic_band_structure
https://en.wikipedia.org/wiki/Electronic_band_structure
https://en.wikipedia.org/wiki/Electronic_band_structure
https://en.wikipedia.org/wiki/Silicon
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Figure 4: Silicon, Wikipedia

3.9 Band structure

The full band structure of a silicon unit cell is complicated, it’s a 3
dimensional concept

Figure 5: Silicon Band Structure

https://en.wikipedia.org/wiki/Silicon
http://lampx.tugraz.at/~hadley/ss1/semiconductors/silicon_bandstructure.php
http://lampx.tugraz.at/~hadley/ss1/semiconductors/silicon_bandstructure.php
http://lampx.tugraz.at/~hadley/ss1/semiconductors/silicon_bandstructure.php
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3.10 Valence band and Conduction band

For bulk silicon we simplify, and we think of two bands, the
conduction band, and valence band

In the conduction band (𝐸𝐶) is the lowest energy where electrons
are free (not bound to atoms). The valence band (𝐸𝑉 ) is the highest
band where electrons are bound to silicon atoms.

The difference between 𝐸𝐶 and 𝐸𝑉 is a property of the material
we’ve named the band gap.

𝐸𝐺 = 𝐸𝐶 − 𝐸𝑉

3.11 Fermi level

From Wikipedia’s Fermi level

In band structure theory, used in solid state physics to
analyze the energy levels in a solid, the Fermi level can
be considered to be a hypothetical energy level of an
electron, such that at thermodynamic equilibrium this
energy level would have a 50% probability of being
occupied at any given time

The Fermi level is closely linked to the Fermi-Dirac distribution

𝑓 (𝐸) = 1
𝑒(𝐸−𝐸𝐹)/𝑘𝑇 + 1

If the energy of the state is more than a few kT away from the
Fermi-level, then

𝑓 (𝐸) ≈ 𝑒(𝐸𝐹−𝐸)/𝑘𝑇

The equation above is one of the reasons the structure 𝑒𝐸/𝑘𝑇 or
𝑒𝑞𝑉/𝑘𝑇 shows up all over the place. You’ll see it in the equations
for current in a diode, 𝐼𝐷 = 𝐼𝑠(𝑒𝑞𝑉𝐷/𝑛𝑘𝑇 − 1), the subthreshold
conduction of a mosfet 𝐼𝐷 ∝ 𝑒𝑞𝑉𝑔𝑠/𝑛𝑘𝑇 and even the Arrhenius
Equation 𝑘 = 𝐴𝑒−𝐸𝑎/𝑘𝑇 .

It seems like any time you have something related to chemical
reactions (state transitions of electrons, breaking bonds, forming
bonds), or current in solids, there is a relation to the equation
above. To me, that makes sense.

The Fermi-Dirac function also explains why there are more free
carriers, and reaction rates increase, at high temperature. The
part of the equation that is 𝑒−𝐸/𝑘𝑇 will approach one at high
temperatures.

https://en.wikipedia.org/wiki/Fermi_level
https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics
https://en.wikipedia.org/wiki/Arrhenius_equation
https://en.wikipedia.org/wiki/Arrhenius_equation
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3.12 Metals

In metals, the band splitting of the energy levels causes the valence
band and conduction band to overlap.

Figure 6: Band splitting in materials. Electronic Band Structure,
Wikipedia

Electrons can easily transition between bound state and free state.
As such, electrons in metals are shared over large distances, and
there are many electrons readily available to move under an applied
field, or difference in electron density. That’s why metals conduct
well.

3.13 Insulators

In insulating materials the difference between the conduction band
and the valence band is large. As a result, it takes a large energy to
excite electrons to a state where they can freely move.

That’s why glass is transparent to optical frequencies. Visible light
does not have sufficient energy to excite electrons from a bound
state.

That’s also why glass is opaque to ultra-violet, which has enough
energy to excite electrons out of a bound state.

Based on these two pieces of information you could estimate the
bandgap of glass.

from scipy import constants
#- We must use the "correct" units for planck's constant to get energy in eV
h = constants.physical_constants["Planck constant in eV/Hz"][0]
c = constants.physical_constants["speed of light in vacuum"][0]

lambda_optical = 450e-9
e_optical = h * c/lambda_optical

lambda_ultra = 380e-9
e_ultra = h * c/lambda_ultra

print("Bandgap of glass is above %.2f eV, maybe around %.2f eV " %(e_optical,e_ultra))

https://en.wikipedia.org/wiki/Electronic_band_structure
https://en.wikipedia.org/wiki/Electronic_band_structure
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3.14 Semiconductors

In silicon the bandgap is lower than an insulator, approximately

𝐸𝐺 = 1.12 𝑒𝑉

At room temperature, that allows a small number of electrons to
be excited into the conduction band, leaving behind a “hole” in
the valence band.

3.15 Band diagrams

A band diagram or energy level diagrams shows the conduction
band energy and valence band energy as a function of distance in
the material.

Figure 7: Band diagram of a PN junction, Wikipedia

The horizontal axis is the distance in the material, the vertical axis
is the energy.

3.16 Density of electrons/holes

There are two components needed to determine how many elec-
trons are in the conduction band. The density of available states,
and the probability of an electron to be in that quantum state.

The probability is the Fermi-Dirac distribution. The density of
available states is a complicated calculation from the band-structure
of silicon.

For details see the Diodes chapter.

𝑛𝑒 =

∫ ∞

𝐸𝐶

𝑁(𝐸) 𝑓 (𝐸)𝑑𝐸

The Fermi level is assumed to be independent of energy level, so
we can write

https://en.wikipedia.org/wiki/Band_diagram
https://en.wikipedia.org/wiki/Band_diagram
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𝑛𝑒 = 𝑒𝐸𝐹/𝑘𝑇
∫ ∞

𝐸𝐶

𝑁(𝐸)𝑒−𝐸/𝑘𝑇𝑑𝐸

for the density of electrons in the conduction band.

3.17 Fields

There are equations that relate electric field, magnetic field, charge
density and current density to each-other.∮

𝜕Ω
E · 𝑑S =

1
𝜖0

∭
𝑉

𝜌 · 𝑑𝑉

,relates net electric flux to net enclosed electric charge∮
𝜕Ω

B · 𝑑S = 0

,relates net magnetic flux to net enclosed magnetic charge∮
𝜕Σ

E · 𝑑ℓ = − 𝑑

𝑑𝑡

∬
Σ

B · 𝑑S

,relates induced electric field to changing magnetic flux∮
𝜕Σ

B · 𝑑ℓ = 𝜇0

(∬
Σ

J · 𝑑S + 𝜖0
𝑑

𝑑𝑡

∬
Σ

E · 𝑑S
)

,relates induced magnetic field to changing electric flux and to
current

These are the Maxwell Equations, and are non-linear time depen-
dent differential equations.

Under the best of circumstances they are fantastically hard to solve!
But it’s how the real world works.

3.18 Permittivity and Permeability

The permittivity of free space is defined as

𝜖0 =
1

𝜇0𝑐2

, where 𝑐 is the speed of light, and 𝜇0 is the vacuum permeability,
which, in SI units, is now

https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Vacuum_permeability
https://en.wikipedia.org/wiki/International_System_of_Units
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𝜇0 =
2𝛼
𝑞2
ℎ

𝑐

, where 𝛼 is the fine structure constant.

3.19 Quantum electrodynamics

The quantum electrodynamics (QED) is a full description of in-
teractions between light and matter. The equations describe both
quantum mechanical effects, electromagnetism and is in agreement
with special relativity.

The equations are rather complicated, but it’s based on Lagrangian
physics. Maxwell’s equations actually fall out of the QED La-
grangian when one assumes local phase symmetry.

The QED Lagrangian is

L= 𝜓̄[𝑖ℏ𝑐𝛾𝜇𝜕𝜇 − 𝑚𝑐2]𝜓 − 𝑞[𝜓̄𝛾𝜇𝜓]𝐴𝜇 −
1

16𝜋
𝐹𝜇𝜈𝐹

𝜇𝜈

For more information, have a look at Electromagnetism as a Gauge
Theory

3.20 Voltage

The electric field has units voltage per meter, so the electric field is
the derivative of the voltage as a function of space.

𝐸 =
𝑑𝑉

𝑑𝑥

3.21 Current

Current has unit 𝐴 and charge 𝐶 has unit 𝐴𝑠, so the current is the
number of charges passing through a volume per second.

The current density 𝐽 has units 𝐴/𝑚2 and is often used, since we
can multiply by the surface area of a conductor, if the current
density is uniform.

𝐼 = Area × 𝐽

https://en.wikipedia.org/wiki/Fine-structure_constant
https://en.wikipedia.org/wiki/Lagrangian_(field_theory)
https://www.youtube.com/watch?v=Sj_GSBaUE1o
https://www.youtube.com/watch?v=Sj_GSBaUE1o
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3.22 Drift current

Charge carriers (electrons, holes, ions) in an electric field will give
rise to a drift current.

We know from Newtons laws that force equals mass times acceler-
ation

®𝐹 = 𝑚®𝑎

If we assume a zero, or constant magnetic field, the force on a
particle is

®𝐹 = 𝑞 ®𝐸

The current density is then

®𝐽 = 𝑞 ®𝐸 × 𝑛 × 𝜇

where 𝑛 is the charge density, and 𝜇 is the mobility (how easily the
charges move) and has units 𝑚2/𝑉𝑠

Assuming

𝐸 = 𝑉/𝑚

, we could write

𝐽 =
𝐶

𝑚3
𝑉

𝑚

𝑚2

𝑉𝑠
=
𝐶

𝑠
𝑚−2

So multiplying by an area A with unit meters squared

𝐼 = 𝑞𝑛𝜇𝐴𝑉

and we can see that the conductance

𝐺 = 𝑞𝑛𝜇𝐴

, and since

𝐺 = 1/𝑅

, where R is the resistance, we have

𝐼 = 𝐺𝑉 ⇒ 𝑉 = 𝑅𝐼
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Or Ohms law

3.23 Diffusion current

A difference in charge density will give rise to a diffusion current.
The current density is

𝐽 = −𝑞𝐷𝑛

𝑑𝜌

𝑑𝑥

,where 𝐷𝑛 is a diffusion constant, and 𝜌 is the charge density.

3.24 Why are there two currents?

I struggled with the concepts diffusion current and drift current
for a long time. Why are there two types of current? It was when I
read The Schrödinger Equation in a Classical Context: A Seminar
on Superconductivity I realized that the two types of current come
directly from the Schrodinger equation, there is one component
related to the electric field (potential energy) and a component
related to the momentum (kinetic energy).

In the absence of an electric field electrons will still jump from
state to state set by the probabilities of the Hamiltonian. If there
are more electrons in an area, then it will seem like there is an
average movement of charges away from that area. That’s how I
think about drift and diffusion currents. We can kinda see it from
the Schrödinger equation below.

− ℏ2

2𝑚
𝜕2

𝜕2𝑥
𝜓(𝑥, 𝑡) +𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝑖ℏ

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡)

3.25 Currents in a semiconductor

Both electrons, and holes will contribute to current.

Electrons move in the conduction band, and holes move in the
valence band.

Both holes and electrons can only move if there are available
quantum states.

For example, if the valence band is completely filled (all states
filled), then there can be no current.

To compute the total current in a semiconductor one must com-
pute

https://en.wikipedia.org/wiki/Ohm%27s_law
https://www.feynmanlectures.caltech.edu/III_21.html
https://www.feynmanlectures.caltech.edu/III_21.html
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𝐼 = 𝐼𝑛𝑑𝑟𝑖 𝑓 𝑡 + 𝐼𝑛𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 + 𝐼𝑝𝑑𝑟𝑖 𝑓 𝑡 + 𝐼𝑝𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛

where 𝑛 denotes electrons, and 𝑝 denote holes.

3.26 Resistors

We can make resistors with many materials. The behavior of the
charge carrier may be different between materials.

In metal the dominant carrier depends on the metal, but it’s usually
electrons. As such, one can often ignore the hole current.

In a semiconductor the dominant carrier depends on the Fermi
level in relation to the conduction band and valence band.

If the Fermi level is close to the valence band the dominant carrier
will be holes. If the Fermi level is close to the conduction band, the
dominant carrier will be electrons.

That’s why we often talk about “majority carriers” and “minority
carriers”, both are important in semiconductors.

3.27 Capacitors

A capacitor resists a change in voltage

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡

and store energy in an electric field between two conductors with
an insulator between.

3.28 Inductors

An inductor resist a change in current

𝑉 = 𝐿
𝑑𝐼

𝑑𝑡

and store energy in the magnetic fields in a loop of a conductor.
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Status: 1.0

4.1 Why

Diodes are a magical ‗ semiconductor device that conduct current
in one direction. It’s one of the fundamental electronics components,
and it’s a good idea to understand how they work.

If you don’t understand diodes, then you won’t understand tran-
sistors, neither bipolar, or field effect transistors.

A useful feature of the diode is the exponential relationship between
the forward current, and the voltage across the device.

To understand why a diode works it’s necessary to understand the
physics behind semiconductors.

This paper attempts to explain in the simplest possible terms how
a diode works †

4.2 Silicon

Integrated circuits use single crystalline silicon. The silicon crystal
is grown with the Czochralski method which forms a ingot that is
cut into wafers. The wafer is a regular silicon crystal, although, it
is not perfect.

A silicon crystal unit cell, as seen in Figure 1 is a diamond faced
cubic with 8 atoms in the corners spaced at 0.543 nm, 6 at the
center of the faces, and 4 atoms inside the unit cell at a nearest
neighbor distance of 0.235 nm.

‗ It doesn’t stop being magic just because you know how it works. Terry Pratchett,
The Wee Free Men

† Simplify as much as possible, but no more. Einstein

https://en.wikipedia.org/wiki/Czochralski_method
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Figure 1: Silicon crystal unit cell

As you hopefully know, the energy levels of an electron around
a positive nucleus are quantized, and we call them orbitals (or
shells). For an atom far away from any others, these orbitals, and
energy levels are distinct. As we bring atoms closer together, the
orbitals start to interact, and in a crystal, the distinct orbital energies
split into bands of allowed energy states. No two electrons, or any
Fermion (spin of 1/2), can occupy the same quantum state. We call
the outermost “shared” orbitial, or band, in a crystal the valence
band. Hence covalent bonds.

If we assume the crystal is perfect, then at 0 Kelvin all electrons
will be part of covalent bonds. Each silicon atom share 4 electrons
with its neighbors. What we really mean when we say “share 4
electrons” is that the wave-functions of the outer orbitals interact,
and we can no longer think of the orbitals as belonging to either of
the silicon nuclei. All the neighbors atoms “share” electrons, and
nowhere is there an vacant state, or a hole, in the valence band.

If such a crystal were to exist, where there were no holes in
the valence band, and a net neutral charge, the crystal could
not conduct any drift current. Electrons would move around
continuously, swapping states, but there could be no net drift of
charge carriers.

In an atom, or a crystal, there are also higher energy states where
the carriers are “free” to move. We call these energy levels, or bands
of energy levels, conduction bands. In singular form “conduction
band”, refers to the lowest available energy level where the electrons
are free to move.
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Due to imperfectness of the silicon crystal, and non-zero temper-
ature, there will be some electrons that achieve sufficient energy
to jump to the conduction band. The electrons in the conduction
band leave vacant states, or holes, in the valence band.

Electrons can move both in the conduction band, as free electrons,
and in the valence band, as a positive particle, or hole. Both bands
can support drift and diffusion currents.

4.3 Intrinsic carrier concentration

The intrinsic carrier concentration of silicon, or the density of free
electrons and holes at a given temperature, is given by

𝑛𝑖 =
√
𝑁𝑐𝑁𝑣𝑒

−𝐸𝑔/(2𝑘𝑇) (1)

where 𝐸𝑔 is the bandgap energy of silicon (approx 1.12 eV), 𝑘 is
Boltzmann’s constant, 𝑇 is the temperature in Kelvin, 𝑁𝑐 is the
density of states in conduction band, and𝑁𝑣 is the density of states
in the valence band.

The density of states are

𝑁𝑐 = 2
[
2𝜋𝑘𝑇𝑚∗

𝑛

ℎ2

]3/2

𝑁𝑣 = 2
[2𝜋𝑘𝑇𝑚∗

𝑝

ℎ2

]3/2

where ℎ is Planck’s constant, 𝑚∗
𝑛 is the effective mass of electrons,

and 𝑚∗
𝑝 is the effective mass of holes.

Leave it to engineers to simplify equations beyond understanding.
Equation (1) is complicated, and the density of states includes the
effective mass of electrons and holes, which is a parameter that
depends on the curvature of the band structure. To engineers, this
is too complicated, and 𝑛𝑖 has been simplified so it “works” in
daily calculation.

Through engineering simplification, however, physics understand-
ing is lost.

In [1] they claim the intrinsic carrier concentration is a constant,
although they do mention 𝑛𝑖 doubles every 11 degrees Kelvin.

In BSIM 4.8 [2] the intrinsic carrier concentration is

𝑛𝑖 = 1.45𝑒10
𝑇𝑁𝑂𝑀

300.15

√
𝑇

300.15
exp21.5565981− 𝐸𝑔

2𝑘𝑇

Comparing the three models in Figure 2, we see the shape of BSIM
and the full equation is almost the same, while the “doubling every
11 degrees” is just wrong.
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Figure 2: Intrinsic carrier concentration versus temperature

At room temperature the intrinsic carrier consentration is approxi-
mately 𝑛𝑖 = 1 × 1016 carriers/m3.

That may sound like a big number, however, if we calculate the
electrons per 𝑢𝑚3 it’s 𝑛𝑖 = 1×1016

(1×106)3 carriers/𝜇m3 < 1, so there are
really not that many free carriers in intrinsic silicon.

From Figure 2 we can see that 𝑛𝑖 changes greatly as a function
of temperature, but the understanding “why” is not easy to get
from “doubling every 11 degrees”. To understand the temperature
behavior of diodes, we must understand Eq (1).

So where does Eq (1) come from? I find it unsatisfying if I don’t
understand where things come from. I like to understand why
there is an exponential, or effective mass, or Planck’s constant. If
you’re like me, then read the next section. If you don’t care, and
just want to memorize the equations, or indeed the number of
intrinsic carrier concentration number at room temperature, then
skip the next section.

4.4 It’s all quantum

There are two components needed to determine how many elec-
trons are in the conduction band. The density of available states,
and the probability of an electron to be in that quantum state.

For the density of states we must turn to quantum mechanics. The
probability amplitude of a particle can be described as

𝜓 = 𝐴𝑒 𝑖(𝑘r−𝜔𝑡)
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where 𝑘 is the wave number, and 𝜔 is the angular frequency, and r
is a spatial vector.

In one dimension we could write 𝜓(𝑥, 𝑡) = 𝐴𝑒 𝑖(𝑘𝑥−𝜔𝑡)

In classical physics we described the Energy of the system as

1
2𝑚

𝑝2 +𝑉 = 𝐸

where 𝑝 = 𝑚𝑣, 𝑚 is the mass, 𝑣 is the velocity and 𝑉 is the
potential.

In the quantum realm we must use the Schrodinger equation to
compute the time evolution of the Energy, in one space dimension

− ℏ2

2𝑚
𝜕2

𝜕2𝑥
𝜓(𝑥, 𝑡) +𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝑖ℏ

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡)

where 𝑚 is the mass, 𝑉 is the potential, ℏ = ℎ/2𝜋.

We could rewrite the equation above as

𝐻𝜓(𝑥, 𝑡) = 𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = 𝐸𝜓(𝑥, 𝑡)

where 𝐻 is sometimes called the Hamiltonian and is an operator, or
something that act on the wave-function. In Feynman’s Lectures
on Physics Feynman called the Hamiltonian the Energy Matrix of a
system. I like that better. The 𝐸 is the energy operator, something
that operates on the wave-function to give the Energy.

We could re-arrange

[𝐻 − 𝐸]𝜓(𝑟, 𝑡) = 0

This is an equation with at least 5 unknowns, the space vector in
three dimensions, time, and the energy matrix 𝐻.

The dimensions of the energy matrix depends on the system. The
energy matrix further up is for one free electron. For an atom, the
energy matrix will have more dimensions to describe the possible
quantum states.

I consider all energy matricies as infinite dimensions, but most
state transitions are so unlikely that they can be safely ignored.

I was watching Quantum computing in the 21st Century and David
Jamison mentioned that the largest system we could today compute
would be a system with about 30 electrons.

We know exactly how the equations of quantum mechanics appear
to be, and they’ve proven extremely successful, we must make
simplifications before we can predict how electrons behave in

https://www.feynmanlectures.caltech.edu
https://www.feynmanlectures.caltech.edu
https://youtu.be/zxml8UQSwC0
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complicated systems like the silicon lattice with approximately
0.7 trillion electrons per cube micro meter. You can check the
calculation

[
1 𝜇m

0.543 nm

]3

× 8 atoms per unit cell × 14 electrons per atom

4.4.1 Density of states

To compute “how many Energy states are there per unit volume in
the conduction band”, or the “density of states”, we start with the
three dimensional Schrodinger equation for a free electron

− ℏ2

2𝑚
∇2𝜓 = 𝐸𝜓

I’m not going to repeat the computation here, but rather paraphrase
the steps. You can find the full derivation in Solid State Electronic
Devices.

The derivation starts by computing the density of states in the
k-space, or momentum space,

𝑁(𝑑𝑘) = 2
(2𝜋)𝑝 𝑑𝑘

Where 𝑝 is the number of dimensions (in our case 3).

The band structure 𝐸(𝑘) is used to convert to the density of states
to a function of energy 𝑁(𝐸). The simplest band structure, and an
approxmiation of the lowest conduction band is

𝐸(𝑘) = ℏ2𝑘2

2𝑚∗

where 𝑚∗ is the effective mass of the particle. It is within this
effective mass that we “hide” the complexity of the actual three-
dimensional crystal structure of silicon.

The effective mass when we compute the density of states is

𝑚∗ =
ℏ2

𝑑2𝐸
𝑑𝑘2

as such, the effective mass depends on the localized band structure
of the silicon unit cell, and depends on direction of movement,
strain of the silicon lattice, and probably other things.

https://www.amazon.com/Solid-State-Electronic-Devices-7th/dp/0133356035
https://www.amazon.com/Solid-State-Electronic-Devices-7th/dp/0133356035
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In 3D, once we use the above equations, one can compute that the
density of states per unit energy is

𝑁(𝐸)𝑑𝐸 =
2
𝜋2
𝑚∗

ℏ2

3/2
𝐸1/2𝑑𝐸

In order to find the number of electrons, we need the probability
of an electron being in a quantum state, which is given by the
Fermi-Dirac distribution

𝑓 (𝐸) = 1
𝑒(𝐸−𝐸𝐹)/𝑘𝑇 + 1

(2)

where𝐸 is the energy of the electron,𝐸𝐹 is the Fermi level or checmi-
cal potential, 𝑘 is Boltzmann’s constant, and 𝑇 is the temperature
in Kelvin.

Fun fact, the Fermi level difference between two points is what you
measure with a voltmeter.

If the 𝐸 − 𝐸𝐹 > 𝑘𝑇, then we can start to ignore the +1 and the
probability reduces to

𝑓 (𝐸) = 1
𝑒(𝐸−𝐸𝐹)/𝑘𝑇

= 𝑒(𝐸𝐹−𝐸)/𝑘𝑇

A few observiation on the Fermi-Dirac distribution. If the Energy
of a state is at the Fermi level, then 𝑓 (𝐸) = 1

2 , or a 50 % probability
of being occupied.

In a metal, the Fermi level lies within a band, as the conduction
band and valence band overlap. As a result, there are a bunch of
free electrons that can move around. Metal does not have the same
type of covalent bonds as silicon, but electrons are shared between
a large part of the metal structure. I would also assume that the
location of the Fermi level within the band structure explains the
difference in conductivity of metals, as it would determined how
many electrons are free to move.

In an insulator, the Fermi level lies in the bandgap between valence
band and conduction band, and usually, the bandgap is large, so
there is a low probability of finding electrons in the conduction
band.

In a semiconductor we also have a bandgap, but much lower energy
than an insulator. If we have thermal equilibrium, no external forces,
and we have an un-doped (intrinsic) silicon semiconductor, then
the fermi level 𝐸𝐹 lies half way between the conduction band edge
𝐸𝐶 and the valence band edge 𝐸𝑉 .

The bandgap is defined as the 𝐸𝐶 − 𝐸𝑉 = 𝐸𝑔 , and we can use that
to get 𝐸𝐹−𝐸𝐶 = 𝐸𝐶 −𝐸𝑔/2−𝐸𝐶 = −𝐸𝑔/2. This is why the bandgap
of silicon keeps showing up in our diode equations.

https://en.wikipedia.org/wiki/Fermi–Dirac_statistics
https://en.wikipedia.org/wiki/Fermi_level
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The number of electrons per delta energy will then be given by

𝑁𝑒𝑑𝐸 = 𝑁(𝐸) 𝑓 (𝐸)𝑑𝐸

, which can be integrated to get

𝑛𝑒 = 2
(
2𝜋𝑚∗𝑘𝑇

ℎ2

)3/2

𝑒(𝐸𝐹−𝐸𝐶 )/𝑘𝑇

For intrinsic silicon at thermal equlibrium, we could write

𝑛0 = 2
(
2𝜋𝑚∗𝑘𝑇

ℎ2

)3/2

𝑒−𝐸𝑔/(2𝑘𝑇) (3)

As we can see, Equation (3) has the same coefficients and form as
the computation in Equation (1). The difference is that we also have
to account for holes. At thermal equilibrium and intrinsic silicon
𝑛2
𝑖
= 𝑛0𝑝0

4.4.2 How to think about electrons (and holes)

I’ve come to the realization that to imagine electrons as balls
moving around in the silicon crystal is a bad mental image.

For example, for a metal-oxide-semiconductor field effect transistor
(MOSFET) it is not the case that the electrons that form the inversion
layer under strong inversion come from somewhere else. They
are already at the silicon surface, but they are bound in covalent
bonds (there are literaly trillions of bound electrons in a typical
transistor).

What happens is that the applied voltage at the gate shifts the
energy bands close to the surface (or bends the bands in relation
to the Fermi level), and the density of carriers in the conduction
band in that location changes, according to the type of derivations
above.

Once the electrons are in the conduction band, then they follow the
same equations as diffusion of a gas, Fick’s law of diffusion. Any
charge density concentration difference will give rise to a diffusion
current given by

𝐽diffusion = −𝑞𝐷𝑛

𝜕𝜌

𝜕𝑥
(4)

where 𝐽 is the current density, 𝑞 is the charge, 𝜌 is the charge
density, and 𝐷 is a diffusion coefficient that through the Einstein
relation can be expressed as 𝐷 = 𝜇𝑘𝑇, where mobility 𝜇 = 𝑣𝑑/𝐹 is
the ratio of drift velocity 𝑣𝑑 to an applied force 𝐹.

https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion
https://en.wikipedia.org/wiki/Diffusion_current
https://en.wikipedia.org/wiki/Diffusion_current
https://en.wikipedia.org/wiki/Diffusion_current
https://en.wikipedia.org/wiki/Diffusion_current
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To make matters more complicated, an inversion layer of a MOSFET
is not in three dimensions, but rather a two dimensional electron
gas, as the density of states is confined close to the silicon surface.
As such, we should not expect the mobility of bulk silicon to be
the same as the mobility of a MOSFET transistor.

4.5 Doping

We can change the property of silicon by introducing other ele-
ments, something we’ve called doping. Phosphor has one more
electron than silicon, Boron has one less electron. Injecting these
elements into the silicon crystal lattice changes the number of free
electron/holes.

These days, we usually dope with ion implantation, while in
the olden days, most doping was done by diffusion. You’d paint
something containing Boron on the silicon, and then heat it in a
furnace to “diffuse” the Boron atoms into the silicon.

If we have an element with more electrons we call it a donor, and
the donor concentration 𝑁𝐷 .

The main effect of doping is that it changes the location of the
Fermi level at thermal equilibirum. For donors, the Fermi level will
shift closer to the conduction band, and increase the probabilty of
free electrons, as determined by Equation (2).

Since the crystal now has an abundance of free electrons, which
have negative charge, we call it n-type.

If the element has less electrons we call it an acceptor, and the
acceptor concentration𝑁𝐴. Since the crystal now has an abundance
of free holes, we call it p-type.

The doped material does not have a net charge, however, as it’s the
same number of electrons and protons, so even though we dope
silicon, it does remain neutral.

The doping concentrations are larger than the intrinsic carrier
concentration, from maybe 1021 to 1027 carriers/m3. To separate
between these concentrations we use 𝑝−, 𝑝, 𝑝+ or 𝑛−, 𝑛, 𝑛+.

The number of electrons and holes in a n-type material is

𝑛𝑛 = 𝑁𝐷 , 𝑝𝑛 =
𝑛2
𝑖

𝑁𝐷

and in a p-type material

𝑝𝑝 = 𝑁𝐴 , 𝑛𝑝 =
𝑛2
𝑖

𝑁𝐴

https://en.wikipedia.org/wiki/Two-dimensional_electron_gas
https://en.wikipedia.org/wiki/Two-dimensional_electron_gas
https://en.wikipedia.org/wiki/Doping_(semiconductor)
https://en.wikipedia.org/wiki/Ion_implantation
https://ieeexplore.ieee.org/document/1050758
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In a p-type crystal there is a majority of holes, and a minority of
electrons. Thus we name holes majority carriers, and electrons
minority carriers. For n-type it’s opposite.

4.6 PN junctions

Imagine an n-type material, and a p-type material, both are neutral
in charge, because they have the same number of electrons and
protons. Within both materials there are free electrons, and free
holes which move around constantly.

Now imagine we bring the two materials together, and we call
where they meet the junction. Some of the electrons in the n-type
will wander across the junction to the p-type material, and visa
versa. On the opposite side of the junction they might find an
opposite charge, and might get locked in place. They will become
stuck.

After a while, the diffusion of charges across the junction creates
a depletion region with immobile charges. Where as the two
materials used to be neutrally charged, there will now be a build
up of negative charge on the p-side, and positive charge on the
n-side.

4.6.1 Built-in voltage

The charge difference will create a field, and a built-in voltage will
develop across the depletion region.

The density of free electrons in the conduction band is

𝑛 =

∫ ∞

𝐸𝐶

𝑁(𝐸) 𝑓 (𝐸)𝑑𝐸

, where 𝑁(𝐸) is the density of states, and 𝑓 (𝐸) is a probability of a
electron being in that state (Equation (2)).

We could write the density of electrons on the n-side as

𝑛𝑛 = 𝑒𝐸𝐹𝑛 /𝑘𝑇
∫ ∞

𝐸𝐶

𝑁𝑛(𝐸)𝑒−𝐸/𝑘𝑇𝑑𝐸

since the Fermi level is independent of the energy state of the
electrons (I think).

The density of electrons on the p-side could be written as

𝑛𝑝 = 𝑒𝐸𝐹𝑝 /𝑘𝑇
∫ ∞

𝐸𝐶

𝑁𝑝(𝐸)𝑒−𝐸/𝑘𝑇𝑑𝐸
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If we assume that the density of states, 𝑁𝑛(𝐸) and 𝑁𝑝(𝐸) are the
same, and the temperature is the same, then

𝑛𝑛

𝑛𝑝
=
𝑒𝐸𝐹𝑛 /𝑘𝑇

𝑒𝐸𝐹𝑝 /𝑘𝑇
= 𝑒(𝐸𝐹𝑛−𝐸𝐹𝑝 )/𝑘𝑇

The difference in Fermi levels is the built-in voltage multiplied by
the unit charge.

𝐸𝐹𝑛 − 𝐸𝐹𝑝 = 𝑞Φ

and by substituting for the minority carrier concentration on the
p-side we get

𝑁𝐴𝑁𝐷

𝑛2
𝑖

= 𝑒𝑞Φ0/𝑘𝑇

or rearranged to

Φ0 =
𝑘𝑇

𝑞
𝑙𝑛

(
𝑁𝐴𝑁𝐷

𝑛2
𝑖

)

4.6.2 Current

The derivation of current is a bit involved, but let’s try.

The hole concentration on the p-side and n-side could be written
as

𝑝𝑝

𝑝𝑛
= 𝑒−𝑞Φ0/𝑘𝑇

The negative sign is because the built in voltage is positive on the
n-type side

Asssume that −𝑥𝑝0 is the start of the junction on the p-side, and
𝑥𝑛0 is the start of the junction on the n-side.

Assume that we lift the p-side by a voltage 𝑞𝑉

Then the hole concentration would change to

𝑝(−𝑥𝑝0)
𝑝(𝑥𝑛0)

= 𝑒𝑞(𝑉−Φ0)/𝑘𝑇

while on the n-side the hole concentration would be

𝑝(𝑥𝑛0)
𝑝𝑛

= 𝑒𝑞𝑉/𝑘𝑇
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So the excess hole concentration on the n-side due to an increase
of 𝑉 would be

Δ𝑝𝑛 = 𝑝(𝑥𝑛0) − 𝑝𝑛 = 𝑝𝑛

(
𝑒𝑞𝑉/𝑘𝑇 − 1

)
The diffusion current density, given by Equation (4) states

𝐽(𝑥𝑛) = −𝑞𝐷𝑝

𝜕𝜌

𝜕𝑥

Thus we need to know the charge density as a function of 𝑥. I’m
not sure why, but apparently it’s

𝜕𝜌(𝑥𝑛) = Δ𝑝𝑛𝑒
−𝑥𝑛/𝐿𝑝

where 𝐿𝑝 is a diffusion length. I think the equation above, the
exponential decay as a function of length, is related to the probabilty
of electron/hole recombination, and how the rate of recombination
must be related to the exceess hole concentration, as such related
to Exponential decay.

Anyhow, we can now compute the current density, and need only
compute it for 𝑥𝑛 = 0, so you can show it’s

𝐽(0) = 𝑞
𝐷𝑝

𝐿𝑝
𝑝𝑛

(
𝑒𝑞𝑉/𝑘𝑇 − 1

)
which start’s to look like the normal diode equation. The 𝑝𝑛 is the
minority concentration of holes on the n-side, which we’ve before
estimated as 𝑝𝑛 =

𝑛2
𝑖

𝑁𝐷

We’ve only computed for holes, but there will be electron transport
from the p-side to the n-side also.

We also need to multiply by the area of the diode to get current
from current density. The full equation thus becomes

𝐼 = 𝑞𝐴𝑛2
𝑖

(
1
𝑁𝐴

𝐷𝑛

𝐿𝑛
+ 1
𝑁𝐷

𝐷𝑝

𝐿𝑝

) [
𝑒𝑞𝑉/𝑘𝑇 − 1

]
where 𝐴 is the area of the diode, 𝐷𝑛 ,𝐷𝑝 is the diffusion coefficient
of electrons and holes and 𝐿𝑛 ,𝐿𝑝 is the diffusion length of electrons
and holes.

Which we usually write as

𝐼𝐷 = 𝐼𝑆(𝑒
𝑉𝐷
𝑉𝑇 − 1), where 𝑉𝑇 = 𝑘𝑇/𝑞

https://en.wikipedia.org/wiki/Exponential_decay


4.6 PN junctions 39

4.6.3 Forward voltage temperature dependence

We can rearrange 𝐼𝐷 equation to get

𝑉𝐷 = 𝑉𝑇 ln
(
𝐼𝐷

𝐼𝑆

)
and at first glance, it appears like 𝑉𝐷 has a positive temperature
coefficient. That is, however, wrong.

First rewrite

𝑉𝐷 = 𝑉𝑇 ln 𝐼𝐷 −𝑉𝑇 ln 𝐼𝑆

ln 𝐼𝑆 = 2 ln 𝑛𝑖 + ln𝐴𝑞
(
𝐷𝑛

𝐿𝑛𝑁𝐴
+

𝐷𝑝

𝐿𝑝𝑁𝐷

)
Assume that diffusion coefficient ‡, and diffusion lengths are
independent of temperature.

That leaves 𝑛𝑖 that varies with temperature.

𝑛𝑖 =
√
𝐵𝑐𝐵𝑣𝑇

3/2𝑒
−𝐸𝑔
2𝑘𝑇

where

𝐵𝑐 = 2
[
2𝜋𝑘𝑚∗

𝑛

ℎ2

]3/2

𝐵𝑣 = 2
[2𝜋𝑘𝑚∗

𝑝

ℎ2

]3/2

2 ln 𝑛𝑖 = 2 ln
√
𝐵𝑐𝐵𝑣 + 3 ln𝑇 − 𝑉𝐺

𝑉𝑇

with 𝑉𝐺 = 𝐸𝐺/𝑞 and inserting back into equation for 𝑉𝐷

𝑉𝐷 =
𝑘𝑇

𝑞
(ℓ − 3 ln𝑇) +𝑉𝐺

Where ℓ is temperature independent, and given by

ℓ = ln 𝐼𝐷 − ln
(
𝐴𝑞

𝐷𝑛

𝐿𝑛𝑁𝐴
+

𝐷𝑝

𝐿𝑝𝑁𝐷

)
− 2 ln

√
𝐵𝑐𝐵𝑣

‡ From the Einstein relation 𝐷 = 𝜇𝑘𝑇 it does appear that the diffusion coefficient
increases with temperature, however, the mobility decreases with temperature.
I’m unsure of whether the mobility decreases with the same rate though.
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From equations above we can see that at 0 K, we expect the diode
voltage to be equal to the bandgap of silicon. Diodes don’t work at
0 K though.

Although it’s not trivial to see that the diode voltage has a negative
temperature coefficient, if you do compute it as in vd.py, then
you’ll see it decreases.

The slope of the diode voltage can be seen to depend on the area,
the current, doping, diffusion constant, diffusion length and the
effective masses.

Figure 3 shows the𝑉𝐷 and the deviation of𝑉𝐷 from a straight line.
The non-linear component of 𝑉𝐷 is only a few mV. If we could
combine 𝑉𝐷 with a voltage that increased with temperature, then
we could get a stable voltage across temperature to within a few
mV.
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Figure 3: Diode forward voltage as a function of temperature

4.6.4 Current proportional to temperature

Assume we have a circuit like Figure 4.

Here we have two diodes, biased at different current densities. The
voltage on the left diode 𝑉𝐷1 is equal to the sum of the voltage on
the right diode 𝑉𝐷2 and voltage across the resistor 𝑅1. The current
in the two diodes are the same due to the current mirror. A such,
we have that

𝐼𝑆𝑒
𝑞𝑉𝐷1
𝑘𝑇 = 𝑁𝐼𝑆𝑒

𝑞𝑉𝐷2
𝑘𝑇

Taking logarithm of both sides, and rearranging, we see that

https://github.com/wulffern/memos/blob/main/2021-07-08_diodes/vd.py
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𝑉𝐷1 −𝑉𝐷2 =
𝑘𝑇

𝑞
ln𝑁

Or that the difference between two diode voltages biased at different
current densities is proportional to absolute temperature.

In the circuit above, this Δ𝑉𝐷 is across the resistor 𝑅1, as such,
the 𝐼𝐷 = Δ𝑉𝐷/𝑅1. We have a current that is proportional to
temperature.

If we copied the current, and sent it into a series combination of a
resistor 𝑅2 and a diode, we could scale the 𝑅2 value to give us the
exactly right slope to compensate for the negative slope of the 𝑉𝐷
voltage.

The voltage across the resistor and diode would be constant over
temperature, with the small exception of the non-linear component
of 𝑉𝐷 .

R

T N

Figure 4: Circuit to generate a current proportional to kT

4.7 Equations aren’t real

Nature does not care about equations. It just is.

We know, at the fundamental level, nature appears to obey the
mathematics on quantum mechanics, however, due to the com-
plexity of nature, it’s not possible today (which is not the same as
impossible), to compute exactly how the current in a diode works.
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We can get close, by measuring a diode we know well, and hope
that the next time we make the same diode, the behavior will be
the same.

As such, I want to warn you about the “lies” or “simplifications”
we tell you. Take the diode equation above, some parts, like the
intrinsic carrier concentration 𝑛𝑖 has roots directly from quantum
mechanics, with few simplifications, which means it’s likely solid
truth, at least for a single unit cell.

But there is no reason nature should make all unit cells the same,
and infact, we know they are not the same, we put in dopants. As
we scale down to a few nano-meter transistors the simplification
that “all unit cells of silicon are the same, and extend to infinity” is
no longer true, and must be taken into account in how we describe
reality.

Other parts, like the exact value of the bandgap 𝐸𝑔 , the diffusion
constant 𝐷𝑝 or diffusion length 𝐿𝑝 are macroscopic phenomena,
we can’t expect them to be 100 % true. The values would be based
on measurement, but not always exact, and maybe, if you rotate
your diode 90 degrees on the integrated circuit, the values could
be different.

You should realize that the consequence of our imperfection is that
the equations in electronics should always be taken with a grain of
salt.

Nature does not care about your equations. Nature will easily have
the superposition of trillions of electrons, and they don’t have to
agree with your equations.

But most of the time, the behavior is similar.
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5.1 Noise

Noise is a phenomena that occurs in all electronic circuits. It places
a lower limit on the smallest signal we can use. Many now have
super audio compact disc (SACD) players with 24bit converters,
24 bits is around 224 = 16.78 Million different levels. If 5V is the
maximum voltage, the minimum would have to be 5𝑉

224 ≈ 298𝑛𝑉 .
That level is roughly equivalent to the noise in a 50 Ohm resistor
with a bandwith of 96kHz. There exist an equation that relates
number of bits to signal to noise ratio 1, the equation specifies
that 𝑆𝑁𝑅 = 6.02 ∗ 𝐵𝑖𝑡𝑠 + 1.76 = 146.24𝑑𝐵. As of 12.2005 the best
digital to analog converter (DAC) that Analog Devices (a very
big semiconductor company) has is a DAC with 120dB SNR, that
equals around 𝐵𝑖𝑡𝑠 = (120 − 1.76)/6.02 = 19.64. In other words,
the last four bits of your SACD player is probably noise!

5.2 Statistics

The mean of a signal x(t) is defined as

𝑥(𝑡) = lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥(𝑡)𝑑𝑡

The mean square of x(t) defined as

𝑥2(𝑡) = lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥2(𝑡)𝑑𝑡

The variance of x(t) defined as

𝜎2 = 𝑥2(𝑡) − 𝑥(𝑡)
2

For a signals with a mean of zero the variance is equal to the mean
square. The auto-correlation of x(t) is defined as

𝑅𝑥(𝜏) = 𝑥(𝑡)𝑥(𝑡 + 𝜏)

= lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡
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5.3 Average Power

Average power is defined for a continuous system as ([eq:powcont])
and for discrete samples it can be defined as ([eq:powsamp]).

𝑃𝑎𝑣 usually has the unit𝐴2 or𝑉2, so we have to multiply/devide by
the impedance to get the power in Watts. To get Volts and Amperes
we use the root-mean-square (RMS) value which is defined as√
𝑃𝑎𝑣 .

𝑃𝑎𝑣 = lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥2(𝑡)𝑑𝑡

𝑃𝑎𝑣 =
1
𝑁

𝑁∑
𝑖=0

𝑥2(𝑖)

If x(t) has a mean of zero then, according to ([eq:var]), 𝑃𝑎𝑣 is equal
to the variance of x(t).

Many different notations are used to denote average power and
RMS value of voltage or current, some of them are listed in Table
[t:avgpow] and Table 2. Notation can be a confusing thing, it
changes from book to book and makes expressions look different.

It is important to realize that it does not matter how you write
average power and RMS value. If you want you can invent your
own notation for average power and RMS value. However, if you
are presenting your calculations to other people it is convenient if
they understand what you have written. In the remainder of this
paper we will use 𝑒2

𝑛 for average power when we talk about voltage
noise source and 𝑖2𝑛 for average power when we talk about current
noise source. The n subscript is used to identify different sources
and can be whatever.

Voltage Current

𝑉2
𝑟𝑚𝑠 𝐼2𝑟𝑚𝑠

𝑉2
𝑛 𝐼2𝑛

𝑣2
𝑛 𝑖2𝑛

Voltage Current

𝑉𝑟𝑚𝑠 𝐼𝑟𝑚𝑠√
𝑉2
𝑛

√
𝐼2𝑛√

𝑣2
𝑛

√
𝑖2𝑛
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5.4 Noise Spectrum

With random noise it is useful to relate the average power to
frequency. We call this Power Spectral Density (PSD). A PSD plots
how much power a signal carries at each frequency. In literature
𝑆𝑥( 𝑓 ) is often used to denote the PSD. In the same way that we use
𝑉2 as unit of average power, the unit of the PSD is 𝑉2

𝐻𝑧 for voltage
and 𝐴2

𝐻𝑧 current. The root spectral density is defined as
√
𝑆𝑥( 𝑓 ) and

has unit 𝑉√
𝐻𝑧

for voltage and 𝐼√
𝐻𝑧

for current.

The power spectral density is defined as two times the Fourier
transform of the auto-correlation function 2

𝑆𝑥( 𝑓 ) = 2
∫ ∞

−∞
𝑅𝑥(𝜏)𝑒−𝑗2𝜋 𝑓 𝜏𝑑𝜏

This can also be written as

𝑆𝑥( 𝑓 ) = 2
[∫ ∞

−∞
𝑅𝑥(𝜏) cos(𝜔𝜏)𝑑𝜏 −

∫ ∞

−∞
𝑅𝑥(𝜏)𝑗 sin(𝜔𝜏)𝑑𝜏

]
= 2

[∫ 0

−∞
𝑅𝑥(𝜏) cos(𝜔𝜏)𝑑𝜏 +

∫ ∞

0
𝑅𝑥(𝜏) cos(𝜔𝜏)𝑑𝜏

]
− 2𝑗

[∫ 0

−∞
𝑅𝑥(𝜏) sin(𝜔𝜏)𝑑𝜏 +

∫ ∞

0
𝑅𝑥(𝜏) sin(𝜔𝜏)𝑑𝜏

]
= 4

∫ ∞

0
𝑅𝑥(𝜏) cos(𝜔𝜏)𝑑𝜏

− 2𝑗
[
−

∫ ∞

0
𝑅𝑥(𝜏) sin(𝜔𝜏)𝑑𝜏 +

∫ ∞

0
𝑅𝑥(𝜏) sin(𝜔𝜏)𝑑𝜏

]
= 4

∫ ∞

0
𝑅𝑥(𝜏) cos(𝜔𝜏)𝑑𝜏

, since 𝑒−𝑗𝜔𝜏 = cos(𝜔𝜏) − 𝑗 sin(𝜔𝜏), 𝑅𝑥(𝜏) and cos(𝜔𝜏) are sym-
metric around 𝜏 = 0 while sin(𝜔𝜏) is asymmetric around 𝜏 = 0.

The inverse of power spectral density is defined as

𝑅𝑥(𝜏) =
1
2

∫ ∞

−∞
𝑆𝑥( 𝑓 )𝑒 𝑗2𝜋 𝑓 𝜏𝑑𝑓 =

∫ ∞

0
𝑆𝑥( 𝑓 ) cos(𝜔𝜏)𝑑𝑓

If we set 𝜏 = 0 we get

𝑥2(𝑡) =
∫ ∞

0
𝑆𝑥( 𝑓 )𝑑𝑓

which means we can easily calculate the average power if we know
the power spectral density. As we will see later it is common to
express noise sources in PSD form.



46 5 Noise

Another very useful theorem when working with noise in the
frequency domain is this

𝑆𝑦( 𝑓 ) = 𝑆𝑥( 𝑓 )|𝐻( 𝑓 )|2

, where 𝑆𝑦( 𝑓 ) is the output power spectral density, 𝑆𝑥( 𝑓 ) is the
input power spectral density and 𝐻( 𝑓 ) is the transfer function of a
time-invariant linear system.

If we insert ([eq:psd_hf]) into ([eq:ms_psd]), with 𝑆𝑥( 𝑓 ) =

𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐷𝑣 we get

𝑥2(𝑡) =
∫

𝑆𝑦( 𝑓 )𝑑𝑓 = 𝐷𝑣

∫
|𝐻( 𝑓 )|2𝑑𝑓 = 𝐷𝑣 𝑓𝑥

, where 𝑓𝑥 is what we call the noise bandwidth. For a single time
constant RC network the noise bandwidth is equal to

𝑓𝑥 =
𝜋 𝑓0
2

=
1

4𝑅𝐶
where 𝑓𝑥 is the noise bandwidth and 𝑓0 is the 3dB frequency.

We haven’t told you this yet, but thermal noise is white and white
means that the power spectral density is flat (constant over all
frequencies). If 𝑆𝑥( 𝑓 ) is our thermal noise source and 𝐻( 𝑓 ) is a
standard low pass filter, then equation ([eq:psd_hf]) tells us that
the output spectral density will be shaped by 𝐻( 𝑓 ). At frequencies
above the 𝑓𝑥 in 𝐻( 𝑓 ) we expect the root power spectral density to
fall by 20dB per decade.

5.5 Probability Distribution

Theorem 1 (Central limit theorem). The sum of 𝑛 independent random
variables subjected to the same distribution will always approach a normal
distribution curve as 𝑛 increases.

This is a neat theorem, it explains why many noise sources we
encounter in the real world are white.‗ Take thermal noise for
example, it is generated by random motion of carriers in materials.
If we look at a single electron moving through the material the
probability distribution might not be Gaussian. But summing
probability distribution of the random movments with a large
number of electrons will give us a Gaussian distribution, thus
thermal noise is white.

‗ Gaussian distribution = normal distribution. Noise sources with Gaussian
distribution are called white
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5.6 PSD of a white noise source

If we have a true random process with Gaussian distribution we
know that the autocorrelation function only has a value for 𝜏 = 0.
From equation ([eq:autocor]) we have that

𝑅𝑥(𝜏) = lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥(𝑡)𝑥(𝑡 − 𝜏)𝑑𝑡

=

[
lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥2(𝑡)𝑑𝑡

]
𝛿(𝜏)

= 𝑥2(𝑡)𝛿(𝜏)

The reason being that in a true random process 𝑥(𝑡) is uncorrelated
with 𝑥(𝑡 + 𝜏) where 𝜏 is an integer. If we use equation ([eq:psd])
we see that

𝑆𝑥( 𝑓 ) = 2
∫ ∞

−∞
𝑥2(𝑡)𝛿(𝜏)𝑒−𝑗2𝜋 𝑓 𝜏𝑑𝜏

= 2𝑥2(𝑡)
∫ ∞

−∞
𝛿(𝜏)𝑒−𝑗2𝜋 𝑓 𝜏𝑑𝜏

= 2𝑥2(𝑡)

, since

∫
𝛿(𝜏)𝑒−𝑗2𝜋 𝑓 𝜏𝑑𝜏 = 𝑒0 = 1

This means that the power spectral density of a white noise source
is flat, or in other words, the same for all frequencies.

5.7 Summing noise sources

Summing noise sources is usually trivial, but we need to know
why and when it is not. We if we write the time dependant noise
signals as

𝑣2
𝑡𝑜𝑡(𝑡) = (𝑣1(𝑡) + 𝑣2(𝑡))2 = 𝑣2

1(𝑡) + 2𝑣1(𝑡)𝑣2(𝑡) + 𝑣2
2(𝑡)

The average power is defined as
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𝑒2
𝑡𝑜𝑡 = lim

𝑇→∞
1
𝑇

∫ +𝑇/2

−𝑇/2
𝑣2
𝑡𝑜𝑡(𝑡)𝑑𝑡

= lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑣2

1(𝑡)𝑑𝑡

+ lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑣2

2(𝑡)𝑑𝑡

+ lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
2𝑣1(𝑡)𝑣2(𝑡)𝑑𝑡

= 𝑒2
1 + 𝑒2

2 + lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
2𝑣1(𝑡)𝑣2(𝑡)𝑑𝑡

If 𝑒2
1 and 𝑒2

2 are uncorrelated noise sources we can skip the last
term in ([eq:noisesum]) and just write

𝑒2
𝑡𝑜𝑡 = 𝑒2

1 + 𝑒2
2

Most natural noise sources are uncorrelated.

5.8 Signal to Noise Ratios

Signal to Noise Ratio (SNR) is a common method to specify the
relation between signal power and noise power in linear systems.
It is defined as

𝑆𝑁𝑅 = 10 log
(
𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟

)
= 10 log ©­«

𝑣2
𝑠𝑖𝑔

𝑒2
𝑛

ª®¬
= 20 log

©­­«
𝑣𝑟𝑚𝑠√
𝑒2
𝑛

ª®®¬
Another useful ratio is Signal to Noise and Distortion (SNDR),
since most real systems exibit non-linearities it is useful to include
distortion in the ratio. One can calculate SNR and SNDR in many
ways. If we don’t know the expression for 𝑒2

𝑛 we can do a FFT of
our output signal. From this FFT we sum spectral components
except at the signal frequency to get noise and distortion. SNR is
normally calculated as

𝑆𝑁𝑅 = 10 log
(

𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟 − 6 𝑓 𝑖𝑟𝑠𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠

)
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And SNDR is calculated as

𝑆𝑁𝐷𝑅 = 10 log
(
𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟

)

5.9 Noise figure and Friis formula

Noise factor is a measure on the noise performance of a system. It
is defined as

𝐹 =
𝑣2
𝑜

𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑣2
𝑜

where 𝑣2
𝑜 is the total output noise.

The noise figure is defined as (noise factor in dB)

𝑁𝐹 = 10 log(𝐹)
The noise factor can also be defined as

𝐹 =
𝑆𝑁𝑅𝑖𝑛𝑝𝑢𝑡

𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡

This brings us right into what is known as Friis formula. If we have
a multistage system, for example several amplifiers in cascade, the
total noise figure of the system is defined as

𝐹 = 1 + 𝐹1 − 1 + 𝐹2 − 1
𝐺1

+ 𝐹3 − 1
𝐺1𝐺2

+ ....

Here 𝐹𝑖 is the noise figures of the individual stages and 𝐺𝑖 is the
available gain of each stage. This can be rewritten as

𝐹 = 𝐹1 +
𝑁∑
𝑖=1

𝐹𝑖+1 − 1∏𝑖−1
𝑘=1 𝐺𝑖

Friiss formula tells us that it is the noise in the first stage that is the
most important if 𝐺1 is large. We could say that in a system it is
important to amplify the noise as early as possible!

5.10 Spectral Density

Warning: This is not an introduction to spectral density. If the
subject is completely unfamiliar I’d advise reading another source.
For example chapter 4 in 1 or chapter 7 in 3.
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5.10.1 Definition of Spectral Density

There are two different definitions of spectral density used in the
literature. They differ by a factor of two. The one used in signal
processing books, like 4, is

𝑆𝑥1( 𝑓 ) =
∫ ∞

−∞
𝑅𝑥1(𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏

And the one often used in books about noise, like 2, is

𝑆𝑥2( 𝑓 ) = 2
∫ ∞

−∞
𝑅𝑥2(𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏

In both cases 𝑅𝑥𝑖(𝜏) is the auto-correlation function defined as

𝑅𝑥𝑖(𝜏) = 𝑥𝑖(𝑡)𝑥𝑖(𝑡 + 𝜏)
As we can plainly see

𝑆𝑥1( 𝑓 ) ≠ 𝑆𝑥2( 𝑓 )
, there is no way these two can be made equal if

𝑅𝑥1(𝜏) = 𝑅𝑥2(𝜏)
This is ok, there is no problem having two different definitions for
two different functions. In reality 𝑆𝑥1( 𝑓 ) and 𝑆𝑥2( 𝑓 ) are different
functions of frequency, and we could say that

𝑆𝑥2( 𝑓 ) = 2𝑆𝑥1( 𝑓 )
if ([eq:rxequal]) is true.

5.10.2 Sources of Confusion

The problem with spectral density arises when reading literature
from different communities, for example 4 and 2 where 𝑆𝑥( 𝑓 )
is used for both 𝑆𝑥1( 𝑓 ) and 𝑆𝑥2( 𝑓 ). When I started investigating
spectral densities this lead me to believe that different sources
defined the same measure “spectral density” in two different ways.
The more sources I investigated the more unsure I was about which
of the two definitions that was correct. After months of searching
(not actively, but sporadicly) I eventually found the original source
of the definition of spectral density 5. Having the original source
helped, but I still don’t know when the original definition split into
([eq:psd1]) and ([eq:psd2]). However, I’m pretty sure the it’s just a
matter of convenience. To see why ([eq:psd2]) is the most common
among sources concerning noise we look at the inverse Fourier
Transform. By the way, if you had not noticed yet, ([eq:psd1]) says



5.10 Spectral Density 51

that Spectral density is the Fourier Transform of the Auto-Correlation
function. The inverse Fourier Transform of ([eq:psd1]) is

𝑅𝑥1(𝜏) =
1

2𝜋

∫ ∞

−∞
𝑆𝑥1( 𝑓 )𝑒 𝑗𝜔𝜏𝑑𝑤 =

∫ ∞

−∞
𝑆𝑥1( 𝑓 )𝑒 𝑗𝜔𝜏𝑑𝑓

,since 𝑑𝑤 = 𝑑𝑓 𝑑𝑤/𝑑𝑓 = 2𝜋𝑑𝑓 . And for ([eq:psd2])

𝑅𝑥2(𝜏) =
1
2

∫ ∞

−∞
𝑆𝑥2( 𝑓 )𝑒 𝑗𝑤𝜏𝑑𝑓

Before we proceed lets get rid of the 𝑒’s. We know that 𝑒 𝑗𝛼 =

cos 𝛼 + 𝑗 sin 𝛼. So we could rewrite ([eq:psd1]) as

𝑆𝑥1( 𝑓 ) =
∫ ∞

−∞
𝑅𝑥1(𝜏)[cos(𝜔𝜏) + 𝑗 sin(𝜔𝜏)]𝑑𝜏

and it turns out that since 𝑅𝑥1(𝜏) is an even function we can drop
the 𝑗 sin 𝜔𝜏 term. 𝑆𝑥1( 𝑓 ) is also an even function since the Fourier
Transform of an even function is even.

The definitions then become

𝑆𝑥1( 𝑓 ) =
∫ ∞

−∞
𝑅𝑥1(𝜏) cos(𝜔𝜏)𝑑𝜏

𝑅𝑥1(𝜏) =
∫ ∞

−∞
𝑆𝑥1( 𝑓 ) cos(𝜔𝜏)𝑑𝑓

and

𝑆𝑥2( 𝑓 ) = 2
∫ ∞

−∞
𝑅𝑥2(𝜏) cos(𝜔𝜏)𝑑𝜏

𝑅𝑥2(𝜏) =
1
2

∫ ∞

−∞
𝑆𝑥2( 𝑓 ) cos(𝜔𝜏)𝑑𝑓

We can rewrite 𝑅𝑥2(𝜏) as

𝑅𝑥2(𝜏) = 𝑥2(𝑡)𝑥2(𝑡 + 𝜏) =
∫ ∞

0
𝑆𝑥2( 𝑓 ) cos(𝜔𝜏)𝑑𝑓

and if 𝜏 = 0

𝑥2
2(𝑡) =

∫ ∞

0
𝑆𝑥2( 𝑓 )𝑑𝑓

So using spectral density definition ([eq:psd2]) we see that average
power (mean square value of 𝑥2(𝑡)) is equal to the integral from
0 to infinity of the spectral density. If we use ([eq:psd1]) average
power would be
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𝑥2
1(𝑡) = 2

∫ ∞

0
𝑆𝑥1( 𝑓 )𝑑𝑓

But if 𝑅𝑥1(𝜏) = 𝑅𝑥2(𝜏) then

𝑥2
2(𝑡) = 𝑥2

1(𝑡)
even though 𝑆𝑥1( 𝑓 ) ≠ 𝑆𝑥2( 𝑓 ).

Definition ([eq:psd1]) is called the two-sided spectral density and
([eq:psd2]) is called the one-sided spectral density.

5.10.3 Example: Thermal Noise

The spectral density of thermal noise in electronic circuit should be
known to anyone that has studied analog electronics. We normally
define the voltage spectral density of thermal noise as

𝑆𝑡ℎ( 𝑓 ) = 4𝑘𝑇𝑅

where k is Boltzmann’s constant, T the temperature in Kelvin and
R the resistance. But ([eq:othermal]) is the spectral density when it
is defined as in ([eq:psd2]). If we were to use ([eq:psd1]) then the
spectral density of thermal noise would be

𝑆𝑡ℎ( 𝑓 ) = 2𝑘𝑇𝑅

Both these spectral densities would give the same average power
value if we use the inverse Fourier Transform of ([eq:psd1]) and
([eq:psd2]).†

5.10.4 Einstein: The source

In his 1914 paper 5 Albert Einstein described, supposedly for the
first time, the auto-correlation function and what we have come
to know as the spectral density. He defined the auto-correlation
function as

𝔐(Δ) = 𝐹(𝑡)𝐹(𝑡 + Δ)
and the intensity (spectral density) as

𝐼(𝜃) =
∫ 𝑇

0
𝔐(Δ) cos(𝜋Δ

𝜃
)𝑑Δ

† Note that if you calculate the average power of 𝑆𝑡ℎ( 𝑓 ) you’ll get infinity. You
have to include the bandwidth of the circuit you are considering for average
power to have a finite value.
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,where the period 𝜃 = 𝑇/𝑛 and𝑇 is a very large value. The paper is
very short, only 1 page, but it is worth reading. Note that ([eq:psd1])
is often referred to as the Wiener-Khintchine theorem.
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Status: 1.0

6.1 Tools

I would strongly recommend that you install all tools locally on
your system.

For the analog toolchain we need some tools, and a process design
kit (PDK).

▶ Skywater 130nm PDK. I use open_pdks to install the PDK
▶ Magic VLSI for layout
▶ ngspice for simulation
▶ netgen for LVS
▶ xschem
▶ python > 3.10

The tools are not that big, but the PDK is huge, so you need to have
about 50 GB disk space available.

6.1.1 Setup WSL (Applicable for Windows users)

Install a Linux distribution such as Ubuntu 24.04 LTS by running
the following command in PowerShell on Windows and follow the
instructions.

wsl --install -d Ubuntu-24.04

When you have installed the Linux distribution and signed into it,
install make

sudo apt install make

6.1.2 Setup public key towards github

Do

ssh-keygen -t rsa

And press “enter” on most things, or if you’re paranoid, add a
passphrase

Then

cat ~/.ssh/id_rsa.pub

https://github.com/google/skywater-pdk
https://github.com/RTimothyEdwards/open_pdks
https://github.com/RTimothyEdwards/magic
https://git.code.sf.net/p/ngspice/ngspice
https://github.com/RTimothyEdwards/netgen.git
https://github.com/StefanSchippers/xschem
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And add the public key to your github account. Settings - SSH and
GPG keys

6.1.3 Provide git with author identity

There are interactions with git that require an author identity. You
are supposed to use one of these interactions a lot during the
project, namely, git commit. What you need to provide is an email
address and a name. If you would like to keep your real email
address private/secret, read what it says on GitHub at your user
settings page under emails. Use the below commands to provide
the author identity information to git.

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

6.1.4 Get AICEX and setup your shell

You don’t have to put aicex in $HOME/pro, but if you don’t know
where to put it, chose that directory.

cd
mkdir pro
cd pro
git clone --recursive https://github.com/wulffern/aicex.git

You need to add the following to your ~/.bashrc (note that
~ refers to your home directory $HOME/.bashrc also works, or
$HOME/.bash_profile on some newer macs)

export PDK_ROOT=/opt/pdk/share/pdk
export LD_LIBRARY_PATH=/opt/eda/lib
export PATH=/opt/eda/bin:$HOME/.local/bin:$PATH

6.1.5 On systems with python3 > 3.12

On newer systems it’s not trivial to install python packages because
python is externally managed. As such, we need to install a python
environment.

#- Find a package similar to name below
sudo apt-get update
sudo apt install python3.12-venv
sudo mkdir /opt
sudo mkdir /opt/eda
sudo mkdir /opt/eda/python3
sudo chown -R $USER:$USER /opt/eda/python3/
python3 -m venv /opt/eda/python3

Modify the ~/.bashrc to include the python environment

export PATH=/opt/eda/bin:/opt/eda/python3/bin:$HOME/.local/bin:$PATH

https://github.com/settings/emails
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6.1.6 Install Tools

Make sure you load the settings before you proceed

source ~/.bashrc

Hopefully the commands below work, if not, then try again, or try
to understand what fails. There is no point in continuing if one
command fails.

cd aicex/tests/
make requirements
make tt

On a mac, you probably need to add bison to the path

export PATH="/opt/homebrew/opt/bison/bin:$PATH"

I’ve split the install of each of the tools. It’s possible to run the
commented out lines instead, but they often fail

#make eda_compile
#sudo make eda_install
make magic_compile magic_install
make netgen_compile netgen_install
make xschem_compile xschem_install
make iverilog_compile iverilog_install
make ngspice_compile # Sometimes fails
make ngspice_compile ngspice_install

On Mac, do

brew install yosys verilator

On Linux, do

make yosys_compile yosys_install

On all, do

python3 -m ensurepip --default-pip

python3 -m pip install matplotlib numpy click svgwrite \
pyyaml pandas tabulate wheel setuptools tikzplotlib

source install_open_pdk.sh

6.1.7 Install cicconf

cIcConf is used for configuration. How the IPs are connected, and
what version of IPs to get.

cd
cd pro/aicex/ip/cicconf
git checkout main
git pull
python3 -m pip install -e .
cd ../

Update IPs

cicconf clone --https
cd ../..
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6.1.8 Install cicsim

cIcSim is used for simulation orchestration.

cd aicex/ip/cicsim
python3 -m pip install -e .
cd ../..

6.1.9 Setup your ngspice settings

Edit ~/.spiceinit and add

set ngbehavior=hsa ; set compatibility for PDK libs
set ng_nomodcheck ; don't check the model parameters
set num_threads=8 ; CPU hardware threads available
set skywaterpdk
option noinit ; don't print operating point data
option klu
optran 0 0 0 100p 2n 0 ; don't use dc operating point,
option opts

6.2 Check that magic and xschem works

To check that magic and xschem works

cd ~/pro/aicex/ip/sun_sar9b_sky130nm/work
magic ../design/SUN_SAR9B_SKY130NM/SUNSAR_SAR9B_CV.mag &
xschem -b ../design/SUN_SAR9B_SKY130NM/SUNSAR_SAR9B_CV.sch &

6.3 Design tutorial

6.3.1 Create the IP

I’ve made some scripts to automatically generate the IP.

To see what files are generated, see tech_sky130A/cicconf/ip_-
template.yaml

cd aicex/ip
cicconf newip ex

6.3.2 The file structure

It matters how you name files, and store files. I would be surprised
if you had a good method already, as such, I won’t allow you
to make your own folder structure and names for things. I also
control the filenames and folder structure because there are many
scripts to make your life easier (yes, really) that rely on an exact
structure. Don’t mess with it.
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6.3.2.1 Github workflows

On github it’s possible use something called workflows to run
things every time you push a new version. It’s really nice, since it
can then check that your design is valid.

The grading of the milestones is determined by passing github
workflows.

We will also check that you have not cheated, and modified the
workflows just to get them passing.

The workflows are defined below.

.github
workflows
docs.yaml # Generate a github page
drc.yaml # Run Design Rule Checks
gds.yaml # Generate a GDS file from layout
lvs.yaml # Run Layout Versus Schematic

# and Layout Parasitic Extraction
sim.yaml # Run a simulation

6.3.2.2 Configuration files

Each IP has a few files that define the setup, you’ll need to modify
at least the README.md and the info.yaml.

.gitignore # files that are ignored by git
README.md # Frontpage documentation
config.yaml # What libraries are used. Used by cicconf
info.yaml # Setup names, authors etc
media # Where you should store images for documentation
tech -> ../tech_sky130A # The technology library

6.3.2.3 Design files

A “cell” in the open source EDA world should consists of the
following files

▶ Schematic (.sch)
▶ Layout (.mag)
▶ Documenation (.md)

The files must have the same name, and must be stored in
design/<LIB>/ as shown below.

Note there are also two symbolic links to other libraries. These two
libraries contain standard cells and standard analog transistors
(ATR) that you should be using.

design
JNW_EX_SKY130A
JNW_EX.sch
JNW_ATR_SKY130A -> ../../jnw_atr_sky130a/design/JNW_ATR_SKY130A
JNW_TR_SKY130A -> ../../jnw_tr_sky130a/design/JNW_TR_SKY130A

For example, if the cell name was JNW_EX, then you would have
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▶ design/JNW_EX_SKY130A/JNW_EX.sch: Schematic (xschem)
▶ design/JNW_EX_SKY130A/JNW_EX.sym: Schematic (xschem)
▶ design/JNW_EX_SKY130A/JNW_EX.mag: Layout (Magic)
▶ design/JNW_EX_SKY130A/JNW_EX.md : Markdown docu-

mentation (any text editor)

All these files are text files, so you can edit them in a text editor,
but mostly you shouldn’t (except for the Markdown)

6.3.2.4 Simulations

All simulations shall be stored in sim. Once you have a Schematic
ready for simulation, then

cd sim
make cell CELL=JNW_EX

This will make a simulation folder for you. Repeat for all your
cells.

sim
Makefile
cicsim.yaml -> ../tech/cicsim/cicsim.yaml

6.3.2.5 The work

All commands (except for simulation), shall be run in the work

folder.

In the work/ folder there are startup files for Xschem (xschemrc)
and Magic (.magicrc). They tell the tools where to find the process
design kit, symbols, etc. At some point you probably need to learn
those also, but I’d wait until you feel a bit more comfortable.

work
.magicrc
Makefile
mos.24bit.dstyle -> ../tech/magic/mos.24bit.dstyle
mos.24bit.std.cmap -> ../tech/magic/mos.24bit.std.cmap
xschemrc

6.3.3 Github setup

Create a repository on github. The name of the repository that you
make on GitHub has to be the same as what is written after <your
username> in the last command below. In this example, that is
jnw_ex_sky130a.

cd jnw_ex_sky130a
git remote add origin \
git@github.com:<your username>/jnw_ex_sky130a.git

https://github.com
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6.3.4 Start working

6.3.4.1 Edit README.md

Open README.md in your favorite text editor and make necessary
changes.

6.3.4.2 Familiarize yourself with the Makefile and make

I write all commands I do into a Makefile. There is nothing special
with a Makefile, it’s just what I choose to use 20 years ago. I’m not
sure I’d choose something different now.

cd work
make

Take a look inside the file called Makefile.

6.3.5 Draw Schematic

The block we’ll make is a current mirror with a 1 to 4 scaling.

A schematic is how we describe the connectivity, and the types of
devices in an analog circuit. The open source schematic editor we
will use is XSchem.

Open the schematic:

xschem -b ../design/JNW_EX_SKY130A/JNW_EX.sch &

6.3.5.1 Add Ports

Add IBPS_5U and IBNS_20U ports, the P and N in the name
signifies what transistor the current comes from. So IBPS must go
into a diode connected NMOS, and N will be our output, and go
into a diode connected PMOS somewhere else.

6.3.5.2 Add transistors

Use ‘I’ or ‘Shift+i’ (note the letter case) to open the library manager.
Click the jnw_ex_sky130A/design path, then JNW_ATR_SKY130A

and select JNWATR_NCH_4C5F0.sym

The naming convention for these transistors is <number of

contacts on drain/source>C<times minimum gate length>F,
so the number before the C is the width, and the number
before/after the F is the length. The absolute size does not matter
for now. Just think “4C5F0 is a 4 contact wide long transistor”,
while a “4C1F2 is a 4 contact wide, short transistor”.
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Select the transistor and press ‘c’ to copy it, while dragging, press
‘shift-f’ to flip the transistor so our current mirror looks nice. ‘shift-r’
rotates the transistor, but we don’t want that now.

Press ESC to deselect everything

Select the input transistor, and change the name to ‘xi’

Select the output transistor, and change the name to ‘xo[3:0]’. Using
bus notation on the name will create 4 transistors

Select ports, and use ‘m’ to move the ports close to the transistors.

Press ‘w’ to route wires.

Use ‘shift-z’ and z, to zoom in and out

Use ‘f’ to zoom full screen

Remember to save the schematic

6.3.5.3 Netlist schematic

Check that the netlist looks OK

In work/

make xsch CELL=JNW_EX
cat xsch/JNW_EX.spice

6.3.6 Typical corner SPICE simulation

I’ve made cicsim that I use to run simulations (ngspice) and extract
results

https://github.com/wulffern/cicsim
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6.3.6.1 Setup simulation environment

Navigate to the jnw_ex_sky130a/sim/ directory.

Make a new simulation folder

cicsim simcell JNW_EX_SKY130A JNW_EX \
../tech/cicsim/cell_spice/template.yaml

I would recommend you have a look at simcell_template.yaml file
to understand what happens.

6.3.6.2 Familiarize yourself with the simulation folder

I’ve added quite a few options to cicsim, and it might be confusing.
For reference, these are what the files are used for

File Description

Makefile Simulation commands
cicsim.yaml Setup for cicsim
summary.yaml Generate a README with simulation results
tran.meas Measurement to be done after simulation
tran.py Optional python script to run for each simulation
tran.spi Transient testbench
tran.yaml What measurements to summarize

The default setup should run, so

cd JNW_EX
make typical

6.3.6.3 Modify default testbench (tran.spi)

Delete the VDD source

Add a current source of 5uA, and a voltage source of 1V to IBNS_-
20U

IBP 0 IBPS_5U dc 5u
V0 IBNS_20U 0 dc 1

Save the current in V0 by adding i(V0) to the save statement in the
testbench

Save the voltage by adding v(IBPS_5U) to the save statement

.save i(V0) v(IBPS_5U)
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6.3.6.4 Modify measurements (tran.meas)

Add measurement of the current and VGS. It must be added
between the “MEAS_START” and “MEAS_END” lines.

let ibn = -i(v0)
meas tran ibns_20u find ibn at=5n
meas tran vgs_m1 find v(ibps_5u) at=5n

Run simulation

make typical

and check that the output looks okish.

Try to run the simulation again

make typical

If everything works, then the simulation now should not be run.
Every time cicsim runs (provided the sha: True option is set in
cicsim.yaml) cicsim will compute a SHA hash of all files (stored
in output_tran/.sha) that is referenced in the tran.spi. Next time
cicsim is run, it checks the hash’s and does not re-run if there is no
need (no files changed).

Sometimes you want to force running, and you can do that by

make typical OPT="--no-sha"

Often, it’s the measurement that I get wrong, so instead of rerun-
ning simulation every time I’ve added a “–no-run” option to cicsim.
For example

make typical OPT="--no-run"

will skip the simulation, and rerun only the measurement. This is
why you should split the testbench and the measurement. Simula-
tions can run for days, but measurement takes seconds.

6.3.6.5 Modify result specification (tran.yaml)

Add the result specifications, for example

ibn:
src:
- ibns_20u

name: Output current
min: -20%
typ: 20
max: 20%
scale: 1e6
digits: 3
unit: uA

vgs:
src:
- vgs_m1

name: Gate-Source voltage
typ: 0.6



6.3 Design tutorial 65

min: 0.3
max: 0.7
scale: 1
digits: 3
unit: V

Re-run the measurement and result generation

make typical OPT="--no-run"

Open result/tran_Sch_typical.html

6.3.6.6 Check waveforms

You can either use ngspice, or you can use cicsim, or you can use
something I don’t know about

Open the raw file with

cicsim wave output_tran/tran_SchGtKttTtVt.raw

Load the results, and try to look at the plots. There might not be
that much interesting happening

6.3.7 All corners SPICE simulations

Analog circuits must be simulated for all physical conditions,
we call them corners. We must check high and low temperature,
high and low voltage, all process corners, and device-to-device
mismatch.

For the current mirror we don’t need to vary voltage, since we
don’t have a VDD.

6.3.7.1 Remove Vh and Vl corners (Makefile)

Open Makefile in your favorite text editor.

Change all instances of “Vt,Vl,Vh” and “Vl,Vh” to Vt

6.3.7.2 Run all corners

To simulate all corners do

make typical etc mc

where etc is extreme test condition and mc is monte-carlo.

Wait for simulations to complete.
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6.3.7.3 Get creative with python

Open tran.py in your favorite editor, try to read and understand
it.

The name parameter is the corner currently running, for example
tran_SchGtAmcttTtVt.

The measured outputs from ngspice will be added to tran_-

SchGtAmcttTtVt.yaml

Delete the “return” line.

Add the following lines (they automatically plot the current and
gate voltage)

import cicsim as cs
fname = name +".png"
print(f"Saving {fname}")
cs.rawplot(name + ".raw","time","v(ibps_5u),i(v0)" \
,ptype="",fname=fname)

Re-run measurements to check the python code

make typical etc mc OPT="--no-run"

You’ll see that cicsim writes all the png’s. Check with ls -l

output_tran/*.png.

You’ll also notice it will slow down the simulation, so maybe
remove the lines from tran.py again ;-)

6.3.7.4 Generate simulation summary

Run

make summary

Install pandoc if you don’t have it

Run

pandoc -s -t slidy README.md -o README.html

to generate a HTML slideshow that you can open in browser. Open
the HTML file.

https://pandoc.org
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6.3.7.5 Viewing results without GUI browser

If your on a system without a browser, or indeed a GUI, then it’s
possible to view the results in the terminal.

Check if lynx is installed, if it’s not installed, then

On linux

sudo apt-get install lynx

On Mac

brew install lynx

Then

lynx README.html

6.3.7.6 Think about the results

From the corner and mismatch simulation, we can observe a few
things.

▶ The typical value is not 20 uA. This is likely because we have
a M2 VDS of 1 V, which is not the same as the VDS of M1. As
such, the current will not be the same.

▶ The statistics from 30 corners show that when we add or
subtract 3 standard deviation from the mean, the resulting
current is outside our specification of +- 20 %. I’ll leave it up
to you to fix it.

6.3.8 Draw Layout

A foundry (the factory that makes integrated circuits) needs to
know how we want them to create our circuit. So we need to provide
them with a “layout”, the recipe, or instruction, for how to make
the circuit. Although the layout contains the same components as
the schematic, the layout contains the physical locations, and how
to actually instruct the foundry on how to make the transistors we
want.

Open Magic VLSI

cd work
magic ../design/JNW_EX_SKY130A/JNW_EX.mag

Now brace yourself, Magic VLSI was created in the 1980’s. For
it’s time it was extremely modern, however, today it seems dated.
However, it is free, so we use it.
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6.3.8.1 Magic VLSI

Try google for most questions, and there are youtube videos that
give an intro.

▶ Magic Tutorial 1
▶ Magic Tutorial 2
▶ Magic Tutorial 3
▶ Magic command reference
▶ Magic Documentation

Default magic start with the BOX tool. Mouse left-click to select
bottom corner, left-click to select top corner.

Press “space” to select another tool (WIRING, NETLIST, PICK).

Type “macro help” in the command window to see all shortcuts

Hotkey Function

v View all
shift-z zoom out
z zoom in
x look inside box (expand)
shift-x don’t look inside box (unexpand)
u undo
d delete
s select
Shift-Up Move cell up
Shift-Down Move cell down
Shift-Left Move cell left
Shift-Right Move cell right

6.3.8.2 Add transistors

Open Cell -> Place Instance. Navigate to the right transistor.

Place it. Hover over the transistor and select it with ‘s’. Now comes
a bit of tedious thing. Select again, and copy. It’s possible to align
the transistors on-top of eachother, but it’s a bit finicky.

Place all transistors on top of each other.

https://www.youtube.com/watch?v=ORw5OaY33A4&t=9s
https://www.youtube.com/watch?v=NUahmUtY814
https://www.youtube.com/watch?v=OKWM1D0_fPI
http://opencircuitdesign.com/magic/commandref/commands.html
https://analogicus.com/magic/
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6.3.8.3 Add Ground

In the command window, type

see no *
see viali
see locali
see m1
see via1
see m2

Change to the ‘wire tool’ with spacebar. Press the top transistor ‘S’
and draw all the way down to connect all of the transistors’ source
terminals.

Change grid to 0.5 um.

Select a 0.5 um box below the transistors and paint the rectangle
with locali (middle click on locali)

Connect guard rings to ground. Use the ‘wire tool’

Connect the sources to ground. Use the ‘wire tool’. Use ‘shift-right
click’ to change layer down
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6.3.8.4 Route Gates

Press “space” to enter wire mode. Left click to start a wire, and
right click to end the wire.

The drain of M1 transistor needs a connection from gate to drain.
We do that for the middle transistor.

Start the route, press ‘shift-left click’ to go up one layer, route over
to drain, and ‘shift-right click’ to go down.
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6.3.8.5 Drain of M2

Use the wire tool to draw connections for the drains.

To add vias you can do “shift-left click” to move up a metal, and
“shift-right click” to go down.
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6.3.8.6 Add labels

Select a box on a metal, and use “Edit->Text” to add labels for the
ports. Select the port button.

6.3.9 Layout verification

The DRC can be seen directly in Magic VLSI as you draw.

To check layout versus schematic navigate to work/ and do

make cdl lvs

If you’ve routed correctly, then the LVS should be correct.

6.3.10 Extract layout parasitics

With the layout complete, we can extract parasitic capacitance.

make lpe

Check the generated netlist

cat lpe/JNW_EX_lpe.spi
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6.3.11 Simulate with layout parasitics

Navigate to sim/JNW_EX. We now want to simulate the layout.

The default tran.spi should already have support for that.

Open the Makefile, and change

VIEW=Sch

to

VIEW=Lay

6.3.11.1 Typical simuation

Run

make typical

6.3.11.2 Corners

Navigate to sim/JNW_EX. Run all corners again

make all

6.3.11.3 Simulation summary

Open summary.yaml and add the layout files.

- name: Lay_typ
src: results/tran_Lay_typical
method: typical

- name: Lay_etc
src: results/tran_Lay_etc
method: minmax

- name: Lay_3std
src: results/tran_Lay_mc
method: 3std

Run summary again

make summary
pandoc -s -t slidy README.md -o README.html

Open the README.html and have a look a the results. The layout
should be close to the schematic simulation.

6.3.12 Make documentation

Make a file (or it may exists) design/JNW_EX_SKY130A/JNW_EX.md
and add some docs.
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6.3.13 Edit info.yaml

Finally, let’s setup the info.yaml so that all the github workflows
run correctly.

Mine will look like this.

You need to setup the url (probably something like <your

username>.github.io) to what is correct for you.

I’ve added the doc section such that the workflows will generate
the docs.

The sim is to run a typical simulation.

library: JNW_EX_SKY130A
cell: JNW_EX
author: Carsten Wulff
github: wulffern
tagline: The answer is 42
email: carsten@wulff.no
url: analogicus.github.io
doc:
libraries:
JNW_EX_SKY130A:
- JNW_EX

sim:
JNW_EX: make typical

6.3.14 Setup github pages

Go to your GitHub repository (repo). Press Settings. Press Pages.
Choose source under Build and Deployment -> GitHub Actions

Wait for the workflows to build. And check your github pages.
Mine is https://analogicus.github.io/jnw_ex0_sky130a/.

6.3.15 Frequency asked questions

Q: My GDS/LVS/DRC action fails, even though it works locally.

Sometimes the reference to the transistors in the magic file might
be wrong. Open the .mag file in a text editor and check. The correct
way is

use JNWATR_NCH_4C5F0 JNWATR_NCH_4C5F0_0 ../JNW_ATR_SKY130A

It’s the last ../JNW_ATR_SKY130A that sometimes is missing.

https://analogicus.github.io/jnw_ex0_sky130a/
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Status: 0.5

7.1 Checklist

There are roughly 3 phases of analog design.

▶ Specification
▶ Design
▶ Tapeout

The specification phase is where you think deeply through the
design.

Can the design meet the key parameters you need? How will I
verify the circuit? Do I know how to make the circuit?

These questions and more, are so common that most companies
will have checklists that we use when we review the specification,
design, and tapeout.

These checklists are closely guarded secrets, as the content contain
significant amount of knowledge accumulated over numerous
blunders, mistakes, failure to imagine, and physics teaching us a
lesson.

The design phase is where we make the schematic, and simulate
the schematic. We explore circuit architectures, fix problem corners,
check our design over temperature, voltage, process corners (slow
transistors, fast transistors, mismatch)

The tapeout phase is where we translate the schematic into layout,
check the design rules (DRC), do layout versus schematic (LVS)
and extract circuit parasitics to check layout parasitic effects (LPE).
And, of course, simulate most things again.

I’ve made a checklist below for the most common questions that
you need to ask yourself.

7.1.1 Specification

Item Description Yes Action

Functional
descrip-
tion

Have you described what the IP shall do?

Key pa-
rameters

Have you updated your key parameters in the README
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Item Description Yes Action

Architecture Have you described the circuit architecture? How should it
work?

Realism Do you know how to do what you plan to do?
Verification
plan

Have you described exactly what you need to check? For
example, stability of OTAs, current consumption, key
parameters

Specification Have you added a specification for all parameters you intend
to check. For example, phase margin should always be larger
than 45 degrees.

7.1.2 Design

Item Description Yes Action

git Have you committed the schematics to the repository?
git push Are the schematics pushed to github? Are you sure?
git tag Is the current version tagged
Implementation Are all schematics described with their own markdown file?
Verification
plan

Are all items on the verification plan completed? If not,
have you described why it’s no longer relevant?

Electrical
parameters

Are the electrical parameters updated with simulated
results?

Spec
violations

Have you explained why the specification violations are not
an issue?

Simulation Are the required corners run (typical, slow, fast, mc)

7.1.3 Tapeout

Item Description Yes Action

git Are all schematics and layout committed? Are you sure?
git push Have you pushed to github?
git tag Is the latest version tagged?
LVS Is the LVS on github passing (green)?
DRC Is the DRC on github passing (green)?
LPE Is the LPE on github passing (green)?
Simulation Are the required corners re-run with layout parasitics

(typical, slow, fast, mc)

7.2 Schematic rules

Rules are nice. They reduce the cognitive load since a decision
already has been made. You may disagree with the rule, but
in analog design it’s not that important what the “rule” is, but
sometimes more important that the rule is followed.

Naming rules are one example. We can have a philosophical
discussion till the end of time of whether it’s best with uppercase
or lower case. CamelCase, however, is wrong in schematics and
SPICE, since SPICE is case-insensitive, so “vref” is the same as
“Vref**.

Below are the rules I like. You may disagree, but if you’re my
student, then you don’t have a choice. Follow them, or the grade
may suffer.
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7.2.0.1 Only uppercase names allowed

Do: AVDD, Don’t: aVdd

Although editors can handle mix of upper case and lower case,
SPICE, cannot. SPICE is case insensitive. That means AVDD ==
aVdd in SPICE, but AVDD != aVdd in editors. A such mixing case
is a bad idea, so one must be picked, and uppercase the chosen
one. Why? Why not?

7.2.0.2 Use same net throughout hierarchy

Do: VDD -> VDD -> VDD, Don’t: VDD -> LOCALVDD -> CEL-
LVDD

Debugging becomes a lot simpler if a net keeps it’s name through-
out the schematic hierarchy. Especially bad are cases where a
net name is reused on multiple levels of hierarchy. Imagine the
following scenario

| (sub block) |

| |

VDD -|-LVDD---/ ---- VDD |

| |

Here the net name VDD is used on the top level, while LVDD is
used in the sub-block. In the sub-block there is a power switch
between LVDD and VDD. In this case VDD != VDD on top level,
which can lead to long debugging times. There are, however, a few
exceptions. For example, using VDD on standard cells (inverters,
ANDs etc) is ok, even though the power supply is not called VDD

7.2.0.3 Spend time on making schematics pretty

It matters how schematics look. Think of it like this. In 10 years,
you will be asked to port, re-simulate, fix a bug, on your design.
If you have spent some time adding comments, making things
look pretty, etc, then the job will be much, much easier. “A pretty
schematic is a love letter to your future self”.

PS: This applies to documentation, code, and every-
thing you make.
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7.2.0.4 All digital nets must be “active high”” naming

Example: PWRUP_3V3, PWRUP_N_3V3

The PWRUP_3V3 should be understood as “When PWRUP_3V3
is high, then the block is powered up”

The PWRUP_N_3V3 should be understood as “When PWRUP_-
N_3V3 is high then the block is powered down”

7.2.0.5 Bias currents shall be named IB<device sending current
(P|N)>

Do: IBP_1U, Don’t: IBIAS_1U

The “P” post-fix tells us the current comes from a PMOS, so we
can put it into a NMOS diode connected transistor. On the IBIAS
we have no idea which way the current flows.

7.3 Layout rules

7.3.0.1 Limit the amount of transistor Width’s and Length’s that
you use

Do: W = 1.0 um, L = 180 nm, Use multiplier for other sizes

Don’t: W1 = 1 um, W2 = 1.1 um, W3 = 1.2 um, W4 = 2 um, W5 = 2.1
um

You want the layout to be relatively regulator. A bunch of different
Ls and Ws is a pain when you do layout

7.3.0.2 Use pre-defined transistors for regular layout

Do: Use JNW_ATR_SKY130A and JNW_TR_SKY130A

7.3.0.3 Always use two fingers for analog transistors

That way, you don’t have to worry about current direction in the
layout.

7.3.0.4 Always run gates in the same direction

Mobility of transistors (especially PMOS) is affected by strain, so if
you rotate a transistor it will not have the same current, and change
in current as a function of stress.

I’ve seen ICs have to be taped out again due to rotated transistors.
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7.3.0.5 Always have dummy poly gates

For large lengths (> 500 nm) the lithography effects are not that
severe, but the etching of the gate material will be asymmetric if
there are no poly dummies. Make sure the poly dummy is exactly
the same spacing on both sides.

For small lengths (< 200 nm) the lithography effects start to matter.
The light used in most litho is 193 nm. 193 nm is used all the way
down to about 7 nm.

Due to diffraction effects, it’s common to have extremely regular
poly spacing, an exact distance such that the interference from
neighboring poly’s align perfectly to the next poly.

7.3.0.6 Always place transistors away from well edge

Close to the N-well edge the donor consentration will be higher.
Ion implantation is used for the wells, and the ions will scatter of
the oxide wall, and increase the doping concentration close to the
edge. As such, the transistor threshold voltage will increase close
to a well edge.

Keep transistors about 3 um away from the N-well edge if threshold
voltage is important.
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Video is from 2024, so the plan might not be exactly the same.
In addition, we’re not using Caravel for the tapeout, but rather
TinyTapeout.

8.1 What blocks must our IC include?

The project is to design an integrated temperature sensor.

First, we need to have an idea of what comes in and out of the
temperature sensor. Before we have made the temperature sensor,
we need to think what the signal interface could be, and we need
to learn.

Maybe we read Kofi Makinwa’s overview of temperature sensors
and find one of the latest papers,

A BJT-based CMOS Temperature Sensor with Duty-cycle-
modulated Output and ±0.54 °C (3-sigma) Inaccuracy from -40 °C
to 125 °C.

At this point, you may struggle to understand the details of the
paper, but at least it should be possible to see what comes in and
out of the module. What I could find is in the table below, maybe
you can find more?

Pin Function in/out Value Unit

VDD_3V3 analog supply in 3.0 V
VDD_1V2 digital supply in 1.2 V
VSS ground in 0 V
CLK_1V2 clock in 20 MHz
RST_1V2 digital out 0 or 1.2 V
I_C bias in ? uA?
PHI1_1V2 digital out 0 or 1.2 V
PHI2_1V2 digital out 0 or 1.2 V
DCM_1V2 digital out 0 or 1.2 V

This list contains supplies, clocks, digital outputs, bias currents
and a ground. Let me explain what they are.

http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9383810
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9383810
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9383810
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8.1.0.1 Supply

The temperature sensor has two supplies, one analog (3.3 V) and
one digital (1.2 V), which must come from somewhere.

We’re using TinyTapeout

That has ability for both 3.3 V and 1.8 V. An external low dropout
regulator (LDO) provide the digital supply (1.8 V).

See more at Analog Specs

8.1.0.2 Ground

Most ICs have a ground, a pin which is considered 0 V. It may
have multiple grounds. Remember that a voltage is only defined
between two points, so it’s actually not true to talk about a voltage
in a node (or on a wire). A voltage is always a differential to
something. We’ve (as in global electronics engineers) have just
agreed that it’s useful to have a “node” or “wire” we consider 0
V.

8.1.0.3 Clocks

Most digital need a clock, and TinyTapeout can provide a 50 MHz
clock which should suffice for most things. We could probably just
use that clock for our temperature sensor.

8.1.0.4 Digital

We need to read the digital outputs. We could either feed those off
chip, or use a on chip micro-controller. The TinyTapeout includes
options to do both. We could connect digital outputs to the logic
analyzer, and program the MCU to store the readings. Or we could
connect the digital output to the I/O and use an instrument in the
lab.

8.1.0.5 Bias

The TinyTapeout does not provide bias currents (that I found), so
that is something you will need to make.

http://www.tinytapeout.com
%5BAbsolute%20maximum%20ratings%5D(https://caravel-harness.readthedocs.io/en/latest/maximum-ratings.html)
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8.1.0.6 Conclusion

Even a temperature sensor needs something else on the IC. We
need digital input/output, clock generation (PLL, oscillators),
bias current generators, and voltage regulators (which require a
constant reference voltage).

I would claim that any System-On-Chip will always need these
blocks!

I want you to pause, take a look at the

course plan

and now you might understand why I’ve selected the topics.

8.1.0.7 One more thing

There is one more function we need when we have digital logic
and a power supply. We need a “RESET” system.

Digital logic has a fundamental assumption that we can separate
between a “1” and a “0”, which is usually translated to for example
1.8 V (logic 1) and 0 V (logic 0). But if the power supply is at 0 V,
before we connect the battery, then that fundamental assumption
breaks.

When we connect the battery, how do we know the fundamental
assumption is OK? It’s certainly not OK at 30 mV supply. How
about 500 mV? or 1.0 V? How would we know?

Most ICs will have a special analog block that can keep the digital
logic, bias generators, clock generators, input/output and voltage
regulators in a safe state until the power supply is high enough
(for example 1.62 V).

One of the challenges with a Power On Reset (POR) is that we
want to keep the system in a reset state until we’re sure that the
power is on. Another challenge is that the POR should not consume
current.

If we make a level triggered (triggers when VDD reaches a certain
level), then we need a reference, a compared and maybe other
circuits. As a result, potentially high current.

If we make a delay based POR, then we need a long delay, which
means large resistors or capacitors. Accordingly, high cost.

Below is an idea for a Power-On-Reset I had way back when. The
POR uses a delay based on the tunneling current in a thin oxide
transistor (2), and uses a thick-oxide transistor (3) as a capacitor.
The output X would go to a Schmitt trigger (5).

https://wulffern.github.io/aic2025/plan/
https://patents.google.com/patent/GB2509147A/en?inventor=carsten+wulff&oq=carsten+wulff


84 8 IC and ESD

Figure 1: Power On Reset using gate tunneling

8.2 Electrostatic Discharge

If you make an IC, you must consider Electrostatic Discharge (ESD)
Protection circuits

ESD events are tricky. They are short (ns), high current (Amps)
and poorly modeled in the SPICE model.

Most SPICE models will not model correctly what happens to an
transistor during an ESD event. The SPICE models are not made to
model what happens during an ESD event, they are made to model
how the transistors behave at low fields and lower current.

But ESD design is a must, you have to think about ESD, otherwise
your IC will never work.

Consider a certain ESD specification, for example 1 kV human
body model, a requirement for an integrated circuit.

By requirement I mean if the 1 kV is not met, then the project will
be delayed until it is fixed. If it’s not fixed, then the project will be
infinitely delayed, or in other words, canceled.

Now imagine it’s your responsibility to ensure it meets the 1 kV
specification, what would you do? I would recommend you read
one of the few ESD books in existence, shown below, and rely on
you understanding of PN-junctions.
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Figure 2: A book on ESD

The industry has agreed on some common test criteria for elec-
trostatic discharge. Test that model what happens when a person
touches your IC, during soldering, and PCB mounting. If your
IC passes the test then it’s probably going to survive in volume
production

Standards for testing at JEDEC

The JEDEC standard splits ESD events into Human body model,
Charged device model, and System level ESD.

Once mounted on the PCB, the ICs can be more protected against
ESD events, however, it depends on the PCB, and how that reacts
to a current.

Take a look at your USB-A connector, you will notice that the outer
pins, the power and ground, are made such that they connect first,
The 𝐷+ and 𝐷− pins are a bit shorter, so they connect some 𝜇s
later. The reason is ESD. The power and ground usually have a
low impedance connection in decoupling capacitors and power
circuits, so those can handle a large ESD zap. The signals can go
directly to an IC, and thus be more sensitive.

We won’t go into details on System level ESD, as that is more a
PCB type of concern. The physics are the same, but the details are
different.

https://www.jedec.org/category/technology-focus-area/esd-electrostatic-discharge-0
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8.2.1 Human body model (HBM)

HBM is the “simple” version of ESD, a model can be seen in Figure
3. Some of the properties of HBM are:

▶ Models a person touching a device with a finger
▶ Long duration (around 100 ns)
▶ Acts like a current source into a pin
▶ Can usually be handled in the I/O ring
▶ 4 kV HBM ESD is 2.67 A peak current
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Figure 3: Human body model (HBM)

More on circuits that protect from HBM later.

8.2.2 Charged device model (CDM)

An IC left alone for long enough will equalize the
Fermi potential across the whole IC.

Not entirely a true statement, but roughly true. One exception
is non-volatile memory, like flash, which uses Fowler-Norheim
tunneling to charge and discharge a capacitor that keeps it’s charge
for a very, very long time.

I’m pretty sure that if you leave an SSD hardrive to the heat death of
the universe in maybe 10101056

years, then the charges will equalize,
and the Fermi level will be the same across the whole IC, so it’s
just a matter of time.

https://en.wikipedia.org/w/index.php?title=Field_electron_emission&oldformat=true#Fowler–Nordheim_tunneling
https://en.wikipedia.org/wiki/Heat_death_of_the_universe
https://en.wikipedia.org/wiki/Heat_death_of_the_universe
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Assume there is an equal number of electrons and protons on the
IC. According to Gauss’ law∮

𝜕Ω
E · 𝑑S =

1
𝜖0

∭
𝑉

𝜌 · 𝑑𝑉

Which says that the electric field through the surface is the volume
integral of the charges inside the surface. If there are the same
amount of protons and electrons, and the distribution is even, then
there will be no field through IC surface. As such, there is no
external electric field from the IC.

If we place an IC in an electric field, the charges inside will
redistribute. Flip the IC on it’s back, place it on an metal plate
with an insulator in-between, and charge the metal plate to 1 kV,
as shown in Figure 4.

 

E

I

Figure 4: Charged Device Model (CDM) testing

Inside the integrated circuit, electrons and holes will redistribute
to compensate for the electric field. Closest to the metal plate there
will be a negative charge, and furthest away there will be a positive
charge.

This comes from the fact that if you leave a metal inside an electric
field for long enough the metal will not have any internal field. If
there was an internal field, the charges would move. Over time the
charges will be located at the ends of the metal.

Take a grounded wire, touch one of the pins on the IC. Since we
now have a metal connection between a pin and a low potential
the charges inside the IC will redistribute extremely quickly, on
the order of a few ns.

During this Charged Device Model event the internal fields in the
IC will be chaotic, but at any given point in time, the voltage across
sensitive devices must remain below where the device physically
breaks.

Take the MOSFET transistor. Between the gate and the source there
is an thin oxide, maybe a few nm. If the field strength between gate
and source is high enough, then the force felt by the electrons in
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co-valent bonds will be ®𝐹 = 𝑞 ®𝐸. At some point the co-valent bonds
might break, and the oxide could be permanently damaged. Think
of a lighting bolt through the oxide, it’s a similar process.

Our job, as electronics engineers, is to ensure we put in additional
circuits to prevent the fields during a CDM event from causing
damage.

For example, let’s say I have two inverters powered by different
supply, VDD1 and VDD2. If I in my ESD test ground VDD1, and
not VDD2, I will quickly bring VDD1 to zero, while VDD2 might
react slower, and stay closer to 1 kV. The gate source of the PMOS
in the second inverter will see approximately 1 kV across the oxide,
and will break. How could I prevent that?

 

E

I

Figure 5: Cross domain voltage problem with CDM (or indeed
HBM) events

Assuming some luck, then VDD1 and VDD2 are separate, but
the same voltage, or at least close enough, I can take two diodes,
connected in opposite directions, between VDD1 and VDD2. As
such, when VDD1 is grounded, VDD2 will follow but maybe be
0.6 V higher. As a result, the PMOS gate never sees more than
approximately 0.6 V across the gate oxide, and everyone is happy.

Now imagine an IC will hundreds of supplies, and billions of
inverters. How can I make sure that everything is OK?

CDM is tricky, because there are so many details, and it’s easy to
miss one that makes your circuit break.

8.3 An HBM ESD zap example

Imagine a ESD zap between VSS and VDD. How can we protect
the device?

The positive current enters the VSS, and leaves via the VDD, so
our supplies are flipped up-side down. It’s a fair assumption that
none of the circuits inside will work as intended.
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But the IC must not die, so we have to lead the current to ground
somehow.
























































i

100 pF

1.5 kOhm

1.5 k100 k

100 pF

Figure 6: ESD HBM zap example

Let’s simplify and think of the possible permutations, shown in
Figure 7. We don’t know where the current will enter nor where it
will leave our circuit, so we must make sure that all combinations
are covered.

DD
e

ON 1 vs euro

1 to vno vss

of 2 us a Pin pin
2 to pin a Uss 2

1 02 vase PIN

2 A 1 PIN a Vbs

Uss
O

Figure 7: ESD zap permutations

When the current enters VSS and must leave via VDD, then it’s
simple, we can use a diode, as shown in Figure 8.

Under normal operation the diode will be reverse biased, and
although it will add some leakage, it will not affect the normal
operation of our IC.
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I un

PIN
2

on

O Uss

Figure 8: Protection for zap from ground to VDD

The same is true for current in on VSS and out on PIN. Here we
can also use a diode, as shown in Figure 9.

g
VDP

2 PIN

on or

O Uss

Figure 9: Protection for zap from ground to PIN

For a current in on VDD and out on VSS we have a challenge.
That’s the normal way for current to flow.

For those from Norway that have played a kids game Bjørnen sover,
that’s a apt mental image. We want a circuit that most of the time
sleeps, and does not affect our normal IC operation. But if a huge
current comes in on VDD, and the VDD voltage shoots up fast, the
circuit must wake up and bring the voltage down.

https://www.youtube.com/watch?v=jtZ1R9_Lu-4
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If the circuit triggers under normal operating condition, when your
watching a video on your phone, your battery will drain very fast,
and your phone might even catch fire.

As such, ESD design engineers have a “ESD design window”.
Never let the ESD circuit trigger when VDD < normal, but always
trigger the ESD circuit before VDD > breakdown of circuit.

A circuit that can sometimes be used, if the ESD design window is
not too small, is the Grounded-Gate-NMOS in Figure 10.

y
V70
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1 NO PIN
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p

2 or

É
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O

Figure 10: Full protection with diodes and grounded gate NMOS
(GGNMOS)

8.4 The grounded gate NMOS

If you try the circuit in Figure 11 with the normal BSIM spice model,
it will not work. The transistor model does not include that part of
the physics.

We need to think about how electrons, holes PN-junctions and
bipolars work. Let’s refresh quantum mechanics a bit.
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2,6A

Figure 11: The grounded gate NMOS (GGNMOS)

Electrons sticking to atoms (bound electrons), can only exist at
discrete energy levels. As we bring atoms closer to each-other the
discrete energy levels will split, as computed from Schrodinger,
into bands of allowed energy states. These bands of energy can
have lower energy than the discrete energy levels of the atom.
That’s why some atoms stick together and form molecules through
co-valent bonds, ionic bonds, or whatever the chemists like to call
it. It’s all the same thing, it’s lower energy states that make the
electrons happy, some are strong, some are weak.

For silicon the energy band structure is tricky to compute, so
we simplify to band diagrams that only show the lowest energy
conduction band and highest energy valence band.

Electrons can move freely in the conduction band (until they hit
something, or scatter), and electrons moving in the valence band
act like positive particles, nicknamed holes.

How many free charges there are in a band is given by Fermi-Dirac
distribution and the density of states (allowed energy levels).

If an electron, or a hole have sufficient energy (accelerated by a
field), they can free an electron/hole pair when they scatter off an
atom. If you break too many bonds between atoms, your material
will be damaged.

Assume a transistor like the one in Figure 12. The gate, source
and bulk is connected to ground. The drain is connected to a high
voltage.

https://www.iue.tuwien.ac.at/phd/wessner/node31.html
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PFigure 12: Cross section of the grounded gate NMOS

The process of a GGNMOS will be (1) Avalanche, (2) hole accu-
mulation, (3) forward bias of PN-junction, and (4) direct electron
current from source to drain.

The first thing that can happen is that the field in the depletion
zone between drain and bulk (1) is large, due to the high voltage
on drain, and the thin depletion region.

In the substrate (P-) there are mostly holes, but there are also
electrons. If an electron diffuses close to the drain region it will be
swept across to drain by the high field.

The high field might accelerate the electron to such an energy that
it can, when it scatters of the atoms in the depletion zone, knock
out an electron/hole pair.

The hole will go to the substrate (2), while the new electron will
continue towards drain. The new electron can also knock out a
new electron/hole pair (energy level is set by impact ionization of
the atom), so can the old one assuming it accelerates enough.

One electron turn into two, two to four, four to eight and so on.
The number of electrons can quickly become large, and we have an
avalanche condition. Same as a snow avalanche, where everything
was quiet and nice, now suddenly, there is a big trouble.

Usually the avalanche process does not damage anything, at least
initially, but it does increase the hole concentration in the bulk.
The number of holes in the bulk will be the same as the number of
electrons freed in the depletion region.

The extra holes underneath the transistor will increase the local
potential. If the substrate contact (5) is far away, then the local
potential close to the source/bulk PN-junction (3) might increase
enough to significantly increase the number of electrons injected
from source.

Some of the electrons will find a hole, and settle down, while others
will diffuse around. If some of the electrons gets close to the drain
region, and the field in the depletion zone, they will be accelerated
by the drain/bulk field, and can further increase the avalanche
condition.
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For a normal transistor, not designed to survive, the electron flow
(4) can cause local damage to the drain. Normally there is nothing
that prevents the current from increasing, and the transistor will
eventually die.

If we add a resistor to the drain region (unscilicided drain), however,
we will slow down the electron flow, and we can get a stable
condition, and design a transistor that survives.

Turns out, that every single NMOS has a sleeping bear. A parasitic
bipolar. That’s exactly what this GGNMOS is, a bipolar transis-
tor, although a pretty bad one, that is designed to trigger when
avalanche condition sets in and is designed to survive.

A normal NMOS, however, can also trigger, and if you have not
thought about limiting the electron current, it can die, with IC
killing consequences. Specifically, the drain and source will be
shorted by likely the silicide on top of the drain, and instead of a
transistor with high output impedance, we’ll have a drain source
connection with a few kOhm output impedance.

Take a look at New Ballasting Layout Schemes to Improve ESD
Robustness of I/O Buffers in Fully Silicided CMOS Process for the
pretty pictures you’ll get when the drain/source breaks.

8.5 But I just want a digital input, what do I
need?

Even if it’s only a digital input, you still need to consider ESD
events.

Below is a complete digital input network.

Assuming we have a QFN package package there will be a bond-
wire from the package metal, to our die pad.

Right after the die pad, sometimes under, there will be a primary
ESD protection that can conduct, in all directions, between input,
supply and ground.

From the input it’s common to have a resistor to reduce the
probability of currents going towards the core area.

Before we get to a transistor gate oxide it’s common to have a set
of secondary protection circutis. A resistor further reduces the
current, and two local clamps (GGPMOS and GGNMOS) ensure
that the voltage across the transistor gate does not go to breakdown
levels.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5299049
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5299049
https://en.wikipedia.org/wiki/Flat_no-leads_package
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Figure 13: Full protection of an input including secondary protec-
tion

8.5.1 Input buffer

An input buffer can be seen below. I like to include a RC low-pass
filter to filter out the RF frequencies (I don’t want my input to
toggle if a phone is on top of my circuit).

After the RC filter we need a Schmitt trigger, you can find a Schmitt
trigger at JNW_TR_SKY130A.

The Schmitt trigger must be with thick oxide gates and with IO
supply (for example 3.0 V).

The first inverter must also be a thick oxide inverter, however, the
supply of the inverter will be core supply (for example 1.2 V). The
thick oxide inverter provides a level-shift to core supply.

The last inverter is just to get the polarity of the TO_CORE signal
the same as the input. _

https://en.wikipedia.org/wiki/Schmitt_trigger
https://analogicus.github.io/jnw_tr_sky130A/schematic.html
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XC2

XC1

AV DD 1V 8 AV DD 1V 0 AV DD 1V 0

XA2 XA3 XA4

TO CORE 1V 0FROM PAD 1V 8

XC2

XC1

XA2

XA3

XA4

FROM PAD 1V 8

T
O

C
O
R
E

1
V
0

{ "name" : "DI_1V8_ST28N",
"boundaryIgnoreRouting" : 0,
"composite" : 1, "noPowerRoute" : 1,
"schematic" : 0,
"class" : "Layout::LayoutDigitalCell",
"afterPlace" :{

"addPowerRings" :[
["M1","AVDD_1V0","t"],
["M1","AVSS","btrl"]

]
},
"beforeRoute" : {

"addPowerConnections" : [
["AVDD_1V0","XA","top"],
["AVSS","XC","left"],
["AVSS","XA4|XA2","bottom"]

],
"addConnectivityRoutes" : [

["M3","FILT_O","--|-","onTopR"],
["M2","SCHMITT_O","-|--"],
["M1","INV_O","-|--"]

]
}

}

.SUBCKT DI_1V8_ST28N AVDD_1V0 AVDD_1V8
+ AVSS FROM_PAD_1V8 TO_CORE_1V0
XC1 FILT_O AVSS CAPX10_CV angle=180
XC2 FROM_PAD_1V8 FILT_O AVSS RPPO_S0
+ xoffset=25 yoffset=15

XA5 AVSS TAPCELL_EV xoffset=20
XA2 FILT_O SCHMITT_O AVDD_1V8 AVSS SCX1_EV

XA5a AVSS TAPCELL_EV yoffset=20
XA3 SCHMITT_O INV_O AVDD_1V0 AVSS IVX1_EV

XA4 INV_O TO_CORE_1V0 AVDD_1V0 AVSS IVX8_CV
+ yoffset=15
XA6 AVSS TAPCELL_CV

.ENDS

(a)

(b)

(d)(c)
COOD PO M1 M2 M3 M4

Figure 14: Full digital input including Schmitt trigger and level
shifters

8.6 Latch-up

Another fun physics problem can happen in digital logic that is
close to an electron source, like a connection to the real world, what
we call a pad. A pad is where you connect the bond-wire in a QFN
type of package with wire-bonding

Assume we have the circuit in Figure 15. Under certain conditions
we can get a short from VDD to ground.

2,6A

O o
lo too

Mt

Toome
tooma

Figure 15: Inverter that suddenly shorts from VDD to ground
located close to a PAD

https://en.wikipedia.org/wiki/Wire_bonding
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Consider the cross section of the inverter in Figure 16. The latch-up
process starts with electron injection (1), then forward bias of PMOS
source/drain junction (2), forward bias of NMOS source/drain
junction (3) , and finally positive feedback .

Figure 16: Cross section of an inverter

8.6.0.1 Electron injection

Assume that we have an electron source, for example a pad that
is below ground for a bit. This will inject electrons into the sub-
strate/bulk (1) and electrons will diffuse around.

If some of the electrons comes close to the N-well depletion region
(2) they will be swept across by the built-in field. As a result, the
potential of the N-well will decrease, and we can forward bias the
source or drain junction of a PMOS.

8.6.0.2 Forward biased PMOS source or drain junction

With a forward biased source/bulk junction (2), holes will be
injected into the N-Well, but similarly to the GGNMOS, they might
not find a electron immediately.

Some of the holes can reach the depletion region towards our
NMOS, and be swept across the junction.

8.6.0.3 Forward biased NMOS source or drain junction

The increase in hole concentration underneath the NMOS can
forward bias the PN diode between source (or drain) and bulk.
If this happens, then we get electron injection into bulk. Some
of those electrons can reach the N-well depletion region, and be
swept across (3).
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8.6.0.4 Positive-feedback

Now we have a condition where the process accelerates, and locks-
up. Once turned on, this circuit will not turn off until the supply is
low.

This is a phenomena called latch-up. Similar to ESD circuits, latch-
up can short the supply to ground, and make things burn.

That is why, when we have digital logic, we need to be extra careful
close to the connection to the real world. Latch-up is bad.

We can prevent latch-up if we ensure that the electrons that start
the process never reach the N-wells. We can also prevent latch-up
by separating the NMOS and PMOS by guard rings (connections
to ground, or indeed supply), to serve as places where all these
electrons and holes can go.

Maybe it seems like a rare event for latch-up to happen, but trust
me, it’s real, and it can happen in the strangest places. Similar to
ESD, it’s a problem that can kill an IC, and make us pay another X
million dollars for a new tapeout, in addition to the layout work
needed to fix it.

Latch-up is why you will find the design rule check complaining if
you don’t have enough substrate connections to ground, or N-well
connections to power close to your transistors.

Similar to the GGNMOS, this circuit, a thyristor can be a useful
circuit in ESD design. If we can trigger the thyristor when the VDD
shoots to high, then we can create a good ESD protection circuit.

See low-leakage ESD for a few examples.

A model with the parasitic bipolars can be seen in Figure 17. The
resistors in the picture is to emulate what happens when there
is a current injected into the base of the NPN or PNP. I would
recommend that you think through the physics instead of using
the parasitic bipolar circuits. I’ve found the parasitic bipolar leads
you down the wrong path when you actually want to understand
the physics of latch-up.

Figure 17: Cross section of an inverter including the parasitic
bipolars

https://en.wikipedia.org/wiki/Thyristor
https://www.sofics.com/features/low-leakage/
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You must always handle ESD on an IC

▶ Do everything yourself
▶ Use libraries from foundry
▶ Get help www.sofics.com

8.7 Want to learn more?

ESD (Electrostatic Discharge) Protection Design for Nanoelectron-
ics in CMOS Technology

Overview on Latch-Up Prevention in CMOS Integrated Circuits
by Circuit Solutions

Overview on ESD Protection Designs of Low-Parasitic Capacitance
for RF ICs in CMOS Technologies

http://www.sofics.com
https://ieeexplore.ieee.org/document/4016442
https://ieeexplore.ieee.org/document/4016442
https://ieeexplore.ieee.org/document/9998049
https://ieeexplore.ieee.org/document/9998049
https://ieeexplore.ieee.org/document/5688227
https://ieeexplore.ieee.org/document/5688227
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In our testbenches, and trial schematics, it’s common to include
voltage sources and current sources. However, the ideal voltage
source, or ideal current source does not exist in the real world.
There is no such thing.

We can come close to creating a voltage source, a known voltage,
with a low source impedance, but not zero impedance. And it
won’t be infinitely fast either. If we suddenly decide to pull 1 kA
from a lab supply I promise you the voltage will drop.

So how do we create something that is a good enough voltage and
current source on an IC?

9.1 Routing

Before we take a take a look at the voltage and current source,
I want you to think about how you would route a current, or a
voltage on an IC.

Assume we have a known voltage on our IC. How can we make
sure we can share that voltage across an IC?
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A voltage is only defined between two points. There is no such
thing as the voltage at a point on a wire, nor voltage in a node. Yes,
I know we say that, but it’s not right. What we forget is that by
voltage in a node we always, always mean voltage in a node referred to
ground.

We’ve invented this magical place called ground, the final resting
place of all electrons, and we have agreed that all voltages refer to
that point.

As such, when we say “Voltage in node A is 1V”, what we actually
mean is “Voltage in node A is 1 V referred to ground”.

Maybe you now understand why we can’t just route a voltage
across the IC, the other side might not have the same ground.
The other side might have a different impedance to ground, and
the impedance might be a function of time, voltage, frequency
temperature, pressure and presence of gremlins.

Most of the time, in order not to think about the ground impedance,
we choose to route a known quantity as a current instead of a
voltage. That means, however, we must convert from a voltage to a
current, but we can do that with a resistor (you’ll see later), and
as long as the resistor is the same on the other side of the IC, then
we’ll know what the voltage is.
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Resistors have finite matching across die, let’s say 2 % 3-sigma
variation. As a result, if we need a accurate voltage reference, then
we must distribute voltage.

But how can “It’s better to distribute a voltage as a current across
the IC, it’s more accurate” and “If you need something really
accurate, you must distribute voltage” both be true?

Imagine I have a 0.5 % 3-sigma accurate voltage reference at 1.22 V,
that’s a sigma of 2 mV. I need this reference voltage on a block on
the other side of the IC, I don’t want to distribute voltage, because
I don’t know that the ground is the same on the other side, at least
not to a precision of 2 mV. I convert the voltage into a current,
however, I know the R has a 2 % 3-sigma across die, so my error
budget immediately increases to 2.06%.

But what if I must have 0.5 % 3-sigma voltage in the block? For
example in a battery charger, where the 4.3 V termination voltage
must be 1 % accurate? I have no choice but to go with voltage
directly from the reference, but the key point, is then the receiving
block cannot be on the other side of the IC. The reference must be
right next to my block.

I could use two references on my IC, one for the ADC and one
for the battery charger. Ask yourself, “Why do we care if there is
two references?” And the answer is “Silicon area is expensive, to
make things cheep, we must make things small”, in other words,
we should not duplicate features unless we absolutely have to.
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9.2 Bandgap voltage reference

9.2.1 A voltage complementary to temperature (CTAT)

A diode connected bipolar transistor, or indeed a PN diode, assum-
ing a fixed current, will have a voltage across that is temperature
dependent

𝐼𝐷 = 𝐼𝑆

(
𝑒
𝑉𝐵𝐸
𝑉𝑇 − 1

)
+ 𝐼𝐵 ≈ 𝐼𝑆𝑒

𝑉𝐵𝐸
𝑉𝑇

As 𝐼𝑆 is much smaller that 𝐼𝐷 we can ignore the -1, and we assume
that the base current is much smaller than the drain current.

Re-arranging for 𝑉𝐵𝐸 and inserting for

𝑉𝑇 =
𝑘𝑇

𝑞

𝑉𝐵𝐸 =
𝑘𝑇

𝑞
ln
𝐼𝐶

𝐼𝑆

𝐼𝑆 = 𝑞𝐴𝑛2
𝑖

[
𝐷𝑛

𝐿𝑛𝑁𝐴
+

𝐷𝑝

𝐿𝑝𝑁𝐷

]
From this equation, it looks like the voltage 𝑉𝐵𝐸 is proportional to
temperature
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However, it turns out that the𝑉𝐵𝐸 decreases with temperature due
to the temperature dependence of 𝐼𝑆.

The 𝑉𝐵𝐸 is linear with temperature with a property that if you
extrapolate the 𝑉𝐵𝐸 line to zero Kelvin, then all diode voltages
seem to meet at the bandgap voltage of silicon (approx 1.12 eV).

To see the temperature coefficient, I find it easier to re-arrange the
equation above.

Some algebra (see Diodes)

𝑉𝐵𝐸 =
𝑘𝑇

𝑞
(ℓ − 3 ln𝑇) +𝑉𝐺

The ℓ is a temperature independent constant given by

ℓ = ln 𝐼𝐶−ln 𝑞𝐴−ln
[
𝐷𝑛

𝐿𝑛𝑁𝐴
+

𝐷𝑝

𝐿𝑝𝑁𝐷

]
−2 ln 2−3

2
ln𝑚∗

𝑛−
3
2

ln𝑚∗
𝑝−3 ln

2𝜋𝑘
ℎ2

And if we plot the diode voltage, we can see that the voltage
decreases as a function of temperature.
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9.2.2 A current proportional to temperature (PTAT)

If we take two diodes, or bipolars, biased at different current
densities, as shown in the figure below, then

𝑉𝐷1 = 𝑉𝑇 ln
𝐼𝐷

𝐼𝑆1

𝑉𝐷2 = 𝑉𝑇 ln
𝐼𝐷

𝐼𝑆2

https://analogicus.com/aic2025/2024/10/25/Diodes.html
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The OTA will force the voltage on top of the resistor to be equal to
𝑉𝐷1, thus the voltage across the resistor 𝑅1 is

𝑉𝐷1 −𝑉𝐷2 = 𝑉𝑇 ln
𝐼𝐷

𝐼𝑆1
−𝑉𝑇 ln

𝐼𝐷

𝐼𝑆2
= 𝑉𝑇 ln

𝐼𝑆2
𝐼𝑆1

= 𝑉𝑇 ln𝑁

This is a remarkable result. The difference between two voltages is
only defined by boltzmann’s constant, temperature, charge, and a
know size difference.

This differential voltage can be used to read out directly the
temperature on an IC, provided we have a known voltage to
compare with.

We often call this voltage Δ𝑉𝐷 or Δ𝑉𝐵𝐸, and we can clearly see it’s
proportional to absolute temperature.

We know that the𝑉𝐷 decreases linearly with temperature, so if we
combined a multi-plum of the Δ𝑉𝐵𝐸 with a 𝑉𝐷 voltage, then we
should get a constant voltage. 
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9.2.3 How to combine a CTAT with a PTAT ?

One method is the figure below. The voltage across resistor 𝑅2
would compensate for the decrease in 𝑉𝐷3, as such, 𝑅2 would be
bigger than 𝑅1.
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Another method would be to stack the 𝑅2 on top of 𝑅1 as shown
below.
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9.2.4 Brokaw reference

Paul Brokaw was a pioneer within reference circuits. Below is the
Brokaw reference, which I think was first published in A simple

https://ieeexplore.ieee.org/document/1050532
https://ieeexplore.ieee.org/document/1050532
https://ieeexplore.ieee.org/document/1050532
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three-terminal IC bandgap reference.

I 1 DUBE VTU
Rz Ry

I Ia Va IRz YI
Ir ZIRAQ Q2

8

Ere use In 28130.4
É V21 VBG VRtVBE

Ny 222dB

prat

to do I

The opamp ensures the two bipolars have the same current. 𝑄1 is
larger than 𝑄2. The Δ𝑉𝐵𝐸 is across the 𝑅2, so we know the current
𝐼. We know that 𝑅1 must then have 2𝐼.

The voltage at the output will then be.

𝑉𝐵𝐺 = 𝑉𝐺0 + (𝑚 − 1) 𝑘𝑇
𝑞

ln
𝑇0
𝑇

+ 𝑇
[
𝑘

𝑞
ln
𝐽2

𝐽1

2𝑅2
𝑅1

− 𝑉𝐺0 −𝑉𝑏𝑒0
𝑇0

]
where 𝑉𝐺0 is the bandgap, 𝑉𝑏𝑒0 is the base emitter measured at a
temperature 𝑇0 and the 𝐽’s are the current densities.

To get a constant output voltage, the relationship between the
resistors should be approximately

𝑅2
𝑅1

=
𝑉𝐺0 −𝑉𝑏𝑒0
2𝑇0

𝑘
𝑞 ln( 𝐽2𝐽1 )

In typical simulations, the variation can be low over the temperature
range. The second order error is the remaining error from

𝑉𝐵𝐺 = 𝑉𝐺0 + (𝑚 − 1) 𝑘𝑇
𝑞

ln
𝑇0
𝑇

+ 𝑇
[
𝑘

𝑞
ln
𝐽2

𝐽1

2𝑅2
𝑅1

− 𝑉𝐺0 −𝑉𝑏𝑒0
𝑇0

]

https://ieeexplore.ieee.org/document/1050532
https://ieeexplore.ieee.org/document/1050532
https://ieeexplore.ieee.org/document/1050532
https://ieeexplore.ieee.org/document/1050532
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Where the last term is zero, so

𝑉𝐵𝐺 = 𝑉𝐺0 + (𝑚 − 1) 𝑘𝑇
𝑞

ln
𝑇0
𝑇

Over corners, I do expect that there is variation. It may be that the
𝑉𝐷 modeling is not perfect, which means the cancellation of the
last term is incomplete.

We could include trimming of PTAT to calibrate for the remaining
error, however, if we wanted to remove the linear gradient, we
would need a two point temperature test of every IC, which too
expensive for low-cost devices.

9.2.5 Low voltage bandgap

The Brokaw reference, and others, have a 1.2 V output voltage,
which is hard if your supply is below about 1.4 V. As such, people
have investigated lower voltage references. The original circuit
was presented by Banba A CMOS bandgap reference circuit with
sub-1-V operation

https://ieeexplore.ieee.org/document/760378
https://ieeexplore.ieee.org/document/760378
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In real ICs though, you should ask yourself long and hard whether
you really need these low-voltage references. Most ICs today still
have a high voltage, either 1.8 V or 3.0 V.

If you do need them though, consider the circuit below. We have
two diodes at different current densities. The Δ𝑉𝐷 will be across
𝑅1. The voltage at the input of the OTA will be 𝑉𝐷 and the OTA
will ensure the both are equal.

The current will then be

𝐼1 =
Δ𝑉𝐷

𝑅1

and we know the current increases with temperature, since Δ𝑉𝐷
increases with temperature.

R

T N

In the figure below I’ve used Δ𝑉𝐵𝐸, it’s the same as Δ𝑉𝐷 , so ignore
that error.

Assume we copy the 𝑉𝐷 to another node, and place it across a
second resistor 𝑅2, as shown in the figure below. The current in
this second resistor is then

𝐼2 =
𝑉𝐷

𝑅2

and we know the current decreases with temperature, since 𝑉𝐷
decreases with temperature.
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From before, we know the current in 𝑅1 is proportional to temper-
ature. As such, if we combine the two with the correct proportions,
then we can get a current that does not change with temperature.

I WE

R
R2

9 N

Let’s remove the OTA, and connect 𝑅2 directly to 𝑉𝐷 nodes, you
should convince yourself of the fact that this does not change 𝐼1 at
all.

Ra in
ti NE R

Iz13g

It does, however, change the current in the PMOS. Provided we scale
𝑅2 correctly, then the PTAT 𝐼1 can be compensated by the CTAT 𝐼2,
and we have a current that is independent of temperature.

𝐼𝑃𝑀𝑂𝑆 =
𝑉𝐷

𝑅2
+ Δ𝑉𝐷

𝑅1
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Assuming we copy the current into another resistor 𝑅3, as shown
below, we can get a voltage that is

𝑉𝑂𝑈𝑇 = 𝑅3

[
𝑉𝐷

𝑅2
+ Δ𝑉𝐷

𝑅1

]
Where the output voltage can be chosen freely, and indeed be lower
than 1.2 V.

p p
ti MI p

12 152 Rz

BE

9.3 Bias

Sometimes we just need a current

9.3.1 Voltage to current conversion

With a known voltage, we can convert to a known current with the
circuit below.

On-chip we don’t have accurate resistors, but for bias currents, it’s
usually ok with + − 20 variation (the variation of R).

Across a IC, we can expect the resistors to match within a few
percent, as such, we can recreate a voltage with a accuracy of a few
percent difference from the original if we have a second resistor on
the other side of the IC.

If we wanted to create an accurate current, then we’d trim the R
until the current is what we want.
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Sometimes we don’t need a full bandgap reference. In those cases,
we can use a GM cell, where the impedance could be a resistor, in
which case

𝑉𝑜 = 𝑉𝐺𝑆1 −𝑉𝐺𝑆2 = 𝑉𝑒 𝑓 𝑓 1 +𝑉𝑡𝑛 −𝑉𝑒 𝑓 𝑓 2 −𝑉𝑡𝑛 = 𝑉𝑒 𝑓 𝑓 1 −𝑉𝑒 𝑓 𝑓 2

Assuming strong inversion, then

𝐼𝐷1 =
1
2
𝜇𝑛𝐶𝑜𝑥

𝑊1
𝐿1
𝑉2
𝑒 𝑓 𝑓 1
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𝐼𝐷2 =
1
2
𝜇𝑛𝐶𝑜𝑥4

𝑊1
𝐿1
𝑉2
𝑒 𝑓 𝑓 2

𝐼𝐷1 = 𝐼𝐷2

1
2
𝜇𝑛𝐶𝑜𝑥

𝑊1
𝐿1
𝑉2
𝑒 𝑓 𝑓 1 =

1
2
𝜇𝑛𝐶𝑜𝑥4

𝑊1
𝐿1
𝑉2
𝑒 𝑓 𝑓 2

𝑉𝑒 𝑓 𝑓 1 = 2𝑉𝑒 𝑓 𝑓 2

Inserted into above

𝑉𝑜 = 𝑉𝑒 𝑓 𝑓 1 −
1
2
𝑉𝑒 𝑓 𝑓 1 =

1
2
𝑉𝑒 𝑓 𝑓 1

Still assuming strong inversion, such that

𝑔𝑚 =
2𝐼𝑑
𝑉𝑒 𝑓 𝑓

we find that

𝐼 =
𝑉𝑒 𝑓 𝑓 1

2𝑍

𝑍 ⇒ 1
𝑔𝑚

If we use a resistor for Z, then we can get a transconductance that
is proportional to a resistor, or a constant 𝑔𝑚 bias.

We can use other things for Z, like a switched capacitor
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9.4 Want to learn more?

A simple three-terminal IC bandgap reference

A CMOS bandgap reference circuit with sub-1-V operation

A sub-1-V 15-ppm//spl deg/C CMOS bandgap voltage reference
without requiring low threshold voltage device

The Bandgap Reference

The Design of a Low-Voltage Bandgap Reference

https://ieeexplore.ieee.org/document/1050532
https://ieeexplore.ieee.org/document/760378
https://ieeexplore.ieee.org/document/991391
https://ieeexplore.ieee.org/document/991391
https://ieeexplore.ieee.org/document/7559954
https://ieeexplore.ieee.org/document/9523469




Analog frontend and filters 10
10.1 Introduction . . . . 117
10.2 Filters . . . . . . . . . 119
10.2.1 First order filter . . . 120
10.2.2 Second order filter . 121
10.2.3 How do we im-

plement the filter
sections? . . . . . . . 122

10.3 Gm-C . . . . . . . . . 122
10.3.1 Differential Gm-C . 123
10.3.2 Finding a transcon-

ductor . . . . . . . . . 125
10.4 Active-RC . . . . . . 126
10.4.1 General purpose first

order filter . . . . . . 126
10.4.2 General purpose

biquad . . . . . . . . 129
10.5 The OTA is not ideal 130
10.6 Example circuit . . . 130
10.7 My favorite OTA . . 131
10.8 Want to learn more? 133

Keywords: H(s**, BiQuad, Gm-C, Active-RC, OTA

Status: 0.5

10.1 Introduction

The world is analog, and these days, we do most signal processing
in the digital domain. With digital signal processing we can reuse
the work of others, buy finished IPs, and probably do processing
at lower cost than for analog.

Analog signals, however, might not be suitable for conversion to
digital. A sensor might have a high, or low impedance, and have
the signal in the voltage, current, charge or other domain.

To translate the sensor signal into something that can be converted
to digital we use analog front-ends (AFE). How the AFE looks
will depend on application, but it’s common to have amplification,
frequency selectivity or domain transfer, for example current to
voltage.

An ADC will have a sample rate, and will alias (or fold) any signal
above half the sample rate, as such, we also must include a anti-
alias filter in AFE that reduces any signal outside the bandwidth
of the ADC as close to zero as we need.
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One example of an analog frontend is the recieve chain of a typical
bluetooth radio. The signal that arrives at the antenna, or the
“sensor”, can be weak, maybe -90 dBm.

At the same time, at another frequency, there could be a unwanted
signal, or blocker, of -30 dBm

Assume for the moment we actually used an ADC at the antenna,
how many bits would we need?

Bluetooth uses Gaussian Frequency Shift Keying, which is a con-
stant envelope binary modulation, and it’s ususally sufficient with
low number of bits, assume 8-bits for the signal is more than
enough.
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If we assume the maximum of the ADC should be the blocker in
the table below, and the resolution of the digital should be given
by

What Power [dBm] Voltage [V]

Blocker -30 7 m
Wanted -90 7 u
Resolution Wanted/255 = 28 n

Then we can calculate the number of bits as

ADC resolution ⇒ ln
7 mV
28 nV

/ln 2 ≈ 18 bits

If we were to sample at 5 GHz, to ensure the bandwidth is sufficient
for a 2.480 GHz maximum frequency we can actually compute the
power consumption.

Given the Walden figure of merit of

𝐹𝑂𝑀 =
𝑃

2𝐸𝑁𝑂𝐵 𝑓 𝑠

The best FOM in literature is about 1 fJ/step, so

𝑃 = 1 fJ/step × 218 × 5GHz = 1.31 W

If we look at a typical system, like the Whoop. We can have a look
at teardowns, to find the battery size.

Whoop battery is 205mAh at 3.8 V

Then we can compute the lifetime running an ADC based Bluetooth
Radio

Hours =
205 mAh

1.32 W/3.8 V
= 0.6 h

I know my whoop lasts for almost a week, so it can’t be what
Bluetooth ICs do.

I know a little bit about radio’s, especially inside the Whoop, since
it has

Nordic Inside

I can’t tell you how the Nordic radio works, but I can tell you
how others usually make their radio’s. The typical radio below has
multiple blocks in the AFE.

https://www.whoop.com/eu/en/
https://fccid.io/2AJ2X-WS30/Internal-Photos/Internal-Photos-4265037.pdf
https://www.nordicsemi.com/Nordic-news/2022/07/the-whoop-4-uses-nordics-nrf52840-soc
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First is low-noise amplifier (LNA) amplifying the signal by maybe
10 times. The LNA reduces the noise impact of the following blocks.
The next is the complex mixer stage, which shifts the input signal
from radio frequency down to a low frequency, but higher than the
bandwidth of the wanted signal. Then there is a complex anti-alias
filter, also called a poly-phase filter, which rejects parts of the
unwanted signals. Lastly there is a complex ADC to convert to
digital.

In digital we can further filter to select exactly the wanted signal.
Digital filters can have high stop band attenuation at a low power
and cost. There could also be digital mixers to further reduce the
frequency.

The AFE makes the system more efficient. In the 5 GHz ADC
output, from the example above, there’s lot’s of information that
we don’t use.

An AFE can reduce the system power consumption by constraining
digital information processing and conversion to the parts of the
spectrum with information of interest.

There are instances, though, where the full 2.5 GHz bandwidth has
useful information. Imagine in a cellular base station that should
process multiple cell-phones at the same time. In that case, it could
make sense with an ADC at the antenna.

What make sense depends on the application.

10.2 Filters

A filter can be fully described by the transfer function, usually
denoted by 𝐻(𝑠) = output

input .

Most people will today start design with a high-level simulation,
in for example Matlab, or Python. Once they know roughly the
transfer function, they will implement the actual analog circuit.

For us, as analog designers, the question becomes “given an 𝐻(𝑠),
how do we make an analog circuit?” It can be shown that a
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combination of 1’st and 2’nd order stages can synthesize any order
filter.

Once we have the first and second order stages, we can start looking
into circuits.

10.2.1 First order filter

In the book they use signal flow graphs to show how the first
order stage can be generated. By selecting the coefficients 𝑘0 ,𝑘1
and 𝜔0 we can get any first order filter, and thus match the 𝐻(𝑠)
we want.

I would encourage you to try and derive from the signal flow graph
the 𝐻(𝑠) and prove to your self the equation is correct.

Vi Ys Vo

Second order

a

MÉE

K2 S

W

wo Q

Vi ko wo Vo

k

Kas

Signal flow graphs are useful when dealing with linear systems.

The instructions to compute the transfer functions are

1. any line with a coefficient is a multiplier
2. any box output is a multiplication of the coefficient and the

input
3. any sum, well, sum all inputs
4. be aware of gremlins (a sudden -+ swap)

𝐻(𝑠) = 𝑉𝑜(𝑠)
𝑉𝑖(𝑠)

=
𝑘1𝑠 + 𝑘0
𝑠 + 𝑤𝑜

Let’s call the 1/𝑠 box input 𝑢



10.2 Filters 121

𝑢 = (𝑘0 + 𝑘1𝑠)𝑉𝑖 − 𝜔0𝑉𝑜

𝑉𝑜 = 𝑢/𝑠

𝑢 = 𝑉𝑜𝑠 = (𝑘0 + 𝑘1𝑠)𝑉𝑖 − 𝜔0𝑉𝑜

(𝑠 + 𝜔0)𝑉𝑜 = (𝑘0 + 𝑘1𝑠)𝑉𝑖

𝑉𝑜

𝑉𝑖
=
𝑘1𝑠 + 𝑘0
𝑠 + 𝜔0

10.2.2 Second order filter

Bi-quadratic is a general purpose second order filter.

Bi-quadratic just means “there are two quadratic equations”. Once
we match the 𝑘’s 𝜔0 and 𝑄 to our wanted 𝐻(𝑠) we can proceed
with the circuit implementation.

Wo

Vi ko V0

Ks

Second order

V25
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has

𝐻(𝑠) = 𝑘2𝑠
2 + 𝑘1𝑠 + 𝑘0

𝑠2 + 𝜔0
𝑄 𝑠 + 𝜔2

𝑜

Follow exactly the same principles as for first order signal flow
graph. If you fail, and you can’t find the problem with your algebra,
then maybe you need to use Maple or Mathcad.

I guess you could also spend hours training on examples to get
better at the algebra. Personally I find such tasks mind numbingly
boring, and of little value. What’s important is to remember that
you can always look up the equation for a bi-quad in a book.
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10.2.3 How do we implement the filter sections?

While I’m sure you can invent new types of filters, and there
probably are advanced filters, I would say there is roughly three
types. Passive filters, that do not have gain. Active-RC filters, with
OTAs, and usually trivial to make linear. And Gm-C filters, where
we use the transconductance of a transistor and a capacitor to
set the coefficients. Gm-C are usually more power efficient than
Active-RC, but they are also more difficult to make linear.

In many AFEs, or indeed Sigma-Delta modulator loop filters, it’s
common to find a first Active-RC stage, and then Gm-C for later
stages.

10.3 Gm-C

In the figure below you can see a typical Gm-C filter and the
equations for the transfer function. One important thing to note
is that this is Gm with capital G, not the 𝑔𝑚 that we use for small
signal analysis.

In a Gm-C filter the input and output nodes can have significant
swing, and thus cannot always be considered small signal.

Gnc
to Gavi

Io

Vi Gm Vo Vo Ie WEVi
c

Wti of

Io

Vi am I
Vo 372

Io Wti GI
c

d z

Creo.ae Use 3D cap

figure

𝑉𝑜 =
𝐼𝑜

𝑠𝐶
=

𝜔𝑡𝑖
𝑠
𝑉𝑖

𝜔𝑡𝑖 =
𝐺𝑚

𝐶
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10.3.1 Differential Gm-C

In a real IC we would almost always use differential circuit, as
shown below. The transfer function is luckily the same.

Gnc
to Gulf

Io
Vo IE WEViVi Gm Vo

wei of

gmVi

Vit Gm
V

ut am II
c

grivi guv

e
I 2

Crease Use 3D cap

figure

𝑠𝐶𝑉𝑜 = 𝐺𝑚𝑉𝑖

𝐻(𝑠) = 𝑉𝑜

𝑉𝑖
=
𝐺𝑚

𝑠𝐶

Differential circuits are fantastic for multiple reasons, power supply
rejection ratio, noise immunity, symmetric non-linearity, but the
qualities I like the most is that the outputs can be flipped to
implement negative, or positive gain.
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to Gulf
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Vo IE WEViVi Gm Vo

wei of

gmVi

Vit Gm
V

ut am II
c

grivi guv

e
I 2

Crease Use 3D cap

figure

𝐻(𝑠) = 𝑉𝑜

𝑉𝑖
= −𝐺𝑚

𝑠𝐶
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The figure below shows a implementation of a first-order Gm-C
filter that matches our signal flow graph.

I would encourage you to try and calculate the transfer function.

ex
Ganz

is
izVi s

VolsGm
i tdo

do

i

is
iz

Given the transfer function from the signal flow graph, we see that
we can select 𝐶𝑥 , 𝐶𝑎 and 𝐺𝑚 to get the desired 𝑘’s and 𝜔0

𝐻(𝑠) = 𝑘1𝑠 + 𝑘0
𝑠 + 𝑤𝑜

𝐻(𝑠) =
𝑠 𝐶𝑥
𝐶𝑎+𝐶𝑥 +

𝐺𝑚1
𝐶𝑎+𝐶𝑥

𝑠 + 𝐺𝑚2
𝐶𝑎+𝐶𝑥

Below is a general purpose Gm-C bi-quadratic system.
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20
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20

𝐻(𝑠) = 𝑘2𝑠
2 + 𝑘1𝑠 + 𝑘0

𝑠2 + 𝜔0
𝑄 𝑠 + 𝜔2

𝑜
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𝐻(𝑠) =
𝑠2 𝐶𝑋
𝐶𝑋+𝐶𝐵 + 𝑠 𝐺𝑚5

𝐶𝑋+𝐶𝐵 + 𝐺𝑚2𝐺𝑚4
𝐶𝐴(𝐶𝑋+𝐶𝐵)

𝑠2 + 𝑠 𝐺𝑚2
𝐶𝑋+𝐶𝐵 + 𝐺𝑚1𝐺𝑚2

𝐶𝐴(𝐶𝑋+𝐶𝐵)

10.3.2 Finding a transconductor

Although you can start with the Gm-C cells in the book, I would
actually choose to look at a few papers first.

The main reason is that any book is many years old. Ideas turn
into papers, papers turn into books, and by the time you read the
book, then there might be more optimal circuits for the technology
you work in.

If I were to do a design in 22 nm FDSOI I would first see if someone
has already done that, and take a look at the strategy they used. If
I can’t find any in 22 nm FDSOI, then I’d find a technology close to
the same supply voltage.

Start with IEEEXplore

I could not find a 22 nm FDSOI Gm-C based circuit on the initial
search. If I was to actually make a Gm-C circuit for industry I
would probably spend a bit more time to see if any have done it,
maybe expanding to other journals or conferences.

I know of Pieter Harpe, and his work is usually superb, so I
would take a closer look at A 77.3-dB SNDR 62.5-kHz Bandwidth
Continuous-Time Noise-Shaping SAR ADC With Duty-Cycled
Gm-C Integrator

And from Figure 10 a) we can see it’s a similar Gm-C cell as chapter
12.5.4 in CJM.

One of my Ph.d’s used the transonductor below on his master
thesis Design Considerations for a Low-Power Control-Bounded
A/D Converter.

https://ieeexplore.ieee.org/search/searchresult.jsp?queryText=Gm-C&highlight=true&returnType=SEARCH&matchPubs=true&sortType=newest&returnFacets=ALL&refinements=PublicationTitle:IEEE%20Journal%20of%20Solid-State%20Circuits
https://scholar.google.nl/citations?user=nLhKSsMAAAAJ&hl=nl
https://ieeexplore.ieee.org/document/9989513
https://ieeexplore.ieee.org/document/9989513
https://ieeexplore.ieee.org/document/9989513
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
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Design Considerations

5.3.2 Transconductor

The main objective for the design of the transconductor used in the
Gm-C integrators of figure 5.5 is to utilize the relaxed requirements on
noise and linearity for reduced power consumption. The maximum input
magnitude processed by a certain transconductor, which depends on the
unity gain of the preceding integrator and the control period T , is in
this thesis considered a design variable. Power demanding linearization
techniques could then be avoided by co-optimizing the transconductors
inherent linearity and the state boundary bx.

The schematic for the transconductor considered in this thesis is given in
figure 5.16. Spectre netlist and some additional design details are given
in appendix F and a summary of some key performance metrics is listed
in table 5.3.

M1a M1b

Mbn1

M2a M2b

M3a M3b

Vss

Vbn

Vdd Vdd

v+
i v�

i

Vdd

Vcmfb

i+oi�o

Figure 5.16: Transconductor schematic

The transconductor comprises a single di↵erential pair (M1) with an ac-
tive load (M3). The cascode/common-gate transistors, M2, are included
to limit the Miller-e↵ect on the gate-drain capacitor Cgd1 of the input
transistors. The transconductor achieves a DC-gain of about 150. In
the absence of M2, Cgd1 would have been boosted from about 200aF to
more than 20fF, thereby becoming a dominating capacitor at the floating
gate node. The DC-gain, and thereby the gate-drain capacitance, follow

72

10.4 Active-RC

The Active-RC filter should be well know at this point. However,
what might be new is that the open loop gain 𝐴0 and unity gain
𝜔𝑡𝑎

10.4.1 General purpose first order filter

Below is a general purpose first order filter and the transfer function.
I’ve used the condutance 𝐺 = 1

𝑅 instead of the resistance. The
reason is that it sometimes makes the equations easier to work
out.

If you’re stuck on calculating a transfer function, then try and
switch to conductance, and see if it resolves.

I often get my mind mixed up when calculating transfer functions.
I don’t know if it’s only me, but if it’s you also, then don’t worry,
it’s not that often you have to work out transfer functions.

Once in a while, however, you will have a problem where you must
calculate the transfer function. Sometimes it’s because you’ll need
to understand where the poles/zeros are in a circuit, or you’re
trying to come up with a clever idea, or I decide to give this exact
problem on the exam.
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𝐻(𝑠) = 𝑘1𝑠 + 𝑘0
𝑠 + 𝑤𝑜

𝐻(𝑠) =
−𝐶1
𝐶2
𝑠 − 𝐺1

𝐶2

𝑠 + 𝐺2
𝐶2

Let’s work through the calculation.

10.4.1.1 Step 1: Simplify

The conductance from 𝑉𝑖𝑛 to virtual ground can be written as

𝐺𝑖𝑛 = 𝐺1 + 𝑠𝐶1

The feedback conductance, between 𝑉𝑜𝑢𝑡 and virtual ground I
write as

𝐺 𝑓 𝑏 = 𝐺2 + 𝑠𝐶2

10.4.1.2 Step 2: Remember how an OTA works

An ideal OTA will force its inputs to be the same. As a result, the
potential at OTA− input must be 0.

The input current must then be

𝐼𝑖𝑛 = 𝐺𝑖𝑛𝑉𝑖𝑛

Here it’s important to remember that there is no way for the input
current to enter the OTA. The OTA is high impedance. The input
current must escape through the output conductance 𝐺 𝑓 𝑏 .

What actually happens is that the OTA will change the output
voltage 𝑉𝑜𝑢𝑡 until the feedback current , 𝐼 𝑓 𝑏 , exactly matches 𝐼𝑖𝑛 .
That’s the only way to maintain the virtual ground at 0 V. If
the currents do not match, the voltage at virtual ground cannot
continue to be 0 V, the voltage must change.
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10.4.1.3 Step 3: Rant a bit

The previous paragraph should trigger your spidy sense. Words
like “exactly matches” don’t exist in the real world. As such, how
closely the currents match must affect the transfer function. The
open loop gain 𝐴0 of the OTA matters. How fast the OTA can
react to a change in voltage on the virtual ground, approximated
by the unity-gain frequency 𝜔𝑡𝑎 (the frequency where the gain of
the OTA equals 1, or 0 dB), matters. The input impedance of the
OTA, whether the gate leakage of the input differential pair due
to quantum tunneling, or the capacitance of the input differential
pair, matters. How much current the OTA can deliver (set by slew
rate), matters.

Active-RC filter design is “How do I design my OTA so it’s good
enough for the filter”. That’s also why, for integrated circuits, you
will not have a library of OTAs that you just plug in, and they
work.

I would be very suspicious of working anywhere that had an OTA
library I was supposed to use for integrated filter design. I’m not
saying it’s impossible that some company actually has an OTA
library, but I think it’s a bad strategy. First of all, if an OTA is generic
enough to be used “everywhere”, then the OTA is likely using too
much power, consumes too much area, and is too complex. And
the company runs the risk that the designer have not really checked
that the OTA works porperly in the filter because “Someone else
designed the OTA, I just used in my design”.

But, for now, to make our lifes simpler, we assume the OTA is ideal.
That makes the equations pretty, and we know what we should
get if the OTA actually was ideal.

10.4.1.4 Step 4: Do the algebra

The current flowing from 𝑉𝑜𝑢𝑡 to virtual ground is

𝐼𝑜𝑢𝑡 = 𝐺 𝑓 𝑏𝑉𝑜𝑢𝑡

The sum of currents into the virtual ground must be zero

𝐼𝑖𝑛 + 𝐼𝑜𝑢𝑡 = 0

Insert, and do the algebra

𝐺𝑖𝑛𝑉𝑖𝑛 + 𝐺𝑜𝑢𝑡𝑉𝑜𝑢𝑡 = 0

⇒ −𝐺𝑖𝑛𝑉𝑖𝑛 = 𝐺𝑜𝑢𝑡𝑉𝑜𝑢𝑡
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𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= − 𝐺𝑖𝑛

𝐺𝑜𝑢𝑡

= −𝐺1 + 𝑠𝐶1
𝐺2 + 𝑠𝐶2

=
−𝑠 𝐶1

𝐶2
− 𝐺1

𝐶2

𝑠 + 𝐺2
𝐶2

10.4.2 General purpose biquad

A general bi-quadratic active-RC filter is shown below. These kind
of general purpose filter sections are quite useful.

Imagine you wanted to make a filter, any filter. You’d decompose
into first and second order sections, and then you’d try and match
the transfer functions to the general equations.
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𝐻(𝑠) =

[
𝐶1
𝐶𝐵
𝑠2 + 𝐺2

𝐶𝐵
𝑠 + ( 𝐺1𝐺3

𝐶𝐴𝐶𝐵
)
][

𝑠2 + 𝐺5
𝐶𝐵
𝑠 + 𝐺3𝐺4

𝐶𝐴𝐶𝐵

]
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10.5 The OTA is not ideal

VI
Vo

𝐻(𝑠) ≈ 𝐴0

(1 + 𝑠𝐴𝑜𝑅𝐶)(1 + 𝑠
𝑤𝑡𝑎

)

where
𝐴0

is the gain of the amplifier, and

𝜔𝑡𝑎

is the unity-gain frequency.

At frequencies above 1
𝐴0𝑅𝐶

and below 𝑤𝑡𝑎 the circuit above is a
good approximation of an ideal integrator.

See page 511 in CJM (chapter 5.8.1)

10.6 Example circuit

One place where both active-RC and Gm-C filters find a home are
continuous time sigma-delta modulators. More on SD later, for now,
just know that SD us a combination of high-gain, filtering, simple
ADCs and simple DACs to make high resolution analog-to-digital
converters.

One such an example is

A 56 mW Continuous-Time Quadrature Cascaded Sigma-Delta
Modulator With 77 dB DR in a Near Zero-IF 20 MHz Band

Below we see the actual circuit. It may look complex, and it is.

Not just “complex” as in complicated circuit, it’s also “complex”
as in “complex numbers”.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
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We can see there are two paths “i” and “q”, for “in-phase” and
“quadrature-phase”. The fantasitc thing about complex ADCs is
that we can have a-symmetric frequency response around 0 Hz.

It will be tricky understanding circuits like this in the beginning,
but know that it is possible, and it does get easier to understand.

With a complex ADC like this, the first thing to understand is the
rough structure.

There are two paths, each path contains 2 ADCs connected in series
(Multi-stage Noise-Shaping or MASH). Understanding everything
at once does not make sence.

Start with “Vpi” and “Vmi”, make it into a single path (set Rfb1
and Rfb2 to infinite), ignore what happens after R3 and DAC2i.

Now we have a continuous time sigma delta with two stages. First
stage is a integrator (R1 and C1), and second stage is a filter (Cff1,
R2 and C2). The amplified and filtered signal is sampled by the
ADC1i and fed back to the input DAC1i.

It’s possible to show that if the gain from 𝑉(𝑉𝑝𝑖, 𝑉𝑝𝑚) to ADC1i
input is large, then 𝑌1𝑖 = 𝑉(𝑉𝑝𝑖, 𝑉𝑝𝑚) at low frequencies.

10.7 My favorite OTA

Over the years I’ve developed a love for the current mirror OTA. A
single stage, with load compensation, and an adaptable range of
DC gains.

Sometimes simple current mirrors are sufficient, sometimes cas-
coded, or even active cascodes are necessary.

Below is the differential current mirror OTA.
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In a differential OTA we need to control the output common mode.
In order to control the common mode, we must sense the common
mode.

Below is a circuit I often use to sense the common mode. Ideally
the source followers would be native transistors, but those are not
always available.

The reference for the common mode can be from a bandgap, or in
the case below, VDD/2.

 

1 1

1

Von Vop
Vin Vip

Von Vop

VCREF

VCOUT

Once we have both the sensed common mode, and the common
mode reference, we can use another OTA to control the common
mode.

The nice thing about the circuit below is that the common mode
feedback loop has the same dominant pole as the differential
loop.
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1

Von Vop
VCOUT VCREF

You can find the schematic for the OTA at

CNR_OTA_SKY130NM

10.8 Want to learn more?

A 77.3-dB SNDR 62.5-kHz Bandwidth Continuous-Time Noise-
Shaping SAR ADC With Duty-Cycled Gm-C Integrator

Design Considerations for a Low-Power Control-Bounded A/D
Converter

A 56 mW Continuous-Time Quadrature Cascaded Sigma-Delta
Modulator With 77 dB DR in a Near Zero-IF 20 MHz Band

Complex signal processing is not - complex

https://github.com/wulffern/cnr_ota_sky130nm
https://ieeexplore.ieee.org/document/9989513
https://ieeexplore.ieee.org/document/9989513
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
https://ieeexplore.ieee.org/document/1257061
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11.1 Active-RC

A general purpose Active-RC bi-quadratic (two-quadratic equa-
tions) filter is shown below
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If you want to spend a bit of time, then try and calculate the transfer
function below.

𝐻(𝑠) =

[
𝐶1
𝐶𝐵
𝑠2 + 𝐺2

𝐶𝐵
𝑠 + ( 𝐺1𝐺3

𝐶𝐴𝐶𝐵
)
][

𝑠2 + 𝐺5
𝐶𝐵
𝑠 + 𝐺3𝐺4

𝐶𝐴𝐶𝐵

]
Active resistor capacitor filters are made with OTAs (high output
impedance) or OPAMP (low output impedance). Active amplifiers
will consume current, and in Active-RC the amplifiers are always
on, so there is no opportunity to reduce the current consumption
by duty-cycling (turning on and off).

Both resistors and capacitors vary on an integrated circuit, and the
3-sigma variation can easily be 20 %.

The pole or zero frequency of an Active-RC filter is proportional to
the inverse of the product between R and C

𝜔𝑝|𝑧 ∝
𝐺

𝐶
=

1
𝑅𝐶
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As a result, the total variation of the pole or zero frequency is can
have a 3-sigma value of

𝜎𝑅𝐶 =

√
𝜎2
𝑅
+ 𝜎2

𝐶
=
√

0.022 + 0.022 = 0.028 = 28 %

On an IC we sometimes need to calibrate the R or C in production
to get an accurate RC time constant.

We cannot physically change an IC, every single one of the 100
million copies of an IC is from the same Mask set. That’s why ICs
are cheap. To make the Mask set is incredibility expensive (think 5
million dollars), but a copy made from the Mask set can cost one
dollar or less. To calibrate we need additional circuits.

Imagine we need a resistor of 1 kOhm. We could create that
by parallel connection of larger resistors, or series connection of
smaller resistors. Since we know the maximum variation is 0.02,
then we need to be able to calibrate away +- 20 Ohms. We could
have a 980 kOhm resistor, and then add ten 4 Ohm resistors in
series that we can short with a transistor switch.

But is a resolution of 4 Ohms accurate enough? What if we need a
precision of 0.1%? Then we would need to tune the resistor within
+-1 Ohm, so we might need 80 0.5 Ohm resistors.

But how large is the on-resistance of the transistor switch? Would
that also affect our precision?

But is the calibration step linear with addition of the transistors? If
we have a non-linear calibration step, then we cannot use gradient
decent calibration algorithms, nor can we use binary search.

Analog designers need to deal with an almost infinite series of
“But”.

The experienced designer will know when to stop, when is the
“But what if” not a problem anymore.

The most common error in analog integrated circuit design is a “I
did not imagine that my circuit could fail in this manner” type of
problem. Or, not following the line of “But”’s far enough.

But if we follow all the “But”’s we will never tapeout!

Active-RC filters are great for linearity, but if we need accurate
time constant, there are better alternatives.
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11.2 Gm-C
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𝐻(𝑠) =

[
𝑠2 𝐶𝑋
𝐶𝑋+𝐶𝐵 + 𝑠 𝐺𝑚5

𝐶𝑋+𝐶𝐵 + 𝐺𝑚2𝐺𝑚4
𝐶𝐴(𝐶𝑋+𝐶𝐵)

][
𝑠2 + 𝑠 𝐺𝑚2

𝐶𝑋+𝐶𝐵 + 𝐺𝑚1𝐺𝑚2
𝐶𝐴(𝐶𝑋+𝐶𝐵)

]
The pole and zero frequency of a Gm-C filter is

𝜔𝑝|𝑧 ∝
𝐺𝑚

𝐶

The transconductance accuracy depends on the circuit, and the
bias circuit, so we can’t give a general, applies for all circuits, sigma
number. Capacitors do have 3-sigma 20 % variation, usually.

Same as Active-RC, Gm-C need calibration to get accurate pole or
zero frequency.

11.3 Switched capacitor

The first time you encounter Switched Capacitor (SC) circuits, they
do require some brain training. So let’s start simple.

Consider the circuit below. Assume that the two transistors are
ideal (no-charge injection, no resistance).
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For SC circuits, we need to consider the charge on the capacitors,
and how they change with time.

The charge on the capacitor at the end ‗ of phase 2 is

𝑄𝜙2$ = 𝐶1𝑉𝐺𝑁𝐷 = 0

while at the end of phase 1

𝑄𝜙1$ = 𝐶1𝑉𝐼

The impedance, from Ohm’s law is

𝑍𝐼 = (𝑉𝐼 −𝑉𝐺𝑁𝐷)/𝐼𝐼

And from SI units units we can see current is

𝐼𝐼 =
𝑄

𝑑𝑡
= 𝑄 𝑓𝜙

Charge cannot disappear, charge is conserved. As such, the charge
going out from the input must be equal to the difference of charge
at the end of phase 1 and phase 2.

𝑍𝐼 =
𝑉𝐼 −𝑉𝐺𝑁𝐷(

𝑄𝜙1$ −𝑄𝜙2$
)
𝑓𝜙

‗ I use the $ to mark the end of the period. It comes from Regular Expressions.

https://en.wikipedia.org/wiki/Ohm%27s_law
https://analogicus.com/aic2024/2023/10/26/A-refresher.html#there-are-standard-units-of-measurement
https://en.wikipedia.org/wiki/Charge_conservation
https://en.wikipedia.org/wiki/Regular_expression
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Inserting for the charges, we can see that the impedance is

𝑍𝐼 =
𝑉𝐼

(𝑉𝐼𝐶 − 0) 𝑓𝜙
=

1
𝐶1 𝑓𝜙

A common confusion with SC circuits is to confuse the impedance
of a capacitor 𝑍 = 1/𝑠𝐶 with the impedance of a SC circuit
𝑍 = 1/ 𝑓 𝐶. The impedance of a capacitor is complex (varies with
frequency and time), while the SC circuit impedance is real (a
resistance).

The main difference between the two is that the impedance of a
capacitor is continuous in time, while the SC circuit is a discrete
time circuit, and has a discrete time impedance.

The circuit below is drawn slightly differently, but the same equa-
tion applies.
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If we compute the impedance.

𝑍𝐼 =
𝑉𝐼 −𝑉𝑂(

𝑄𝜙1$ −𝑄𝜙2$
)
𝑓𝜙

𝑄𝜙1$ = 𝐶1(𝑉𝐼 −𝑉𝑂)

𝑄𝜙2$ = 0

𝑍𝐼 =
𝑉𝐼 −𝑉𝑂

(𝐶1(𝑉𝐼 −𝑉𝑂)) 𝑓𝜙
=

1
𝐶1 𝑓𝜙

Which should not be surprising, as all I’ve done is to rotate the
circuit and call 𝑉𝐺𝑁𝐷 = 𝑉0.

Let’s try the circuit below.
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𝑍𝐼 =
𝑉𝐼 −𝑉𝑂(

𝑄𝜙1$ −𝑄𝜙2$
)
𝑓𝜙

𝑄𝜙1$ = 𝐶1𝑉𝐼)

𝑄𝜙2$ = 𝐶1𝑉𝑂

Inserted into the impedance we get the same result.

𝑍𝐼 =
𝑉𝐼 −𝑉𝑂

(𝐶1𝑉𝐼 − 𝐶1𝑉𝑂)) 𝑓𝜙
=

1
𝐶1 𝑓𝜙

The first time I saw the circuit above it was not obvious to me that
the impedance still was 𝑍 = 1/𝐶 𝑓 . It’s one of the cases where
mathematics is a useful tool. I could follow a set of rules (charge
conservation), and as long as I did the mathematics right, then
from the equations, I could see how it worked.

11.3.1 An example SC circuit

An example use of an SC circuit is

A pipelined 5-Msample/s 9-bit analog-to-digital converter

Shown in the figure below. You should think of the switched
capacitor circuit as similar to a an amplifier with constant gain. We
can use two resistors and an opamp to create a gain. Imagine we
create a circuit without the switches, and with a resistor of 𝑅 from
input to virtual ground, and 4𝑅 in the feedback. Our Active-R
would have a gain of 𝐴 = 4.

https://ieeexplore.ieee.org/document/1052843
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The switches disconnect the OTA and capacitors for half the time,
but for the other half, at least for the latter parts of 𝜙2 the gain is
four.

The output is only correct for a finite, but periodic, time interval.
The circuit is discrete time. As long as all circuits afterwards also
have a discrete-time input, then it’s fine. An ADC can sample the
output from the amplifier at the right time, and never notice that
the output is shorted to a DC voltage in 𝜙1

We charge the capacitor 4𝐶 to the differential input voltage in 𝜙1

𝑄1 = 4𝐶𝑉𝑖𝑛

Then we turn off 𝜙1, which opens all switches. The charge on 4𝐶
will still be 𝑄1 (except for higher order effects like charge injection
from switches).

After a short time (non-overlap), we turn on 𝜙2, closing some of the
switches. The OTA will start to force its two inputs to be the same
voltage, and we short the left side of 4𝐶. After some time we would
have the same voltage on the left side of 4𝐶 for the two capacitors,
and another voltage on the right side of the 4𝐶 capacitors. The two
capacitors must now have the same charge, so the difference in
charge, or differential charge must be zero.

Physics tell us that charge is conserved, so our differential charge
𝑄1 cannot vanish into thin air. The difference in electrons that
made 𝑄1 must be somewhere in our circuit.

Assume the designer of the circuit has done a proper job, then the
𝑄1 charge will be found on the feedback capacitors.
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We now have a 𝑄1 charge on smaller capacitors, so the differential
output voltage must be

𝑄1 = 4𝐶𝑉𝑖𝑛 = 𝑄2 = 𝐶𝑉𝑜𝑢𝑡

The gain is

𝐴 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 4

Why would we go to all this trouble to get a gain of 4?

In general, we can sum up with the following equation.

𝜔𝑝|𝑧 ∝
𝐶1
𝐶2

We can use these “switched capacitor resistors” to get pole or zero
frequency or gain proportional to a the relative size of capacitors,
which is a fantastic feature. Assume we make two identical ca-
pacitors in our layout. We won’t know the absolute size of the
capacitors on the integrated circuit, whether the 𝐶1 is 100 fF or 80
fF, but we can be certain that if 𝐶1 = 80 fF, then 𝐶2 = 80 fF to a
precision of around 0.1 %.

With switched capacitor amplifiers we can set an accurate gain,
and we can set an accurate pole and zero frequency (as long as we
have an accurate clock and a high DC gain OTA).

The switched capacitor circuits do have a drawback. They are
discrete time circuits. As such, we must treat them with caution,
and they will always need some analog filter before to avoid a
phenomena we call aliasing.

11.4 Discrete-Time Signals

An random, Gaussian, continuous time, continuous value, signal
has infinite information. The frequency can be anywhere from
zero to infinity, the value have infinite levels, and the time division
is infinitely small. We cannot store such a signal. We have to
quantize.

If we quantize time to 𝑇 = 1 ns, such that we only record the value
of the signal every 1 ns, what happens to all the other information?
The stuff that changes at 0.5 ns or 0.1 ns, or 1 ns.

We can always guess, but it helps to know, as in absolutely know,
what happens. That’s where mathematics come in. With mathe-
matics we can prove things, and know we’re correct.
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11.4.1 The mathematics

Define
𝑥𝑐

as a continuous time, continuous value signal

Define

ℓ (𝑡) =
{

1 if 𝑡 ≥ 0
0 if 𝑡 < 0

Define
𝑥𝑠𝑛(𝑡) =

𝑥𝑐(𝑛𝑇)
𝜏

[ℓ (𝑡 − 𝑛𝑇) − ℓ (𝑡 − 𝑛𝑇 − 𝜏)]

where 𝑥𝑠𝑛(𝑡) is a function of the continuous time signal at the time
interval 𝑛𝑇.

Define

𝑥𝑠(𝑡) =
∞∑

𝑛=−∞
𝑥𝑠𝑛(𝑡)

where 𝑥𝑠(𝑡) is the sampled, continuous time, signal.

Think of a sampled version of an analog signal as an infinite sum
of pulse trains where the area under the pulse train is equal to the
analog signal.

Why do this?

With a exact definition of a sampled signal in the time-domain it’s
sometimes possible to find the Laplace transform, and see how the
frequency spectrum looks.

If

𝑥𝑠(𝑡) =
∞∑

𝑛=−∞
𝑥𝑠𝑛(𝑡)

Then
𝑋𝑠𝑛(𝑠) =

1
𝜏

1 − 𝑒−𝑠𝜏
𝑠

𝑥𝑐(𝑛𝑇)𝑒−𝑠𝑛𝑇

And

𝑋𝑠(𝑠) =
1
𝜏

1 − 𝑒−𝑠𝜏
𝑠

∞∑
𝑛=−∞

𝑥𝑐(𝑛𝑇)𝑒−𝑠𝑛𝑇

Thus

lim
𝜏→0

→ 𝑋𝑠(𝑠) =
∞∑

𝑛=−∞
𝑥𝑐(𝑛𝑇)𝑒−𝑠𝑛𝑇

Or

𝑋𝑠(𝑗𝜔) =
1
𝑇

∞∑
𝑘=−∞

𝑋𝑐

(
𝑗𝜔 − 𝑗𝑘2𝜋

𝑇

)
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The spectrum of a sampled signal is an infinite sum of frequency
shifted spectra

or equivalently

When you sample a signal, then there will be copies of the input
spectrum at every

𝑛 𝑓𝑠

However, if you do an FFT of a sampled signal, then all those
infinite spectra will fold down between

0 → 𝑓𝑠1/2

or
− 𝑓𝑠1/2 → 𝑓𝑠1/2

for a complex FFT

11.4.2 Python discrete time example

If your signal processing skills are a bit thin, now might be a good
time to read up on FFT, Laplace transform and But what is the
Fourier Transform?

In python we can create a demo and see what happens when
we “sample” an “continuous time” signal. Hopefully it’s obvious
that it’s impossible to emulate a “continuous time” signal on a
digital computer. After all, it’s digital (ones and zeros), and it has
a clock!

We can, however, emulate to any precision we want.

The code below has four main sections. First is the time vector.
I use Numpy, which has a bunch of useful features for creating
ranges, and arrays.

Secondly, I create continuous time signal. The time vector can
be used in numpy functions, like np.sin(), and I combine three
sinusoid plus some noise. The sampling vector is a repeating
pattern of 11001100, so our sample rate should be 1/2’th of the input
sample rate. FFT’s can be unwieldy beasts. I like to use coherent
sampling, however, with multiple signals and samplerates I did
not bother to figure out whether it was possible.

The alternative to coherent sampling is to apply a window function
before the FFT, that’s the reason for the Hanning window below.

dt.py

#- Create a time vector
N = 2**13
t = np.linspace(0,N,N)

#- Create the "continuous time" signal with multiple
#- "sinusoidal signals and some noise
f1 = 233/N

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Laplace_transform
https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=spUNpyF58BY
https://numpy.org
https://en.wikipedia.org/wiki/Talk%3ACoherent_sampling
https://en.wikipedia.org/wiki/Talk%3ACoherent_sampling
https://github.com/wulffern/aic2024/blob/main/ex/dt.py
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fd = 1/N*119
x_s = np.sin(2*np.pi*f1*t) + 1/1024*np.random.randn(N) + \

0.5*np.sin(2*np.pi*(f1-fd)*t) + 0.5*np.sin(2*np.pi*(f1+fd)*t)

#- Create the sampling vector, and the sampled signal
t_s_unit = [1,1,0,0,0,0,0,0]
t_s = np.tile(t_s_unit,int(N/len(t_s_unit)))
x_sn = x_s*t_s

#- Convert to frequency domain with a hanning window to avoid FFT bin
#- energy spread
Hann = True
if(Hann):

w = np.hanning(N+1)
else:

w = np.ones(N+1)
X_s = np.fft.fftshift(np.fft.fft(np.multiply(w[0:N],x_s)))
X_sn = np.fft.fftshift(np.fft.fft(np.multiply(w[0:N],x_sn)))

Try to play with the code, and see if you can understand what it
does.

Below are the plots. On the left side is the “continuous value,
continuous time” emulation, on the right side “discrete time,
continuous value”.

The top plots are the time domain, while the bottom plots is
frequency domain.

The FFT is complex, so that’s why there are six sinusoids bottom
left. The “0 Hz” would be at x-axis index 4096 (213/2).

The spectral copies can be seen bottom right. How many spectral
copies, and the distance between them will depend on the sample
rate (length of t_s_unit). Try to play around with the code and
see what happens.
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11.4.3 Aliasing, bandwidth and sample rate theory

I want you to internalize that the spectral copies are real. They
are not some “mathematical construct” that we don’t have to deal
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with.

They are what happens when we sample a signal into discrete
time. Imagine a signal with a band of interest as shown below in
Green. We sample at 𝑓𝑠 . The pink and red unwanted signals do not
disappear after sampling, even though they are above the Nyquist
frequency ( 𝑓𝑠/2). They fold around 𝑓𝑠/2, and in may appear in-
band. That’s why it’s important to band limit analog signals before
they are sampled.

As such x t should be band limitedbefore

sampling

BeforeSaulius

NP T it it
Es th th f ask o

After sampling

i Iii8 I f
Es th th Is

BeforeSampling
Anti Alias

ot
it

I o LP oSH o

Es th th f

After sampling

8 1 I f
Es th th f

With an anti-alias filter (yellow) we ensure that the unwanted
components are low enough before sampling. As a result, our
wanted signal (green) is undisturbed.

As such x t should be band limitedbefore

sampling

BeforeSaulius
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Assume that we we’re interested in the red signal. We could still
use a sample rate of 𝑓𝑠 . If we bandpass-filtered all but the red signal
the red signal would fold on sampling, as shown in the figure
below.

Remember that the Nyquist-Shannon states that a sufficient no-
loss condition is to sample signals with a sample rate of twice the
bandwidth of the signal.

https://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
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Nyquist-Shannon has been extended for sparse signals, compressed
sensing, and non-uniform sampling to demonstrate that it’s suffi-
cient for the average sample rate to be twice the bandwidth. One
2009 paper Blind Multiband Signal Reconstruction: Compressed
Sensing for Analog Signal is a good place to start to delve into the
latest on signal reconstruction.

BeforeSampling

A p I I M a app ask o

Es th th Is
A

After sampling

p po 1 I 1 I f
Es th th f

11.4.4 Z-transform

Someone got the idea that writing

𝑋𝑠(𝑠) =
∞∑

𝑛=−∞
𝑥𝑐(𝑛𝑇)𝑒−𝑠𝑛𝑇

was cumbersome, and wanted to find something better.

𝑋𝑠(𝑧) =
∞∑

𝑛=−∞
𝑥𝑐[𝑛]𝑧−𝑛

For discrete time signal processing we use Z-transform

If you’re unfamiliar with the Z-transform, read the book or search
https://en.wikipedia.org/wiki/Z-transform

The nice thing with the Z-transform is that the exponent of the
z tell’s you how much delayed the sample 𝑥𝑐[𝑛] is. A block that
delays a signal by 1 sample could be described as 𝑥𝑐[𝑛]𝑧−1, and an
accumulator

𝑦[𝑛] = 𝑦[𝑛 − 1] + 𝑥[𝑛]

in the Z domain would be

𝑌(𝑧) = 𝑧−1𝑌(𝑧) + 𝑋(𝑧)

https://ieeexplore.ieee.org/document/4749297
https://ieeexplore.ieee.org/document/4749297
https://en.wikipedia.org/wiki/Z-transform
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With a Z-domain transfer function of

𝑌(𝑧)
𝑋(𝑧) =

1
1 − 𝑧−1

11.4.5 Pole-Zero plots

If you’re not comfortable with pole/zero plots, have a look at

What does the Laplace Transform really tell us

Think about the pole/zero plot as a surface your looking down
onto. At 𝑎 = 0 we have the steady state fourier transform. The “x”
shows the complex frequency where the fourier transform goes to
infinity.

Any real circuit will have complex conjugate, or real, poles/zeros.
A combination of two real circuits where one path is shifted 90
degrees in phase can have non-conjugate complex poles/zeros.

If the “x” is 𝑎 < 0, then any perturbation will eventually die out. If
the “x” is on the 𝑎 = 0 line, then we have a oscillator that will ring
forever. If the “x” is 𝑎 > 0 then the oscillation amplitude will grow
without bounds, although, only in Matlab. In any physical circuit
an oscillation cannot grow without bounds forever.

Growing without bounds is the same as “being unstable”.
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11.4.6 Z-domain

Spectra repeat every
2𝜋

As such, it does not make sense to talk about a plane with a 𝑎 and
a 𝑗𝜔. Rather we use the complex number 𝑧 = 𝑎 + 𝑗𝑏.

https://www.youtube.com/watch?v=n2y7n6jw5d0
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As long as the poles (“x”) are within the unit circle, oscillations
will die out. If the poles are on the unit-circle, then we have an
oscillator. Outside the unit circle the oscillation will grow without
bounds, or in other words, be unstable.

We can translate between Laplace-domain and Z-domain with the
Bi-linear transform

𝑠 =
𝑧 − 1
𝑧 + 1

Warning: First-order approximation https://en.wikipedia.org/w
iki/Bilinear_transform
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11.4.7 First order filter

Assume a first order filter given by the discrete time equation.

𝑦[𝑛 + 1] = 𝑏𝑥[𝑛] + 𝑎𝑦[𝑛] ⇒ 𝑌𝑧 = 𝑏𝑋 + 𝑎𝑌

The “n” index and the “z” exponent can be chosen freely, which
sometimes can help the algebra.

𝑦[𝑛] = 𝑏𝑥[𝑛 − 1] + 𝑎𝑦[𝑛 − 1] ⇒ 𝑌 = 𝑏𝑋𝑧−1 + 𝑎𝑌𝑧−1

The transfer function can be computed as

𝐻(𝑧) = 𝑏

𝑧 − 𝑎

From the discrete time equation we can see that the impulse will
never die out. We’re adding the previous output to the current

https://en.wikipedia.org/wiki/Bilinear_transform
https://en.wikipedia.org/wiki/Bilinear_transform
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input. That means the circuit has infinite memory. Accordingly,
filters of this type are known as. Infinite-impulse response (IIR)

ℎ[𝑛] =
{
𝑘 if 𝑛 < 1
𝑎𝑛−1𝑏 + 𝑎𝑛𝑘 if 𝑛 ≥ 1

Head’s up: Fig 13.12 in AIC is wrong

From the impulse response it can be seen that if 𝑎 > 1, then the
filter is unstable. Same if 𝑏 > 1. As long as |𝑎 + 𝑗𝑏| < 1 the filter
should be stable.

Firstorder
Hz Iastableunstable

ha akestan66
It t a

xD gylateAza
yEnt1 Staltaya

FIR 112

Fitt impulse repose Infinite inputs
e response

H z t E Hee Ea
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XE
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43

The first order filter can be implemented in python, and it’s really
not hard. See below. The 𝑥𝑠𝑛 vector is from the previous python
example.

There are smarter, and faster ways to do IIR filters (and FIR) in
python, see scipy.signal.iirfilter

From the plot below we can see the sampled time domain and
spectra on the left, and the filtered time domain and spectra on the
right.

iir.py

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html
https://github.com/wulffern/aic2024/blob/main/ex/iir.py
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#- IIR filter
b = 0.3
a = 0.25
z = a + 1j*b
z_abs = np.abs(z)
print("|z| = " + str(z_abs))
y = np.zeros(N)
y[0] = a
for i in range(1,N):

y[i] = b*x_sn[i-1] + y[i-1]

The IIR filter we implemented above is a low-pass filter, and the
filter partially rejects the copied spectra, as expected.

11.4.8 Finite-impulse response(FIR)

FIR filters are unconditionally stable, since the impulse response
will always die out. FIR filters are a linear sum of delayed inputs.

In my humble opinion, there is nothing wrong with an IIR. Yes,
the could become unstable, however, they can be designed safely.
I’m not sure there is a theological feud on IIR vs FIR, I suspect
there could be. Talk to someone that knows digital filters better
than me.

But be wary of rules like “IIR are always better than FIR” or visa
versa. Especially if statements are written in books. Remember that
the book was probably written a decade ago, and based on papers
two decades old, which were based on three decades old state of
the art. Our abilities to use computers for design has improved a
bit the last three decades.

𝐻(𝑧) = 1
3

2∑
𝑖=0

𝑧−1
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11.5 Switched-Capacitor

Below is an example of a switched-capacitor circuit during phase 1.
Think of the two phases as two different configurations of a circuit,
each with a specific purpose.
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This is the SC circuit during the sampling phase. Imagine that
we somehow have stored a voltage 𝑉1 = ℓ on capacitor 𝐶1 (the
switches for that sampling or storing are not shown). The charge
on 𝐶1 is

𝑄1𝜙1$ = 𝐶1𝑉1

The 𝐶2 capacitor is shorted, as such,𝑉2 = 0, which must mean that
the charge on 𝐶2 given by

𝑄2𝜙1$ = 0

The voltage at the negative input of the OTA must be 0 V, as the
positive input is 0 V, and we assume the circuit has settled all
transients.
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Imagine we (very carefully) open the circuit around 𝐶2 and close
the circuit from the negative side of 𝐶1 to the OTA negative input,
as shown below.
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It’s the OTA that ensures that the negative input is the same as the
positive input, but the OTA cannot be infinitely fast. At the same
time, the voltage across 𝐶1 cannot change instantaneously. Neither
can the voltage across 𝐶2. As such, the voltage at the negative input
must immediately go to −𝑉1 (ignoring any parasitic capacitance at
the negative input).

The OTA does not like it’s inputs to be different, so it will start to
charge 𝐶2 to increase the voltage at the negative input to the OTA.
When the negative input reaches 0 V the OTA is happy again. At
that point the charge on 𝐶1 is

𝑄1𝜙2$ = 0

A key point is, that even the voltages now have changed, there is
zero volt across 𝐶1, and thus there cannot be any charge across 𝐶1
the charge that was there cannot have disappeared. The negative
input of the OTA is a high impedance node, and cannot supply
charge. The charge must have gone somewhere, but where?

In process of changing the voltage at the negative input of the OTA
we’ve changed the voltage across 𝐶2. The voltage change must
exactly match the charge that was across 𝐶1, as such

𝑄2𝜙2$ = 𝑄1𝜙1$ = 𝐶1𝑉1 = 𝐶2𝑉2

thus

𝑉2
𝑉1

=
𝐶1
𝐶2



154 11 Switched-Capacitor Circuits

11.5.1 Switched capacitor gain circuit

Redrawing the previous circuit, and adding a few more switches
we can create a switched capacitor gain circuit.

There is now a switch to sample the input voltage across 𝐶1 during
phase 1 and reset 𝐶2. During phase 2 we configure the circuit to
leverage the OTA to do the charge transfer from 𝐶1 to 𝐶2.
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errorThe discrete time output from the circuit will be as shown below.
It’s only at the end of the second phase that the output signal is
valid. As a result, it’s common to use the sampling phase of the
next circuit close to the end of phase 2.

For charge to be conserved the clocks for the switch phases must
never be high at the same time.
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The discrete time, Z-domain and transfer function is shown below.
The transfer function tells us that the circuit is equivalent to a
gain, and a delay of one clock cycle. The cool thing about switch
capacitor circuits is that the precision of the gain is set by the
relative size between two capacitors. In most technologies that
relative sizing can be better than 0.1 %.

Gain circuits like the one above find use in most Pipelined ADCs,
and are common, with some modifications, in Sigma-Delta
ADCs.

𝑉𝑜[𝑛 + 1] = 𝐶1
𝐶2
𝑉𝑖[𝑛]

𝑉𝑜𝑧 =
𝐶1
𝐶2
𝑉𝑖

𝑉𝑜

𝑉𝑖
= 𝐻(𝑧) = 𝐶1

𝐶2
𝑧−1

11.5.2 Switched capacitor integrator

Removing one switch we can change the function of the switched
capacitor gain circuit. If we don’t reset 𝐶2 then we accumulate the
input charge every cycle.
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The output now will grow without bounds, so integrators are most
often used in filter circuits, or sigma-delta ADCs where there is
feedback to control the voltage swing at the output of the OTA.
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Make sure you read and understand the equations below, it’s good
to realize that discrete time equations, Z-domain and transfer
functions in the Z-domain are actually easy.

𝑉𝑜[𝑛] = 𝑉𝑜[𝑛 − 1] + 𝐶1
𝐶2
𝑉𝑖[𝑛 − 1]

𝑉𝑜 − 𝑧−1𝑉𝑜 =
𝐶1
𝐶2
𝑧−1𝑉𝑖

Maybe one confusing thing is that multiple transfer functions can
mean the same thing, as below.

𝐻(𝑧) = 𝐶1
𝐶2

𝑧−1

1 − 𝑧−1 =
𝐶1
𝐶2

1
𝑧 − 1

11.5.3 Noise

Capacitors don’t make noise, but switched-capacitor circuits do
have noise. The noise comes from the thermal, flicker, burst noise
in the switches and OTA’s. Both phases of the switched capacitor
circuit contribute noise. As such, the output noise of a SC circuit is
usually

𝑉2
𝑛 >

2𝑘𝑇
𝐶
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I find that sometimes it’s useful with a repeat of mathematics, and
since we’re talking about noise.

The mean, or average of a signal is defined as

Mean

𝑥(𝑡) = lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥(𝑡)𝑑𝑡

Define

Mean Square

𝑥2(𝑡) = lim
𝑇→∞

1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥2(𝑡)𝑑𝑡

How much a signal varies can be estimated from the Variance

𝜎2 = 𝑥2(𝑡) − 𝑥(𝑡)
2

where
𝜎

is the standard deviation. If mean is removed, or is zero, then

𝜎2 = 𝑥2(𝑡)

Assume two random processes,

𝑥1(𝑡)

and
𝑥2(𝑡)

with mean of zero (or removed).

𝑥𝑡𝑜𝑡(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡)

𝑥2
𝑡𝑜𝑡(𝑡) = 𝑥2

1(𝑡) + 𝑥2
2(𝑡) + 2𝑥1(𝑡)𝑥2(𝑡)

Variance (assuming mean of zero)

𝜎2
𝑡𝑜𝑡 = lim

𝑇→∞
1
𝑇

∫ +𝑇/2

−𝑇/2
𝑥2
𝑡𝑜𝑡(𝑡)𝑑𝑡

𝜎2
𝑡𝑜𝑡 = 𝜎2

1 + 𝜎2
2 + lim

𝑇→∞
1
𝑇

∫ +𝑇/2

−𝑇/2
2𝑥1(𝑡)𝑥2(𝑡)𝑑𝑡

Assuming uncorrelated processes (covariance is zero), then

𝜎2
𝑡𝑜𝑡 = 𝜎2

1 + 𝜎2
2

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
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In other words, if two noises are uncorrelated, then we can sum
the variances. If the noise sources are correlated, for example,
noise comes from the same transistor, but takes two different paths
through the circuit, then we cannot sum the variances. We must
also add the co-variance.

11.5.4 Sub-circuits for SC-circuits

Switched-capacitor circuits are so common that it’s good to delve
a bit deeper, and understand the variants of the components that
make up SC circuits.

11.5.4.1 OTA

At the heart of the SC circuit we usually find an OTA. Maybe a
current mirror, folded cascode, recycling cascode, or my favorite: a
fully differential current mirror OTA with cascoded, gain boosted,
output stage using a parallel common mode feedback.

Not all SC circuits use OTAs, there are also comparator based SC
circuits.

Below is a fully-differential two-stage OTA that will work with
most SC circuits. The notation “24F1F25” means “the width is 24
F” and “length is 1.25 F”, where “F” is the minimum gate length
in that technology.

As bias circuit to make the voltages the below will work

https://github.com/wulffern/cnr_ota_sky130nm/tree/main
https://github.com/wulffern/cnr_ota_sky130nm/tree/main
https://github.com/wulffern/cnr_ota_sky130nm/tree/main
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://link.springer.com/article/10.1007/s10470-010-9576-3
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11.5.4.2 Switches

If your gut reaction is “switches, that’s easy”, then you’re very
wrong. Switches can be incredibly complicated. All switches will be
made of transistors, but usually we don’t have enough headroom
to use a single NMOS or PMOS. We may need a transmission
gate
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The challenge with transmission gates is that when the voltage at
the input is in the middle between VDD and ground then both
PMOS and NMOS, although they are on , they might not be that
on. Especially in nano-scale CMOS with a 0.8 V supply and 0.5 V
threshold voltage. The resistance mid-rail might be too large.

For switched-capacitor circuits we must settle the voltages to the
required accuracy. In general

𝑡 > − log(error)𝜏

For example, for a 10-bit ADC we need 𝑡 > − log(1/1024)𝜏 = 6.9𝜏.
This means we need to wait at least 6.9 time constants for the voltage
to settle to 10-bit accuracy in the switched capacitor circuit.

Assume the capacitors are large due to noise, then the switches
must be low resistance for a reasonable time constant. Larger
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switches have smaller resistance, however, they also have more
charge in the inversion layer, which leads to charge injection when
the switches are turned of. Accordingly, larger switches are not
always the solution.

Sometimes it may be sufficient to switch the bulks, as shown on
the left below. But more often that one would like, we have to
implement bootstrapped switches as shown on the right.
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The switch I used in my JSSC SAR is a fully differential boostrapped
switch with cross coupled dummy transistors. The JSSC SAR I’ve
also ported to GF130NM, as shown below. The switch is at the
bottom.

wulffern/sun_sar9b_sky130nm

looks like the one below.

https://ieeexplore.ieee.org/document/7906479
https://github.com/wulffern/sun_sar9b_sky130nm
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11.5.4.3 Non-overlapping clocks

The non-overlap generator is standard. Use the one shown below.
Make sure you simulate that the non-overlap is sufficient in all
corners.
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11.5.5 Example

In the circuit below there is an example of a switched capacitor cir-
cuit used to increase the Δ𝑉𝐷 across the resistor. We can accurately
set the gain, and thus the equation for the differential output will
be

𝑉𝑂(𝑧) = 10
𝑘𝑇

𝑞
ln(𝑁)𝑧−1
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11.6 Want to learn more?

Blind Multiband Signal Reconstruction: Compressed Sensing for
Analog Signal

Comparator-based switched-capacitor pipelined analog-to-digital
converter with comparator preset, and comparator delay compen-
sation

A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC in 28-nm
FDSOI for Bluetooth Low Energy Receivers

A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching
Procedure

Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-
Sigma Modulator

Ring Amplifiers for Switched Capacitor Circuits

A Switched-Capacitor RF Power Amplifier

Design of Active N-Path Filters

https://ieeexplore.ieee.org/document/4749297
https://ieeexplore.ieee.org/document/4749297
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/5437496
https://ieeexplore.ieee.org/document/5437496
https://ieeexplore.ieee.org/document/4768910
https://ieeexplore.ieee.org/document/4768910
https://ieeexplore.ieee.org/document/6373760
https://ieeexplore.ieee.org/document/6009207
https://ieeexplore.ieee.org/document/6650076
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12.1 ADC state-of-the-art

The performance of an analog-to-digital converter is determined
by the effective number of bits (ENOB), the power consumption,
and the maximum bandwidth. The effective number of bits contain
information on the linearity of the ADC. The power consumption
shows how efficient the ADC is. The maximum bandwidth limits
what signals we can sample and reconstruct in digital domain.

Many years ago, Robert Walden did a study of ADCs, one of the
plot’s is shown below.

1999, R. Walden: Analog-to-digital converter survey and analysis

There are obvious trends, the faster an ADC is, the less precise
the ADC is ( lower SNDR). There are also fundamental limits,
Heisenberg tells us that a 20-bit 10 GS/s ADC is impossible,
according to Walden.

The uncertainty principle states that the precision we can determine
position and the momentum of a particle is

𝜎𝑥𝜎𝑝 ≥
ℏ

2

. There is a similar relation of energy and time, given by

Δ𝐸Δ𝑡 >
ℎ

2𝜋

where Δ𝐸 is the difference in energy, and Δ𝑡 is the difference in
time.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=761034
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You should take these limits with a grain of salt. The plot assumes
50 Ohm and 1 V full-scale. As a result, the “Heisenberg” line that
appears to be unbreakable certainly is breakable. Just change the
voltage to 100 V, and the number of bits can be much higher. Always
check the assumptions.

A more recent survey of ADCs comes from Boris Murmann. He
still maintains a list of the best ADCs from ISSCC and VLSI
Symposium.

B. Murmann, ADC Performance Survey 1997-2023

A common figure of merit for low-to-medium resolution ADCs is
the Walden figure of merit, defined as

𝐹𝑂𝑀𝑊 =
𝑃

2𝐵 𝑓𝑠

Below 10 fJ/conv.step is good.

Below 1 fJ/conv.step is extreme.

In the plot below you can see the ISSCC and VLSI ADCs.
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12.1.1 What makes a state-of-the-art ADC

People from NTNU have made some of the worlds best ADCs

If you ever want to make an ADC, and you want to publish
the measurements, then you must be better than most. A good
algorithm for state-of-the-art ADC design is to first pick a sample
rate with low number of data (blank spaces in the plot above), then
read the papers in the vicinity of the blank space to understand
the application, then set a target FOM which is best in world, then
try and find a ADC architecture that can achieve that FOM.

That’s pretty much the algorithm I, and others, have followed to
make state-of-the-art ADCs. A few of the NTNU ADCs are:

https://github.com/bmurmann/ADC-survey
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[1] A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC in 28-nm
FDSOI for Bluetooth Low Energy Receivers

[2] A 68 dB SNDR Compiled Noise-Shaping SAR ADC With
On-Chip CDAC Calibration

In order to publish, there must be something new. Preferably a
new circuit. Below is the circuit from [1]. It’s a standard successive-
approximation register (SAR) analog-to-digital converter.

The differential input signal is sampled on a capacitor array where
the bottom plate is connected to either VSS or VREF. Once the volt-
age is sampled, the comparator will decide whether the differential
voltage is larger, or smaller than 0. Depending on the decision, the
MSB capacitors (left-most) in figure will switch the bottom plate in
order to effectively subtract a voltage equivalent to half the VREF
voltage.

The comparator makes another decision, and 1/4’th the VREF
voltage is subtracted or added. Then 1/8’th and so on implementing
a binary search to find the input voltage.

The “bit-cycling” (binary-search) loop is self-timed, as such, when
the comparator has made a decision, the next cycle starts.

In (b) we can see the enable flip-flop for the next stage. The CK
bar is the sample clock, as such, A is high during sampling. The
output of the comparator (P and N) is low.

As soon as the comparator makes a decision, P or N goes high, A
will be pulled low, if EI is enabled.

In (c) we can see that the bottom plate of the capacitors 𝐷𝑃0, 𝐷𝑃1,
𝐷𝑁0, and 𝐷𝑁1, are controlled by P and N.

In (d) we can see that the bottom plate of the capacitors also used to
set the comparator clock low again (CO), resetting the comparator,
and pulling P and N low, which in (b) enables the next SAR logic
state.

https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/9056925
https://ieeexplore.ieee.org/document/9056925
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How fast the 𝐷𝑋𝑋 settle depend on the size of the capacitors, as
such, the comparator clock will be slow for the MSB, and very fast
for the LSB. This was my main circuit contribution in the paper.
I think it’s quite clever, because both the VDD and the capacitor
corner will change the settling time. It’s important that the capacitor
values fully settle before the next comparator decision, and as a
result of the circuit in (c,d) the delay is automatically adjusted.

For further details see the paper.
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For state-of-the-art ADC papers it’s not sufficient with the idea,
and simulation. There must be proof that it actually works. No-one
will really believe that the ADC works until there is measurements
of an actual taped out IC.

Below you can see the layout of the IC I made for the paper. Notice
that there are 9 ADCs. I had many ideas that I wanted to try out,
and I was not sure what would actually be state of the art. As a
result, I taped out multiple ADCS.
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The two ADCs that I ended up using in the paper is shown below.
The one on the left was made with 180 nm IO transistors, while
the one on the right was made with core-transistors. Notice that
the layout of the two is quite similar.
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Once taped out, and many months of waiting, a few months of
measurement in the lab, I had some results that would be good
enough to qualify for the best conference, and luckily the best
journal.
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Comparing my ADCs to others, we can see that the FOM is similar
to others. Based on the FOM it might not be clear why the paper
was considered state-of-the-art.

The circuit technique mentioned above would not have been
enough to qualify. The big thing was the “Compiled” line. Com-
pared to the other “Compiled” mine was 300 times better, and on
par with other state-of-the-art.
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Weaver [5] Harpe [9] Patil [10] Liu [11] This work

Technology (nm) 90 90 28 FDSOI 28 28 FDSOI
Fsample (MS/s) 21 2 No sampling 100 2 20
Core area (mm2) 0.18 0.047 0.0032 0.0047 0.00312

SNDR (dB) 34.61 57.79 40 64.43 46.43 48.84
SFDR (dBc) 40.81 72.33 30 75.42 61.72 63.11
ENOB (bits) 5.45 6.7 - 9.4 6.35 10.41 7.42 7.82

Supply (V) 0.7 0.7 0.65 0.9 0.47 0.69
Pwr (µW) 1110 1.64 -3.56 24 350 0.94 15.87

Compiled Yes No No No Yes
FoM (fJ/c.step) 838 2.8 - 6.6 3.7 2.6 2.7 3.5

The big thing was how I made the ADC. I started with a definition
of a transistor, as shown below

G

S
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D

Vertical Grid

Horizontal Grid

COOD PO M1

And then wrote a compiler (in Perl, later C++ ciccreator) to compile
a object definition file, a SPICE netlist and a technology rule file
into the full ADC layout.

In (a) you can see one of the cells in the SAR logic, (b) is the spice
file, and (c) is the definition of the routing. The numbers to the
right in the routing creates the paths shown in (d).

(d)
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(a) (c)

{ "name": "SAREMX1_CV",
"class" : "Layout::LayoutDigitalCell",
"addConnectivityRoutes": [

["M1","N1|N2","||",""], 1
["M1","N3","-|",""], 2
["M1","EO","--|-","onTopR"] 3

],
"addDirectedRoutes" : [

["PO","P","MN1:G-MP1:G"], 4
["PO","N","MN2:G-MP2:G"], 5
["PO","A","MN3:G-MP3:G"], 6
["M1","A","MN0:S-MP0:S"], 7
["M1","A","MP0:S-|--MP3:G"] 8
]

}
}

(b)

.SUBCKT SAREMX1_CV P N EI EO CK_N AVDD AVSS
MN0 N3 EI A AVSS NCHDL
MN1 N3 P AVSS AVSS NCHDL
MN2 AVSS N N3 AVSS NCHDL
MN3 EO A AVSS AVSS NCHDL
MP0 AVDD CK_N A AVSS PCHDL
MP1 N2 P EO AVSS PCHDL
MP2 N1 N N2 AVSS PCHDL
MP3 AVDD A N1 AVSS PCHDL

.ENDS

COOD PO M1 M2 M3 M4

The implementation is the SPICE netlist, and the object definition
file (JSON) and the rule file.

https://github.com/wulffern/ciccreator
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.spi
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.json
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.json
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/sky130.tech
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What I really like is the fact that the compilation could generate
GDSII or SKILL, or these days, Xschem schematics and Magic
layout.
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The cool thing with a compiled ADC is that it’s easy to port
between technologies. Since the original ADC, I’ve ported the ADC
to multiple closed PDKs (22 nm FDSOI, 22 nm, 28 nm, 55 nm, 65
nm and 130nm). In the summer of 2022 I made an open source
port to skywater 130nm.

SUN_SAR9B_SKY130NM

One of my Ph.D students built on-top on my work, and made a
noise-shaped compiled SAR ADC, shown below, more on that
later.

https://github.com/wulffern/sun_sar9b_sky130nm/
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Fig. 2. Loop filter implementation and noise transfer function.

first integrator [5]. This is a noise-effective solution because
the residue is neither attenuated, buffered or resampled.

III. MEASUREMENT RESULTS

The prototype is implemented in 28 nm FDSOI, and Fig. 3
shows the die photo, layout and dimensions. The entire region
marked ”ADC core” is compiled from a netlist, rule file, and
object definition file using the layout compiler presented in [7].
Fig. 4a shows a measured power spectrum with on-chip code
correction. Because the correction module cannot be disabled,
uncorrected and offline corrected spectrums from another ADC
instance are shown in Fig. 4b.2 On eight measured chips, mean
uncalibrated/calibrated SNDR and SFDR are 65.6 dB/67.3 dB,
and 74.4 dB/83.1 dB, respectively. The ADC is compared
to prior NS-SARs in Table I. To the best of the authors’
knowledge, the Walden FOM of 5.2 fJ/conv.step is currently
the lowest reported for a noise-shaping SAR.
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Fig. 4. Measured results and power spectrums: (a): On-chip correction, (b):
offline correction. The power spectra have 212 bins from DC to fs/2.

TABLE I
COMPARISON TO PRIOR STATE-OF-THE-ART NOISE-SHAPING SARS.

[1] [2] [3] [4] This work

CDAC correction None DWA Off-chip cal None On-chip cal
NTF type 1z, 2p 1z, 2p 2z opt 1z, 1p 2z opt, 2p
OSR 4 13.2 8 4 4

Technology (nm) 65 28 40 14 28
Area (mm2) 0.03 0.0049 0.024 0.0021 0.0234
Supply (V) 1.2 1 1.1 0.9 0.8
Bandwidth (MHz) 11 5 0.625 40 5

SNDR (dB) 62.0 79.7 79.0 66.6 68.2
SFDR (dB) 72.5 92.6 89.0 77.4 84.6
Power (µW) 806 .0 460.0 84.0 1250.0 108.7

FOMw (fJ/c.step) 35.8 5.8 9.2 8.9 5.2
FOMs (dB) 163.3 180.1 177.7 171.7 174.8

FOMw = P/(2(SNDR−1.76)/6.02 · 2 BW), FOMs = SNDR + 10 log (BW/P)

[5] K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto, and K. Sushihara, “A
97.99 db sndr, 2 khz bw, 37.1 µw noise-shaping sar adc with dynamic
element matching and modulation dither effect,” in 2016 IEEE Symposium
on VLSI Circuits (VLSI-Circuits), Jun. 2016, pp. 1–2.

[6] H. S. Lee, D. A. Hodges, and P. R. Gray, “A self-calibrating 15 bit CMOS
A/D converter,” IEEE Journal of Solid-State Circuits, vol. 19, no. 6, pp.
813–819, Dec. 1984.

[7] C. Wulff and T. Ytterdal, “A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step
SAR ADC in 28-nm FDSOI for Bluetooth Low Energy Receivers,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 7, pp. 1915–1926, Jul. 2017.
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12.1.2 High resolution FOM

For high-resolution ADCs, it’s more common to use the Schreier
figure of merit, which can also be found in

B. Murmann, ADC Performance Survey 1997-2022 (ISSCC & VLSI
Symposium)

The Walden figure of merit assumes that thermal noise does not
constrain the power consumption of the ADC, which is usually
true for low-to-medium resolution ADCs. To keep the Walden
FOM you can double the power for a one-bit increase in ENOB.
If the ADC is limited by thermal noise, however, then you must
quadruple the capacitance (reduce 𝑘𝑇/𝐶 noise power) for each
1-bit ENOB increase. Accordingly, the power must also go up four
times.

For higher resolution ADC the power consumption is set by thermal
noise, and the Schreier FOM allows for a 4x power consumption
increase for each added bit.

𝐹𝑂𝑀𝑆 = 𝑆𝑁𝐷𝑅 + 10 log
(
𝑓𝑠/2
𝑃

)
Above 180 dB is extreme

https://web.stanford.edu/~murmann/adcsurvey.html
https://web.stanford.edu/~murmann/adcsurvey.html
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12.2 Quantization

Sampling turns continuous time into discrete time. Quantization
turns continuous value into discrete value. Any complete ADC is
always a combination of sampling and quantization.

In our mathematical drawings of quantization we often define 𝑦[𝑛]
as the output, the quantized signal, and 𝑥[𝑛] as the discrete time,
continuous value input, and we add some “noise”, or “quantization
noise” 𝑒[𝑛], where 𝑥[𝑛] = 𝑦[𝑛] − 𝑒[𝑛].
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Maybe you’ve even heard the phrase “Quantization noise is white”
or “Quantization noise is a random Gaussian process”?

I’m here to tell you that you’ve been lied to. Quantization noise is
not white, nor is it a Gaussian process. Those that have lied to you
may say “yes, sure, but for high number of bits it can be considered
white noise”. I would say that’s similar to saying “when you look at
the earth from the moon, the surface looks pretty smooth without
bumps, so let’s say the earth is smooth with no mountains”.

I would claim that it’s an unnecessary simplification. It’s obvious
to most that the earth would appear smooth from really far away,
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but they would not be surprised by Mount Everest, since they
know it’s not smooth. An Alien that has been told that the earth is
smooth, would be surprised to see Mount Everest.

But if Quantization noise is not white, what is it?

The figure below shows the input signal x and the quantized signal
y.
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To see the quantization noise, first take a look at the sample and
held version of 𝑥 in green in the figure below. The difference
between the green (𝑥 at time n) and the red (𝑦) would be our
quantization noise 𝑒

The quantization noise is contained between + 1
2 Least Significant

Bit (LSB) and − 1
2 LSB.

This noise does not look random to me, but I can’t see what it is,
and I’m pretty sure I would not be able to work it out either.
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Luckily, there are people in this world that love mathematics,
and that can delve into the details and figure out what 𝑒[𝑛] is. A
guy called Blachman wrote a paper back in 1985 on quantization
noise.

See The intermodulation and distortion due to quantization of
sinusoids for details

In short, quantization noise is defined as

𝑒𝑛(𝑡) =
∞∑
𝑝=1

𝐴𝑝 sin 𝑝𝜔𝑡

where p is the harmonic index, and

𝐴𝑝 =

{
𝛿𝑝1𝐴 +∑∞

𝑚=1
2
𝑚𝜋 𝐽𝑝(2𝑚𝜋𝐴) , 𝑝 = odd

0 , 𝑝 = even

𝛿𝑝1

{
1 , 𝑝 = 1
0 , 𝑝 ≠ 1

and
𝐽𝑝(𝑥)

is a Bessel function of the first kind, A is the amplitude of the input
signal.

If we approximate the amplitude of the input signal as

https://ieeexplore.ieee.org/document/1164729
https://ieeexplore.ieee.org/document/1164729
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𝐴 =
2𝑛 − 1

2
≈ 2𝑛−1

where n is the number of bits, we can rewrite as

𝑒𝑛(𝑡) =
∞∑
𝑝=1

𝐴𝑝 sin 𝑝𝜔𝑡

𝐴𝑝 = 𝛿𝑝12𝑛−1 +
∞∑
𝑚=1

2
𝑚𝜋

𝐽𝑝(2𝑚𝜋2𝑛−1), 𝑝 = 𝑜𝑑𝑑

Obvious, right?

I must admit, it’s not obvious to me. But I do understand the
implications. The quantization noise is an infinite sum of input
signal odd harmonics, where the amplitude of the harmonics is
determined by a sum of a Bessel function.

A Bessel function of the first kind looks like this

So I would expect the amplitude to show signs of oscillatory
behavior for the harmonics. That’s the important thing to remember.
The quantization noise is odd harmonics of the input signal

The mean value is zero

𝑒𝑛(𝑡) = 0

and variance (mean square, since mean is zero), or noise power,
can be approximated as

𝑒𝑛(𝑡)2 =
Δ2

12

https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind
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12.2.1 Signal to Quantization noise ratio

Assume we wanted to figure out the resolution, or effective number
of bits for an ADC limited by quantization noise. A power ratio, like
signal-to-quantization noise ratio (SQNR) is one way to represent
resolution.

Take the signal power, and divide by the noise power

𝑆𝑄𝑁𝑅 = 10 log
(
𝐴2/2
Δ2/12

)
= 10 log

(
6𝐴2

Δ2

)
Δ =

2𝐴
2𝐵

𝑆𝑄𝑁𝑅 = 10 log
(

6𝐴2

4𝐴2/2𝐵

)
= 20𝐵 log 2 + 10 log 6/4

𝑆𝑄𝑁𝑅 ≈ 6.02𝐵 + 1.76

You may have seen the last equation before, now you know where
it comes from.

12.2.2 Understanding quantization

Below I’ve tried to visualize the quantization process q.py.

The left most plot is a sinusoid signal and random Gaussian noise.
The signal is not a continuous time signal, since that’s not possible
on a digital computer, but it’s an approximation.

The plots are FFTs of a sinusoidal signal combined with noise.
These are complex FFTs, so they show both negative and positive
frequencies. The x-axis is the FFT bin (not the frequency). Notice
that there are two spikes, which should not be surprising, since a
sinusoidal signal is a combination of two frequencies.

𝑠𝑖𝑛(𝑥) = 𝑒 𝑖𝑥 − 𝑒−𝑖𝑥
2𝑖

The second plot from the left is after sampling, notice that the noise
level increases. The increase in the noise level should be due to
noise folding, and reduced number of points in the FFT, but I have
not confirmed (maybe you could confirm?).

The right plot is after quantization, where I’ve used the function
below.

https://github.com/wulffern/aic2023/blob/main/ex/q.py
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def adc(x,bits):
levels = 2**bits
y = np.round(x*levels)/levels
return y

I really need you to internalize a few things from the right most
plot. Really think through what I’m about to say.

Can you see how the noise (what is not the two spikes) is not white?
White noise would be flat in the frequency domain, but the noise
is not flat.
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If you run the python script you can zoom in and check the highest
spikes. The fundamental is at 127, so odd harmonics would be
381, 635, 889, and from the function of the quantization noise we
would expect those to be the highest harmonics (at least when we
look at the Bessel function), however, we can see that it’s close, but
that bin 396 is the highest. Is the math’s wrong?

No, the math is correct. Never bet against mathematics. If you
change the python script to reduce the frequency, fdivide=2**9,
and increase number of points, N=2**16, as in the plot below, you’ll
see it’s the 11’th harmonic that is highest.

All the other spikes are the odd harmonics above the sample rate
that fold. The infinite sum of harmonics will fold, some in-phase,
some out of phase, depending on the sign of the Bessel function.



12.2 Quantization 177

From the function for the amplitude of the quantization noise for
harmonic indices higher than 𝑝 = 1

𝐴𝑝 =
∞∑
𝑚=1

2
𝑚𝜋

𝐽𝑝(2𝑚𝜋2𝑛−1), p=odd

we can see that the input to the Bessel function increases faster
for a higher number of bits 𝑛. As such, from the Bessel function
figure above, I would expect that the sum of the Bessel function
is a lower value. Accordingly, the quantization noise reduces at
higher number of bits.

A consequence is that the quantization noise becomes more and
more uniform, as can be seen from the plot of a 10-bit quantizer be-
low. That’s why people say “Quantization noise is white”, because
for a high number of bits, it looks white in the FFT.
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12.2.3 Why you should care about quantization noise

So why should you care whether the quantization noise looks white,
or actually is white? A class of ADCs called oversampling and
sigma-delta modulators rely on the assumption that quantization
noise is white. In other words, the cross-correlation between noise
components at different time points is zero. As such the noise power
sums as a sum of variance, and we can increase the signal-to-noise
ratio.

We know that assumption to be wrong though, quantization noise
is not white. For noise components at harmonic frequencies the
cross-correlation will be high. As such, when we design oversam-
pling or sigma-delta based ADC we will include some form of
dithering (making quantization noise whiter). For example, before
the actual quantizer we inject noise, or we make sure that the
thermal noise is high enough to dither the quantizer.

Everybody that thinks that quantization noise is white will design
non-functioning (or sub-optimal) oversampling and sigma-delta
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ADCs. That’s why you should care about the details around
quantization noise.

12.3 Oversampling

Assume a signal 𝑥[𝑛] = 𝑎[𝑛] + 𝑏[𝑛] where 𝑎 is a sampled sinusoid
and 𝑏 is a random process where cross-correlation is zero for any
time except for 𝑛 = 0. Assume that we sum two (or more) equally
spaced signal components, for example

𝑦 = 𝑥[𝑛] + 𝑥[𝑛 + 1]

What would the signal to noise ratio be for 𝑦?

12.3.1 Noise power

Our mathematician friends have looked at this, and as long the
noise signal 𝑏 is random then the noise power for the oversampled
signal 𝑏𝑜𝑠𝑟 = 𝑏[𝑛] + 𝑏[𝑛 + 1] will be

𝑏2
𝑜𝑠𝑟 = 𝑂𝑆𝑅 × 𝑏2

where OSR is the oversampling ratio. If we sum two time points
the 𝑂𝑆𝑅 = 2, if we sum 4 time points the 𝑂𝑆𝑅 = 4 and so on.

For fun, let’s go through the mathematics

Define 𝑏1 = 𝑏[𝑛] and 𝑏2 = 𝑏[𝑛+1] and compute the noise power

(𝑏1 + 𝑏2)2 = 𝑏2
1 + 2𝑏1𝑏2 + 𝑏2

2

Let’s replace the mean with the actual function

1
𝑁

𝑁∑
𝑛=0

(
𝑏2

1 + 2𝑏1𝑏2 + 𝑏2
2
)

which can be split up into

1
𝑁

𝑁∑
𝑛=0

𝑏2
1 +

1
𝑁

𝑁∑
𝑛=0

2𝑏1𝑏2 +
1
𝑁

𝑁∑
𝑛=0

𝑏2
2

we’ve defined the cross-correlation to be zero, as such

(𝑏1 + 𝑏2)2 =
1
𝑁

𝑁∑
𝑛=0

𝑏2
1 +

1
𝑁

𝑁∑
𝑛=0

𝑏2
2 = 𝑏2

1 + 𝑏2
2
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but the noise power of each of the 𝑏’s must be the same as 𝑏, so

(𝑏1 + 𝑏2)2 = 2𝑏2

12.3.2 Signal power

For the signal 𝑎 we need to calculate the increase in signal power
as OSR increases.

I like to think about it like this. 𝑎 is low frequency, as such, samples
𝑛 and 𝑛 + 1 is pretty much the same value. If the sinusoid has
an amplitude of 1, then the amplitude would be 2 if we sum two
samples. As such, the amplitude must increase with the OSR.

The signal power of a sinusoid is 𝐴2/2, accordingly, the signal
power of an oversampled signal must be (𝑂𝑆𝑅 × 𝐴)2/2.

12.3.3 Signal to Noise Ratio

Take the signal power to the noise power

(𝑂𝑆𝑅 × 𝐴)2/2

𝑂𝑆𝑅 × 𝑏2
= 𝑂𝑆𝑅 × 𝐴2/2

𝑏2

We can see that the signal to noise ratio increases with increased
oversampling ratio, as long as the cross-correlation of the noise
is zero

12.3.4 Signal to Quantization Noise Ratio

The in-band quantization noise for a oversampling ratio (OSR)

𝑒𝑛(𝑡)2 =
Δ2

12𝑂𝑆𝑅

And the improvement in SQNR can be calculated as

𝑆𝑄𝑁𝑅 = 10 log
(

6𝐴2

Δ2/𝑂𝑆𝑅

)
= 10 log

(
6𝐴2

Δ2

)
+ 10 log(𝑂𝑆𝑅)

𝑆𝑄𝑁𝑅 ≈ 6.02𝐵 + 1.76 + 10 log(𝑂𝑆𝑅)

For an OSR of 2 and 4 the SQNR improves by

10 log(2) ≈ 3𝑑𝐵



180 12 Oversampling and Sigma-Delta ADCs

and for OSR=4

10 log(4) ≈ 6𝑑𝐵

which is roughly equivalent to a 0.5-bit per doubling of OSR

12.3.5 Python oversample

There are probably more elegant (and faster) ways of implementing
oversampling in python, but I like to write the dumbest code I can,
simply because dumb code is easy to understand.

Below you can see an example of oversampling. The oversample

function takes in a vector and the OSR. For each index it sums OSR
future values.

def oversample(x,OSR):
N = len(x)
y = np.zeros(N)

for n in range(0,N):
for k in range(0,OSR):

m = n+k
if (m < N):

y[n] += x[m]
return y

Below we can see the plot for OSR=2, the right most plot is the
oversampled version.

The noise has all frequencies, and it’s the high frequency compo-
nents that start to cancel each other. An average filter (sometimes
called a sinc filter due to the shape in the frequency domain) will
have zeros at ± 𝑓 𝑠/2 where the noise power tends towards zero.
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The low frequency components will add, and we can notice how
the noise power increases close to the zero frequency (middle of
the x-axis).

For an OSR of 4 we can notice how the noise floor has 4 zero’s.
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The code for the plots is osr.py. I would encourage you to play a
bit with the code, and make sure you understand oversampling.

12.4 Noise Shaping

Look at the OSR=4 plot above. The OSR=4 does decrease the noise
compared to the discrete time discrete value plot, however, the
noise level of the discrete time continuous value is much lower.

What if we could do something, add some circuitry, before the
quantization such that the quantization noise was reduced?

That’s what noise shaping is all about. Adding circuits such that we
can “shape” the quantization noise. We can’t make the quantization
noise disappear, or indeed reduce the total noise power of the
quantization noise, but we can reduce the quantization noise power
for a certain frequency band.

But what circuitry can we add?

12.4.1 The magic of feedback

A generalized feedback system is shown below, it could be a
regulator, a unity-gain buffer, or something else.

The output 𝑉𝑜 is subtracted from the input 𝑉𝑖 , and the error 𝑉𝑥 is
shaped by a filter 𝐻(𝑠).

If we make 𝐻(𝑠) infinite, then 𝑉𝑜 = 𝑉𝑖 . If you’ve never seen such a
circuit, you might ask “Why would we do this? Could we not just
use 𝑉𝑖 directly?”. There are many reasons for using a circuit like
this, let me explain one instance.

Imagine we have a VDD of 1.8 V, and we want to make a 0.9 V
voltage for a CPU. The CPU can consume up to 10 mA. One way to
make a divide by two circuit is with two equal resistors connected
between VDD and ground. We don’t want the resistive divider to
consume a large current, so let’s choose 1 MOhm resistors. The

https://github.com/wulffern/aic2023/blob/main/ex/osr.py
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current in the resistor divider would then be about 1 𝜇A. We can’t
connect the CPU directly to the resistor divider, the CPU can draw
10 mA. As such, we need a copy of the voltage at the mid-point of
the resistor divider that can drive 10 mA.

Do you see now why a circuit like the one below is useful? If not,
you should really come talk to me so I can help you understand.

VI VXHcs V0

VI Vo Ux Vo Vx
HCS

VI YE
Vo E

V Hes ADC DACVI

Do

12.4.2 Sigma-delta principle

Let’s modify the feedback circuit into the one below. I’ve added
an ADC and a DAC to the feedback loop, and the 𝐷𝑜 is now the
output we’re interested in. The equation for the loop would be

𝐷𝑜 = 𝑎𝑑𝑐 [𝐻(𝑠) (𝑑𝑎𝑐(𝐷𝑜) −𝑉𝑖)]

But how can we now calculate the transfer function 𝐷𝑜
𝑉𝑖

? Both 𝑎𝑑𝑐
and 𝑑𝑎𝑐 could be non-linear functions, so we can’t disentangle the
equation. Let’s make assumptions.

VI VXHcs V0

VI Vo Ux Vo Vx
HCS

VI YE
Vo E

V Hes ADC DACVI

Do

12.4.2.1 The DAC assumption

Assumption 1: the 𝑑𝑎𝑐 is linear, such that𝑉𝑜 = 𝑑𝑎𝑐(𝐷𝑜) = 𝐴𝐷𝑜+𝐵,
where 𝐴 and 𝐵 are scalar values.
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The DAC must be linear, otherwise our noise-shaping ADC will
not work.

One way to force linearity is to use a 1-bit DAC, which has only
two points, so should be linear. For example

𝑉𝑜 = 𝐴 × 𝐷𝑜

, where 𝐷𝑜 ∈ (0, 1). Even a 1-bit DAC could be non-linear if 𝐴 is
time-variant, so 𝑉𝑜[𝑛] = 𝐴(𝑡) × 𝐷𝑜[𝑛], this could happen if the
reference voltage for the DAC changed with time.

I’ve made a couple noise shaping ADCs, and in the first one I
made I screwed up the DAC. It turned out that the DAC current
had a signal dependent component which lead to a non-linear
behavior.

12.4.2.2 The ADC assumption

Assumption 2: the 𝑎𝑑𝑐 can be modeled as a linear function 𝐷𝑜 =

𝑎𝑑𝑐(𝑥) = 𝑥 + 𝑒, where e is white noise source

We’ve talked about this, the 𝑒 is not white, especially for low-bit
ADCs, so we usually have to add noise. Sometimes it’s sufficient
with thermal noise, but often it’s necessary to add a random, or
pseudo-random noise source at the input of the ADC.

12.4.2.3 The modified equation

With the assumptions we can change the equation into

𝐷𝑜 = 𝑎𝑑𝑐 [𝐻(𝑠) (𝑉𝑖 − 𝑑𝑎𝑐(𝐷𝑜))] = 𝐻(𝑠) (𝑉𝑖 − 𝐴𝐷𝑜) + 𝑒

In noise-shaping texts it’s common to write the above equation
as

𝑦 = 𝐻(𝑠)(𝑢 − 𝑦) + 𝑒

or in the sample domain

𝑦[𝑛] = 𝑒[𝑛] + ℎ ∗ (𝑢[𝑛] − 𝑦[𝑛])

which could be drawn in a signal flow graph as below.
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in the Z-domain the equation would turn into

𝑌(𝑧) = 𝐸(𝑧) + 𝐻(𝑧) [𝑈(𝑧) − 𝑌(𝑧)]

The whole point of this exercise was to somehow shape the quan-
tization noise, and we’re almost at the point, but to show how it
works we need to look at the transfer function for the signal𝑈 and
for the noise 𝐸.

12.4.3 Signal transfer function

Assume U and E are uncorrelated, and E is zero

𝑌 = 𝐻𝑈 − 𝐻𝑌

𝑆𝑇𝐹 =
𝑌

𝑈
=

𝐻

1 + 𝐻 =
1

1 + 1
𝐻

Imagine what will happen if H is infinite. Then the signal transfer
function (STF) is 1, and the output 𝑌 is equal to our input𝑈 . That’s
exactly what we wanted from the feedback circuit.

12.4.4 Noise transfer function

Assume U is zero

𝑌 = 𝐸 + 𝐻𝑌 → 𝑁𝑇𝐹 =
1

1 + 𝐻

Imagine again what happens when H is infinite. In this case the
noise-transfer function becomes zero. In other words, there is no
added noise.
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12.4.5 Combined transfer function

In the combined transfer function below, if we make 𝐻(𝑧) infinite,
then 𝑌 = 𝑈 and there is no added quantization noise. I don’t
know how to make 𝐻(𝑧) infinite everywhere, so we have to choose
at what frequencies it’s “infinite”.

𝑌(𝑧) = 𝑆𝑇𝐹(𝑧)𝑈(𝑧) + 𝑁𝑇𝐹(𝑧)𝐸(𝑧)

There are a large set of different 𝐻(𝑧) and I’m sure engineers
will invent new ones. We usually classify the filters based on the
number of zeros in the NTF, for example, first-order (one zero),
second order (two zeros) etc. There are books written about sigma-
delta modulators, and I would encourage you to read those to
get a deeper understanding. I would start with Delta-Sigma Data
Converters: Theory, Design, and Simulation.

12.5 First-Order Noise-Shaping

We want an infinite 𝐻(𝑧). One way to get an infinite function is an
accumulator, for example

𝑦[𝑛 + 1] = 𝑥[𝑛] + 𝑦[𝑛]

or in the Z-domain

𝑧𝑌 = 𝑋 + 𝑌 → 𝑌(𝑧 − 1) = 𝑋

which has the transfer function

𝐻(𝑧) = 1
𝑧 − 1

The signal transfer function is

𝑆𝑇𝐹 =
1/(𝑧 − 1)

1 + 1/(𝑧 − 1) =
1
𝑧
= 𝑧−1

and the noise transfer function

𝑁𝐹𝑇 =
1

1 + 1/(𝑧 − 1) =
𝑧 − 1
𝑧

= 1 − 𝑧−1

In order calculate the Signal to Quantization Noise Ratio we need to
have an expression for how the NTF above filters the quantization
noise.

https://ieeexplore.ieee.org/book/5273726
https://ieeexplore.ieee.org/book/5273726
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In the book they replace the 𝑧 with the continuous time variable

𝑧 = 𝑒 𝑠𝑇
𝑠=𝑗𝜔
→ 𝑒 𝑗𝜔𝑇 = 𝑒 𝑗2𝜋 𝑓 / 𝑓𝑠

inserted into the NTF we get the function below.

𝑁𝑇𝐹( 𝑓 ) = 1 − 𝑒−𝑗2𝜋 𝑓 / 𝑓𝑠

=
𝑒 𝑗𝜋 𝑓 / 𝑓𝑠 − 𝑒−𝑗𝜋 𝑓 / 𝑓𝑠

2𝑗
× 2𝑗 × 𝑒−𝑗𝜋 𝑓 / 𝑓𝑠

= sin
𝜋 𝑓

𝑓𝑠
× 2𝑗 × 𝑒−𝑗𝜋 𝑓 / 𝑓𝑠

The arithmetic magic is really to extract the 2𝑗 × 𝑒−𝑗𝜋 𝑓 / 𝑓𝑠 from the
first expression such that the initial part can be translated into a
sinusoid.

When we take the absolute value to figure out how the NTF changes
with frequency the complex parts disappears (equal to 1)

|𝑁𝐹𝑇( 𝑓 )| =
����2 sin

(
𝜋 𝑓

𝑓𝑠

)����
The signal power for a sinusoid is

𝑃𝑠 = 𝐴2/2

The in-band noise power for the shaped quantization noise is

𝑃𝑛 =

∫ 𝑓0

− 𝑓0

Δ2

12
1
𝑓𝑠

[
2 sin

(
𝜋 𝑓

𝑓𝑠

)]2

𝑑𝑡

and with a bunch of tedious maths, we can get to the conclusion

...

𝑆𝑄𝑁𝑅 = 6.02𝐵 + 1.76 − 5.17 + 30 log(𝑂𝑆𝑅)

If we compare to pure oversampling, where the SQNR improves by
10 log(𝑂𝑆𝑅), a first order sigma-delta improves by 30 log(𝑂𝑆𝑅).
That’s a significant improvement.
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12.5.1 SQNR and ENOB

Below is the signal-to-quantization noise ratio’s for Nyquist up to
second order sigma-delta.

𝑆𝑄𝑁𝑅𝑛𝑦𝑞𝑢𝑖𝑠𝑡 ≈ 6.02𝐵 + 1.76

𝑆𝑄𝑁𝑅𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒 ≈ 6.02𝐵 + 1.76 + 10 log(𝑂𝑆𝑅)

𝑆𝑄𝑁𝑅ΣΔ1 ≈ 6.02𝐵 + 1.76 − 5.17 + 30 log(𝑂𝑆𝑅)

𝑆𝑄𝑁𝑅ΣΔ2 ≈ 6.02𝐵 + 1.76 − 12.9 + 50 log(𝑂𝑆𝑅)

We could compute an effective number of bits, as shown below.

𝐸𝑁𝑂𝐵 = (𝑆𝑄𝑁𝑅 − 1.76)/6.02

The table below shows the effective number of bits for oversam-
pling, and sigma-delta modulators. For a 1-bit quantizer, pure
oversampling does not make sense at all. For first-order and second-
order sigma delta modulators, and a OSR of 1024 we can get high
resolution ADCs.

Assume 1-bit quantizer, what would be the maximum ENOB?

OSR Oversampling First-Order Second Order

4 2 3.1 3.9
64 4 9.1 13.9

1024 6 15.1 23.9

12.6 Examples

12.6.1 Python noise-shaping

I want to demystify noise-shaping modulators. I think one way to
do that is to show some code. You can find the code at sd_1st.py

Below we can see an excerpt. Again pretty stupid code, and I’m
sure it’s possible to make a faster version (for loops in python are
notoriously slow).

For each sample in the input vector 𝑢 I compute the input to the
quantizer 𝑥, which is the sum of the previous input to the quantizer
and the difference between the current input and the previous
output 𝑦𝑠𝑑.

https://github.com/wulffern/aic2023/blob/main/ex/sd_1st.py
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The quantizer generates the next 𝑦𝑠𝑑 and I have the option to add
dither.

# u is discrete time, continuous value input
M = len(u)
y_sd = np.zeros(M)
x = np.zeros(M)
for n in range(1,M):

x[n] = x[n-1] + (u[n]-y_sd[n-1])
y_sd[n] = np.round(x[n]*2**bits
+ dither*np.random.randn()/4)/2**bits

The right-most plot is the one with noise-shaping. We can observe
that the noise seems to tend towards zero at zero frequency, as we
would expect. The accumulator above would have an infinite gain
at infinite time (it’s the sum of all previous values), as such, the
NTF goes towards zero at 0 frequency.

If we look at the noise we can also see the non-white quantization
noise, which will degrade our performance. I hope by now, you’ve
grown tired of me harping on the point that quantization noise is
not white
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In the figure below I’ve turned on dither, and we can see how the
noise looks “better”, which I know is not a qualitative statement,
but ask anyone that’s done 1-bit quantizers. It’s important to have
enough random noise.
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In papers it’s common to use a logarithmic x-axis for the power
spectral density, as shown below. In the plot I only show the
positive frequencies of the FFT. From the shape of the quantization
noise we can also see the first order behavior.
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12.6.2 The wonderful world of SD modulators

12.6.2.1 Open-Loop Sigma-Delta

On my Ph.D I did some work on

Resonators in Open-Loop Sigma-Delta Modulators

which was a pure theoretical work. The idea was to use modulo
integrators (local control of integrator output swing) in front of
large latency multi-bit quantizers to achieve a high SNR.

The plot below shows a fifth order NFT where there are two
complex conjugate zeros, and a zero at zero frequency. With a
higher order filter one can use a lower OSR, and still achieve high
ENOB.

https://ieeexplore.ieee.org/document/4783042
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12.6.2.2 Noise Shaped SAR

One of my Ph.d students made a

A 68 dB SNDR Compiled Noise-Shaping SAR ADC With On-Chip
CDAC Calibration

In a SAR ADC, once the bit-cycling is complete, the analog value
on the capacitors is the actual quantization error. That error can
be fed to a loop filter, H(z), and amplified in the next conversion,
accordingly a combination of SAR and noise-shaping.

In the paper the SD modulator was also used to calibrate the
non-linearity in the CDAC, as the MSB capacitor won’t be exactly
N times larger than the smallest capacitor.

The loop filter was a switched cap loop filter, and we can see the
NTF below. The first OTA made use of chopping to reduce the
offset.

https://ieeexplore.ieee.org/document/9056925/
https://ieeexplore.ieee.org/document/9056925/
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12.6.2.3 Control-Bounded ADCs

One of my current Ph.D students is working an even more advanced
type of sigma-delta ADC. Actually, it’s more a super-set of SD
ADCs called control-bounded ADCs.

Design Considerations for a Low-Power Control-Bounded A/D
Converter

A block diagram of a Leapfrog ADC version of a control-bounded
ADC is shown below.

Here we’re walking into advanced maths territory, but to simplify,
I think it’s correct to say that a control-bounded ADC seeks to
control the local analog state, 𝑥𝑛(𝑡) such that no voltage is saturated.
The digital control signals 𝑠𝑛(𝑡) are used to infer the state of the
input 𝑢(𝑡) using a form of Bayesian Statistics.High-Level Architecture
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Figure 3.1: The general structure of the Leapfrog ADC

by A0i = �i/⇢i.

The Leapfrog ADC di↵ers from the Chain-of-integrators by the addi-
tional feedback paths between neighboring states. The feedback from xi

to xi�1 is achieved through ↵i, feeding a portion of xi back to the input of
integrator (i� 1). Each integrator is stabilized by a local digital control,
which is represented by a clocked comparator in figure 3.1. The output of
comparator i is the control-contribution si(t) which is scaled by a factor
i before entering the integrator input.

3.2 Parametrization

The evolution of the state vector is described by

ẋ(t) = Ax(t) + Bu(t) + �s(t), (3.1)

where
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0
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and
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0
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. . .

N�N

1
CA . (3.4)

For this local digital control, the control observation s̃(t) coincides with
the state vector x(t) meaning that the control observation matrix �̃T =

22

Below we can see a power spectral density plot of the ADC, and
we can observe how the quantization noise is shaped. I think it’s
a third order NTF with a zero at zero frequency and a complex
conjugate pole at 8 MHzish.

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2824253
https://en.wikipedia.org/wiki/Bayesian_statistics


192 12 Oversampling and Sigma-Delta ADCs

Design Considerations

105 106 107

�160

�140

�120

�100

�80

�60

�40

�20

0

Frequency [Hz]

P
S
D

[d
B

]
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Figure 5.6: Estimated PSD of û(t) plotted together with corresponding
theoretical NTF. Obtained from an ideal circuit simulation of a 4th order
Leapfrog ADC with LNA driven, passive integrator and floating-gate
voltage summation
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12.6.2.4 Complex Sigma-Delta

There are cool sigma-delta modulators with crazy configurations
and that may look like an exercise in “Let’s make something
complex”, however, most of them have a reasonable application.
One example is the one below for radio recievers

A 56 mW Continuous-Time Quadrature Cascaded Sigma-Delta
Modulator With 77 dB DR in a Near Zero-IF 20 MHz Band

12.6.2.5 My first Sigma-Delta

The first sigma-delta modulator I made in “real-life” was similar
to the one shown below.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4381437
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The input voltage is translated into a current, and the current is
integrated on capacitor 𝐶. The 𝑅𝑜 𝑓 𝑓 𝑠𝑒𝑡 is to change the mid-level
voltage, while 𝑅𝑟𝑒 𝑓 is the 1-bit feedback DAC. The comparator is
the quantizer. When the clock strikes the comparator compares the
𝑉𝑜 and 𝑉𝑟𝑒 𝑓 /2 and outputs a 1-bit digital output 𝐷

The complete ADC is operated in a “incremental mode”, which is
a fancy way of saying

Reset your sigma-delta modulator, run the sigma delta
modulator for a fixed number of cycles (i.e 1024), and
count the number of ones at 𝐷

The effect of an “incremental mode” is to combine the modulator
and a output filter so the ADC appears to be a slow Nyquist
ADC.

For more information, ask me, or see the patent at Analogue-to-
digital converter

12.7 Want to learn more?

The design of sigma-delta modulation analog-to-digital convert-
ers

Delta-sigma modulation in fractional-N frequency synthesis

A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy
of ± 0.15 C (3sigma) From -55 Cto 125 C

A 20-mW 640-MHz CMOS Continuous-Time Sigma-Delta ADC
With 20-MHz Signal Bandwidth, 80-dB Dynamic Range and 12-bit
ENOB

A Micro-Power Two-Step Incremental Analog-to-Digital Con-
verter

https://patents.google.com/patent/US8947280B2/en?inventor=carsten+wulff&oq=carsten+wulff
https://patents.google.com/patent/US8947280B2/en?inventor=carsten+wulff&oq=carsten+wulff
https://ieeexplore.ieee.org/document/90025
https://ieeexplore.ieee.org/document/90025
https://ieeexplore.ieee.org/document/229400
https://ieeexplore.ieee.org/document/6323049
https://ieeexplore.ieee.org/document/6323049
https://ieeexplore.ieee.org/document/4014623
https://ieeexplore.ieee.org/document/4014623
https://ieeexplore.ieee.org/document/4014623
https://ieeexplore.ieee.org/document/7078971
https://ieeexplore.ieee.org/document/7078971
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13.1 Voltage source

Most, if not all, integrated circuits need a supply and ground to
work.

Assume a system is AC powered. Then there will be switched
regulator to turn wall AC into DC. The DC might be 48 V, 24 V, 12
V, 5 V, 3 V 1.8 V, 1.0 V, 0.8 V, or who knows. The voltage depends
on the type of IC and the application.

Many ICs are battery operated, whether it’s your phone, watch,
heart rate monitor, mouse, keyboard, game controller or car.

For batteries the voltage is determined by the difference in Fermi
level on the two electrodes, and the Fermi level (chemical potential)
is a function of the battery chemistry. As a result, we need to know
the battery chemistry in order to know the voltage.

Linden’s Handbook of Batteries is a good book if you want to
dive deep into primary (non-chargeable) or secondary (chargeable)
batteries and their voltage curves.

https://www.amazon.com/Lindens-Handbook-Batteries-Fifth-Kirby/dp/1260115925
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Some common voltage sources are listed below.

Chemistry Voltage [V]

Primary Cell LiFeS2 , Zn/Alk/MnO2 , LiMnO2 0.8 - 3.6
Secondary Cell Li-Ion 2.5 - 4.3
USB - 4.0 - 6.5 (20)

The battery determines the voltage of the “electron source”, how-
ever, can’t we just run everything directly off the battery? Why do
we need DC to DC converters or voltage regulators?

Turns out, transistors can die.

Today’s transistor, as shown below, are a complicated three dimen-
sional structure. Dimensions are measured in nano-meter, which
makes the transistors fragile.

In Analog Circuit Design in Nanoscale CMOS Technologies Lanny
explains how to design around some of the breakdown effects.

https://ieeexplore.ieee.org/document/5247174
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The transistors in a particular technology (from GlobalFoundries,
TSMC, Samsung or others) have a maximum voltage that they can
survive for a certain time. Exceed that time, or voltage, and the
transistors die.

13.1.0.1 Why transistors die

A gate oxide will break due to Time Dependent Dielectric Break-
down (TDDB) if the voltage across the gate oxide is too large. Silicon
oxide can break down at approximately 5 MV/cm. The breakdown
forms a conductive channel from the gate to the channel and is
permanent. After breakdown there will be a resistor of kOhms
between gate and channel.

A similar breakdown phenomena is used in Metal-Oxide RRAM
and the SkyWater ReRAM

Below is an example of ReRAM. In the Pristine state the conduc-
tance is low, resistance is in the hundreds of mega Ohm. In a
transistor we want the oxide to stay high resistive. In ReRAM,
however, we apply a high voltage across the oxide, which forms a
conductive channel across the oxide. Turns out, that the conductive
channel can be flipped back and forth between a high resistive
state, and a low resistive state to store a 1 or a 0 in a non-volatile
manner.

https://ieeexplore.ieee.org/document/6193402
https://sky130-fd-pr-reram.readthedocs.io/en/latest/
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The threshold voltage of a transistor can shift excessively over time
caused by Hot-Carrier Injection (HCI) or Negative Bias Tempera-
ture Instability.

Hot-Carrier injection is caused by electrons, or holes, accelerated
to high velocity in the channel, or drain depletion region , causing
impact ionization (breaking a co-valent bond releasing an elec-
tron/hole pair). At a high drain/source field, and
medium gate/(source or drain) field, the channel minority carriers
can be accelerated to high energy and transition to traps in the
oxide, shifting the threshold voltage.

Negative Bias Temperature Instability is a shift in threshold voltage
due to a physical change in the oxide. A strong electric field across
the oxide for a long time can break co-valent, or ionic bonds, in
the oxide. The bond break will change the forces (stress) in the
amorphous silicon oxide which might not recover. As such, there
might be more traps (states) than before. See Simultaneous Extrac-
tion of Recoverable and Permanent Components Contributing to
Bias-Temperature Instability for more details.

For a long time, I had trouble with “traps in the oxide”“. I had a
hard time visualizing how electrons wandered down the channel
and got caught in the oxide. I was trying to imagine the electric
field, and that the electron needed to find a positive charge in the
oxide to cancel. Diving a bit deeper into quantum mechanics, my
mental image improved a bit, so I’ll try to give you a more accurate
mental model for how to think about traps.

Quantum mechanics tells us that bound electrons can only occupy
fixed states. The probability of finding an electron in a state is given
by the Fermi function, but if there is no energy state at a point in
space, there cannot be an electron there.

For example, there might be a 50 % probability of finding an
electron in the oxide, but if there is no state there, then there will
not be any electron , and thus no change to the threshold voltage.

https://ieeexplore.ieee.org/document/4419069
https://ieeexplore.ieee.org/document/4419069
https://ieeexplore.ieee.org/document/4419069
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What happens when we make “traps”, through TDDB, HCI, or
NBTI is that we create new states that can potentially be occupied
by electrons. For example one, or more, broken silicon co-valent
bonds and a dislocation of the crystal lattice.

If the Fermi-Dirac statistics tells us the probability of an electron
being in those new states is 50 %, then there will likely be electrons
there.

The threshold voltage is defined as the voltage at which we can
invert the channel, or create the same density of electrons in the
channel (for NMOS) as density of dopant atoms (density of holes)
in the bulk.

If the oxide has a net negative charge (because of electrons in
new states), then we have to pull harder (higher gate voltage) to
establish the channel. As a result, the threshold voltage increases
with electrons stuck in the oxide.

In quantum mechanics the time evolution, and the complex proba-
bility amplitude of an electron changing state, could, in theory, be
computed with the Schrodinger equation. Unfortunately, for any
real scenario, like the gate oxide of a transistor, using Schrodinger
to compute exactly what will happen is beyond the capability of
the largest supercomputers.

13.1.1 Core voltage

The voltage where the transistor can survive is estimated by the
foundry, by approximation, and testing, and may be like the table
below.

Node [nm] Voltage [V]

180 1.8
130 1.5
55 1.2
22 0.8

13.1.2 IO voltage

Most ICs talk to other ICs, and they have a voltage for the general
purpose input/output. The voltage reduction in I/O voltage does
not need to scale as fast as the core voltage, because foundries have
thicker oxide transistors that can survive the voltage.

Voltage [V]

5.0
3.0
1.8
1.2
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13.1.3 Supply planning

For any IC, we must know the application. We must know where
the voltage comes from, the IO voltage, the core voltage, and any
other requirements (like charging batteries).

One example could be an IC that is powered from a Li-Ion battery,
with a USB to provide charging capability.

Between each voltage we need an analog block, a regulator, to
reduce the voltage in an effective manner. What type of regulator
depends again on the application, but the architecture of the analog
design would be either a linear regulator, or a switched regulator.

5 OVVBUS

BAT O 2.50 4.30

10 1.8 V

IO BIASIANA

In 50m In loom

CORE 0.80

RISCV ADC RADIO
In 50M In Im In 300m

The dynamic range of the power consumed by an IC can be large.
From nA when it’s not doing anything, to hundreds of mA when
there is high computation load.

As a result, it’s not necessarily possible, or effective, to have one
regulator from 1.8 V to 0.8 V. We may need multiple regulators.
Some that can handle low load (nA - 𝜇A) effectively, and some that
can handle high loads.

For example, if you design a regulator to deliver 500 mA to the
load, and the regulator uses 5 mA, that’s only 1 % of the current,
which may be OK. The same regulator might consume 5 mA even
though the load is 1 uA, which would be bad. All the current flows
in the regulator at low loads.

Name Voltage Min [nA] Max [mA] PWR DR [dB]

VDD_VBUS 5 10 500 77
VDD_VBAT 4 10 400 76

VDD_IO 1.8 10 50 67
VDD_CORE 0.8 10 350 75

Most product specifications will give you a view into what type of
regulators there are on an IC. The picture below is from nRF5340
(page 23)

https://docs.nordicsemi.com/bundle/nRF5340_PS_v1.3.1/resource/nRF5340_PS_v1.3.1.pdf
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13.2 Linear Regulators

13.2.1 PMOS pass-fet

One way to make a regulator is to control the current in a PMOS
with a feedback loop, as shown below. The OTA continuously
adjusts the gate-source voltage of the PMOS to force the input
voltages of the OTA to be equal.

IN W
it 1,5

0,8V 0,8V

TI LOAD II LOAD

Dos for IEEE

For digital loads, where 𝐼𝑙𝑜𝑎𝑑 is a digital current, with high current
every rising edge of the clock, it’s an option to place a large external
decoupling capacitor (a reservoir of charge) in parallel with the
load. Accordingly, the OTA would supply the average current.

The device between supply (1.5 V) and output voltage (0.8 V) is
often called a pass-fet. A PMOS pass-fet regulator is often called
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a LDO, or low dropout regulator, since we only need a 𝑉𝐷𝑆𝑆𝐴𝑇
across the PMOS, which can be a few hundred mV.

Key parameters of regulators are

Parameter Description Unit

Load regulation How much does the output voltage change with load current V/A
Line regulation How much does the output voltage change with input voltage V/V
Power supply
rejection ratio

What is the transfer function from input voltage to output
voltage? The PSRR at DC is the line regulation

dB

Max current How much current can be delivered through the pass-fet? A
Quiescent
current

What is the current used by the regulator A

Settling time How fast does the output voltage settle at a current step s

A disadvantage of a PMOS is the hole mobility, which is lower
than for NMOS. If the maximum current of an LDO is large, then
the PMOS can be big. Maybe even 50 % of the IC area.

13.2.2 NMOS pass-fet

An NMOS pass-fet will be smaller than a PMOS for large loads.
The disadvantage with an NMOS is the gate-source voltage needed.
For some scenarios the needed gate voltage might exceed the input
voltage (1.5 V). A gate voltage above input voltage is possible,
but increases complexity, as a charge pump (switched capacitor
regulator) is needed to make the gate voltage.

Another interesting phenomena with NMOS pass-fet is that the
PSRR is usually better, but we do have a common gate amplifier,
as such, high frequency voltage ripple on output voltage will be
amplified to the input voltage, and may cause issues for others
using the input voltage.

IN W
it 1,5

0,8V 0,8V

TI LOAD II LOAD

Dos for IEEE
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13.2.3 Control of pass-fet

The large dynamic range in power management systems can make
it challenging to have a single pass-fet.

The size of the pass-fet is set by the maximum Vgs, and the current
that needs to be delivered.

Assume we need 500 mA from the LDO. If we assume that the
maximum Vgs is 1.5 V, then we can simulate to try and find a
size.

I’ve made a testbench at

Testbench for LDO pass-fet

Below is an excerpt from the testbench. The pass-fet size has been
determined by iteration.

The OTA in the LDO is modeled by the B source. Notice the use of
the tanh function in order to keep the G voltage within the rails.

* Pass-fet
XM1 OUT G VDD VDD sky130_fd_pr__pfet_01v8
+ L=0.252 W=11.52 nf=2 ... m=1000

* Reference
VREF VREF 0 dc 0.8

* OTA
BOTA G 0 V=(1 + tanh(-1000*(v(vref) -v(out) )))/2*{AVDD}

* Load cap
CL OUT 0 1u

* Current load
ILOAD OUT 0 pwl 0 0 1u 0 50u 0.5

Below is a plot of the current on the y-axis as a function of the Vgs
on the x-axis. Although it’s possible to have almost 6 orders of
magnitude change in current in the transistor it does become hard
to make the loop stable over such a large range.

Sometimes it’s easier to split the range into multiple ranges.

https://github.com/wulffern/cnr_atr_sky130nm/blob/main/sim/LDO_PFET/loadreg.spi
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As such, there are multiple control options for the pass-fet. Below
is a summary of a few methods.

We can control the Vgs, or we can switch the number of instances,
or we can turn the pass-fet on and off dynamically. What we choose
will depend on the application.

 

1 1 1 DutyCycle
Control

or

ILOAD ILOAD ILOAD

Vin Voat Vin Voat

13.3 Switched Regulators

Linear regulator have poor power efficiency. Linear regulators have
the same current in the load, as from the input.

For some applications a poor efficiency might be OK, but for most
battery operated systems we’re interested in using the electrons
from the battery in the most effective manner.

Another challenge is temperature. A linear regulator with a 5 V
input voltage, and 1 V output voltage will have a maximum power
efficiency of 20 % (1/5). 80 % of the power is wasted in the pass-fet
as heat.

Imagine a LDO driving an 80 W CPU at 1 V from a 5 V power
supply. The power drawn from the 5 V supply is 400 W, as such,
320 W would be wasted in the LDO. A quad flat no-leads (QFN)
package usually have a thermal resistance of 20 ◦C/W, so if it
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would be possible, the temperature of the LDO would be 6400 ◦C.
Obviously, that cannot work.

For increased power efficiency, we must use switched regulators.

Imagine a switched regulator with 93 % power efficiency. The
power from the 5 V supply would be 80 W/0.93 = 86 W, as
such, only 6 W is wasted as heat. A temperature increase of
6 W × 20 ◦C/W = 120◦C is still high, but not impossible with a
small heat-sink.

All switched regulators are based on devices that store electric
field (capacitors), or magnetic field (inductors).

13.3.1 Principles of switched regulators

There is a big difference between the idea for a cir-
cuit, and the actual implementation. A real DC/DC
implementation may seem overwhelming.

Just look at figure 7 in A 10-MHz 2–800-mA 0.5–1.5-V 90% Peak
Efficiency Time-Based Buck Converter With Seamless Transition
Between PWM/PFM Modes

So before we go into details, let’s have a look at the principles.

13.3.1.1 Inductive BUCK DC/DC

Below is a common illustration of a inductive DC/DC to step down
the voltage.

Imagine Vout is at our desired output voltage, for example 0.8 V.
Assume Vin is 1.8 V.

When we close the switch, the inductor will begin to integrate
the voltage across the inductor, and the current from Vin to Vout
increases.

When we turn off the switch, the inductor current will not stop
immediately, it cannot, that’s what

𝑉 = 𝐿
𝑑𝐼

𝑑𝑡

tells us. As a result, the current continues, but now the current is
pulled from ground through the diode.

Since we’re pulling current from ground, it should be intuitive that
the current from Vin is less than the load current at Vout, assuming
Vin > Vout.

https://ieeexplore.ieee.org/document/8187654
https://ieeexplore.ieee.org/document/8187654
https://ieeexplore.ieee.org/document/8187654
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The output voltage can be controlled by how long we turn on the
switch. Each time we turn on the switch the inductor will inject a
charge packet into the load capacitance.

If we have a control loop on the output voltage, then we can get an
output voltage that is independent of the input voltage.

 

1 1 1 DutyCycle
Control

or

ILOAD ILOAD ILOAD

Vin Voat Vin Voat

13.3.1.2 Capacitive BUCK DC/DC

In a capacitive buck below what we’re doing is charging two
capacitors in series to a high voltage, Vin, and then re-configuring
the capacitors to be in parallel.

If the capacitors are the same size, then the output voltage would
be half the input voltage.

To re-configure the circuit we’d use switches.

A disadvantage with capacitive bucks is that the output voltage
is always a factor of the input voltage. When the input voltage
changes, the output voltages changes proportionally.

Often we have to insert an LDO after a capacitive buck to make
the output voltage independent of input voltage.
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A A

Vin
Vin Vink3 20in

A C C Vin A C

Vin

B b b b B D

13.3.1.3 Inductive BOOST DC/DC

Consider the circuit below. Here we setup a current from Vin to
ground when the switch is on. When the switch is off push the
current through the diode, and thus, the Vout can be higher than
Vin.

In a similar manner to the Buck, the output voltage will be impacted
by how long we turn on the switch for.

 

1 1 1 DutyCycle
Control

or

ILOAD ILOAD ILOAD

Vin Voat Vin Voat

13.3.1.4 Capacitive BOOST DC/DC

In a capacitive boost we start with a parallel connection, charge the
capacitors to Vin, then reconfigure the circuit to a series combina-
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tion.

As such, the output voltage would be two times the input voltage,
assuming the capacitors are equal.

The configuration below is quite often called a “Charge pump”, and
can be configured to generate both positive, or negative voltages.

A A

Vin
Vin Vink3 20in

A C C Vin A C

Vin

B b b b B D

13.3.2 Inductive DC/DC converter details

I’ve found that people struggle with inductive DC/DCs. They see
a circuit inductors, capacitors, and transistors and think filters,
Laplace and steady state. The path of Laplace and steady state will
lead you astray and you won’t understand how it works.

Hopefully I can put you on the right path to understanding.

In the figure below we can see a typical inductive switch mode
DC/DC converter. The input voltage is 𝑉𝐷𝐷𝐻 , and the output is
𝑉𝑂 .

Most DC/DCs are feedback systems, so the control will be adjusted
to force the output to be what is wanted, however, let’s ignore
closed loop for now.
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To see what happens I find the best path to understanding is to
look at the integral equations.

The current in the inductor is given by

𝐼𝑥(𝑡) =
1
𝐿

∫
𝑉𝑥(𝑡)𝑑𝑡

and the voltage on the capacitor is given by

𝑉𝑜(𝑡) =
1
𝐶

∫
(𝐼𝑥(𝑡) − 𝐼𝑜(𝑡))𝑑𝑡

Before you dive into Matlab, Mathcad, Maple, SymPy or another
of your favorite math software, it helps to think a bit.

My mathematics is not great, but I don’t think there is any closed
form solution to the output voltage of the DC/DC, especially since
the state of the NMOS and PMOS is time-dependent.

The output voltage also affect the voltage across the inductor, which
affects the current, which affects the output voltage, etc, etc.

The equations can be solved numerically, but a numerical solution
to the above integrals needs initial conditions.

There are many versions of the control block, let’s look at two.

13.3.3 Pulse width modulation (PWM)

Assume 𝐼𝑥 = 0 and 𝐼𝑜 = 0 at 𝑡 = 0. Assume the output voltage
is 𝑉𝑂 = 0. Imagine we set 𝐴 = 1 for a fixed time duration. The
voltage at 𝑉1 = 𝑉𝐷𝐷𝐻 , and 𝑉𝑥 = 𝑉𝑉𝐷𝐷𝐻 − 𝑉𝑂 . As 𝑉𝑥 is positive,
and roughly constant, the current 𝐼𝑥 would increase linearly, as
given by the equation of the current above.

Since the 𝐼𝑥 is linear, then the increase in 𝑉𝑜 would be a second
order, as given by the equation of the output voltage above.
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Let’s set 𝐴 = 0 and 𝐵 = 1 for fixed time duration (it does not need
to be the same as duration as we set 𝐴 = 1). The voltage across the
inductor would be𝑉𝑥 = 0−𝑉𝑜 . The output voltage would not have
increased much, so the absolute value of 𝑉𝑥 during 𝐴 = 1 would
be higher than the absolute value of 𝑉𝑥 during the first 𝐵 = 1.

The𝑉𝑥 is now negative, so the current will decrease, however, since
𝑉𝑥 is small, it does not decrease much.

I’ve made a

Jupyter PWM BUCK model

that numerically solves the equations.

In the figure below we can see how the current during A increases
fast, while during B it decreases little. The output voltage increases
similarly to a second order function.
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If we run the simulation longer, see plot below, the DC/DC will
start to settle into a steady state condition.

On the top we can see the current 𝐼𝑥 and 𝐼𝑜 , the second plot you
can see the output voltage. Turns out that the output voltage will
be

𝑉𝑜 = 𝑉𝑖𝑛 × Duty-Cycle

, where the duty-cycle is the ratio between the duration of 𝐴 = 1
and 𝐵 = 1.

https://github.com/wulffern/aic2024/blob/main/jupyter/buck.ipynb
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Once the system has fully settled, see figure below, we can see the
reason for why DC/DC converters are useful.

During 𝐴 = 1 the current 𝐼𝑥 increases fast, and it’s only during
𝐴 = 1 we pull current from𝑉𝐷𝐷𝐻 . At the start of 𝐴 = 0 the current
is still positive, which means we pull current from ground. The
average current in the inductor is the same as the average current
in the load, however, the current from 𝑉𝐷𝐷𝐻 is lower than the
average inductor current, since some of the current comes from
ground.

If the DC/DC was 100% efficient, then the current from the 4
V input supply would be 1/4’th of the 1 V output supply. 100%
efficient DC/DC converters violate the laws of nature, as such, we
can expect to get up to 9X% under optimal conditions.
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13.3.4 Real world use

DC/DC converters are used when power efficiency is important.
Below is a screenshot of the hardware description in the nRF5340
Product Specification.

We can see 3 inductor/capacitor pairs. One for the “VDDH”, and
two for “DECRF” and “DECD”, as such, we can make a good guess
there are three DC/DC converters inside the nRF5340.

13.3.5 Pulsed Frequency Mode (PFM)

Power efficiency is key in DC/DC converters. For high loads, PWM,
as explained above, is usually the most efficient and practical. For
lighter loads, other configurations can be more efficient.

In PWM we continuously switch the NMOS and PMOS, as such,
the parasitic capacitance on the𝑉1 node is charged and discharged,
consuming power. If the load is close to 0 A, then the parasitic
load’s can be significant.

In pulsed-frequency mode we switch the NMOS and PMOS when
it’s needed. If there is no load, there is no switching, and 𝑉1 or
𝐷𝐶𝐶 in figure below is high impedant.

https://docs.nordicsemi.com/bundle/nRF5340_PS_v1.3.1/resource/nRF5340_PS_v1.3.1.pdf
https://docs.nordicsemi.com/bundle/nRF5340_PS_v1.3.1/resource/nRF5340_PS_v1.3.1.pdf
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Imagine𝑉𝑜 is at 1 V, and we apply a constant output load. According
to the integral equations the 𝑉𝑜 would decrease linearly.

In the figure above we observe 𝑉𝑜 with a comparator that sets 𝑉𝑂𝐿
high if the 𝑉𝑜 < 𝑉𝑅𝐸𝐹 . The output from the comparator could be
the inputs to a finite state machine (FSM).

Consider the FSM below. On 𝑣𝑜𝑙 = 1 we transition to “UP” state
where turn on the PMOS for a fixed number of clock cycles. The
inductor current would increase linearly. From the “UP” state
we go to the “DOWN” state, where we turn on the NMOS. The
inductor current would decrease roughly linearly.

The “zero-cross” comparator observes the voltage across the NMOS
drain/source. As soon as we turn the NMOS on the current
direction in the inductor is still from 𝐷𝐶𝐶 to 𝑉𝑜 . Since the current
is pulled from ground, the 𝐷𝐶𝐶 must be below ground. As the
current in the inductor decreases, the voltage across the NMOS
will at some point be equal to zero, at which point the inductor
current is zero.

When 𝑣𝑧 = 1 happens in the state diagram, or the zero cross
comparator triggers, we transition from the “DWN” state back to
“IDLE”. Now the FSM wait for the next time 𝑉𝑜 < 𝑉𝑅𝐸𝐹 .
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IDLE
a=0 

b=0
count=0

vol = 0
UP
a=1
b=0

count++vol = 1

count < up_cycles

DWN
a=0
b=1

count=0

count = up_cycles

vz = 1

vz = 0

I think the name “pulsed-frequency mode” refers to the fact that
the frequency changes according to load current, however, I’m
not sure of the origin of the name. The name is not important.
What’s important is that you understand that mode 1 (PWM) and
mode 2 (PFM) are two different “operation modes” of a DC/DC
converter.

I made a jupyter model for the PFM mode. I would encourage you
to play with them.

Below you can see a period of the PFM buck. The state can be seen
in the bottom plot, the voltage in the middle and the current in the
inductor and load in the top plot.

Jupyter PFM BUCK model
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13.4 Want to learn more?

Search terms: regulator, buck converter, dc/dc converter, boost
converter

https://github.com/wulffern/aic2024/blob/main/jupyter/buck_pfm.ipynb
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13.4.1 Linear regulators

A Scalable High-Current High-Accuracy Dual-Loop Four-Phase
Switching LDO for Microprocessors Overview of fancy LDO
schemes, digital as well as analog

Development of Single-Transistor-Control LDO Based on Flipped
Voltage Follower for SoC In capacitor less LDOs a flipped voltage
follower is a common circuit, worth a read.

A 200-mA Digital Low Drop-Out Regulator With Coarse-Fine Dual
Loop in Mobile Application Processor Some insights into large
power systems.

13.4.2 DC-DC converters

Design Techniques for Fully Integrated Switched-Capacitor DC-DC
Converters Goes through design of SC DC-DC converters. Good
place to start to learn the trade-offs, and the circuits.

High Frequency Buck Converter Design Using Time-Based Control
Techniques I love papers that challenge “this is the way”. Why
should we design analog feedback loops for our bucks, why not
design digital feedback loops?

Single-Inductor Multi-Output (SIMO) DC-DC Converters With
High Light-Load Efficiency and Minimized Cross-Regulation for
Portable Devices Maybe you have many supplies you want to
drive, but you don’t want to have many inductors. SIMO is then
an option

A 10-MHz 2–800-mA 0.5–1.5-V 90% Peak Efficiency Time-Based
Buck Converter With Seamless Transition Between PWM/PFM
Modes Has some lovely illustrations of PFM and PWM and the
trade-offs between those two modes.

A monolithic current-mode CMOS DC-DC converter with on-
chip current-sensing technique In bucks converters there are two
“religious” camps. One hail to “voltage mode” control loop, another
hail to “current mode” control loops. It’s good to read about both
and make up your own mind.

https://ieeexplore.ieee.org/document/9639005
https://ieeexplore.ieee.org/document/9639005
https://ieeexplore.ieee.org/document/4436075
https://ieeexplore.ieee.org/document/4436075
https://ieeexplore.ieee.org/document/7740906
https://ieeexplore.ieee.org/document/7740906
https://ieeexplore.ieee.org/document/5948387
https://ieeexplore.ieee.org/document/5948387
https://ieeexplore.ieee.org/document/6998097
https://ieeexplore.ieee.org/document/6998097
https://ieeexplore.ieee.org/document/4804971
https://ieeexplore.ieee.org/document/4804971
https://ieeexplore.ieee.org/document/4804971
https://ieeexplore.ieee.org/document/8187654
https://ieeexplore.ieee.org/document/8187654
https://ieeexplore.ieee.org/document/8187654
https://ieeexplore.ieee.org/document/1261283
https://ieeexplore.ieee.org/document/1261283
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14.1 Why clocks?

Virtually all integrated circuits have some form of clock system.

For digital we need clocks to tell us when the data is correct. For
Radio’s we need clocks to generate the carrier wave. For analog
we need clocks for switched regulators, ADCs, accurate delay’s or
indeed, long delays.

The principle of a clock is simple. Make a 1-bit digital signal that
toggles with a period 𝑇 and a frequency 𝑓 = 1/𝑇.

The implementation is not necessarily simple.

The key parameters of a clock are the frequency of the fundamental,
noise of the frequency spectrum, and stability over process and
enviromental conditions.

When I start a design process, I want to know why, how, what (and
sometimes who). If I understand the problem from first principles
it’s more likely that the design will be suitable.

But proving that something is suitable, or indeed optimal, is not
easy in the world of analog design. Analog design is similar to
physics. An hypothesis is almost impossible to prove “correct”, but
easier to prove wrong.

14.1.1 A customer story

Take an example.

14.1.1.1 Imagine a world

“I have a customer that needs an accurate clock to count
seconds”. – Some manager that talked to a customer,
but don’t understand details.
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As a designer, I might latch on to the word “accurate clock”, and
translate into “most accurate clock in the world”, then I’d google
atomic clocks, like Rubidium standard that I know is based on
the hyperfine transition of electrons between two energy levels in
rubidium-87.

I know from quantum mechanics that the hyperfine transition
between two energy levels will produce an precise frequency, as the
frequency of the photons transmitted is defined by 𝐸 = ℏ𝜔 = ℎ 𝑓 .

I also know that quantum electro dynamics is the most precise
theory in physics, so we know what’s going on.

As long as the Rubidium crystal is clean (few energy states in the
vicinity of the hyperfine transition), the distance between atoms
stay constant, the temperature does not drift too much, then the
frequency will be precise. So I buy a rubidium oscillator at a cost
of $ 3k.

I design a an ASIC to count the clock ticks, package it plastic, make
a box, and give my manager.

Who will most likely say something like

“Are you insane? The customer want’s to put the clock
on a wristband, and make millions. We can’t have a
cost of $ 3k per device. You must make it smaller an it
must cost 10 cents to make”

Where I would respond.

“What you’re asking is physically impossible. We can’t
make the device that cheap, or that small. Nobody can
do that.”

And both my manager and I would be correct.

14.1.1.2 Imagine a better world

Most people in this world have no idea how things work. Very
few people are able to understand the full stack. Everyone of us
must simplify what we know to some extent. As such, as a circuit
designer, it’s your responsibility to fully understand what is asked
of you.

When someone says

” I have a customer that needs an accurate clock to
count seconds”

https://en.wikipedia.org/wiki/Rubidium_standard
https://www2.mouser.com/ProductDetail/IQD/LFRBXO059244Bulk?qs=iw0hurA%2FaD0K8weKx%2Fu2ow%3D%3D
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Your response should be “Why does the customer need an accurate
clock? How accurate? What is the customer going to use the clock
for?”. Unless you understand the details of the problem, then your
design will be sub-optimal. It might be a great clock source, but it
will be useless for solving the problem.

14.1.2 Frequency

The frequency of the clock is the frequency of the fundamental. If
it’s a digital clock (1-bit) with 50 % duty-cycle, then we know that
a digital pulse train is an infinite sum of odd-harmnoics, where
the fundamental is given by the period of the train.

14.1.3 Noise

Clock noise have many names. Cycle-to-cycle jitter is how the
period changes with time. Jitter may also mean how the period
right now will change in the future, so a time-domain change in
the amount of cycle-to-cycle jitter. Phase noise is how the period
changes as a function of time scales. For example, a clock might
have fast period changes over short time spans, but if we average
over a year, the period is stable.

What type of noise you care about depends on the problem. Digital
will care about the cycle-to-cycle jitter affects on setup and hold
times. Radio’s will care about the frequency content of the noise
with an offset to the carrier wave.

14.1.4 Stability

The variation over all corners and enviromental conditions is
usually given in a percentage, parts per million, or parts per
billion.

For a digital clock to run a Micro-Controller, maybe it’s sufficient
with 10% accuracy of the clock frequency. For a Bluetooth radio
we must have +-50 ppm, set by the standard. For GPS we might
need parts-per-billion.

14.1.5 Conclusion

Each “clock problem” will have different frequency, noise and
stability requirements. You must know the order of magnitude
of those before you can design a clock source. There is no “one-
solution fits all” clock generation IP.
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14.2 A typical System-On-Chip clock system

On the nRF52832 development kit you can see some components
that indicate what type of clock system must be inside the IC.

In the figure below you can see the following items.

1. 32 MHz crystal
2. 32 KiHz crystal
3. PCB antenna
4. DC/DC inductor

14.2.1 32 MHz crystal

Any Bluetooth radio will need a frequency reference. We need to
generate an accurate 2.402 MHz - 2.480 MHz carrier frequency
for the gaussian frequency shift keying (GFSK) modulation. The
Bluetooth Standard requires a +- 50 ppm accurate timing reference,
and carrier frequency offset accuracy.

I’m not sure it’s possible yet to make an IC that does not have some
form of frequency reference, like a crystal. The ICs I’ve seen so far
that have “crystal less radio” usually have a resonator (crystal or
bulk-accustic-wave or MEMS resonator) on die.

The power consumption of a high frequency crystal will be pro-
portional to frequency. Assuming we have a digital output, then
the power of that digital output will be 𝑃 = 𝐶𝑉2 𝑓 , for exam-
ple 𝑃 = 100 fF × 1 V2 × 32 MHz = 3.2 𝜇W is probably close to a
minimum power consumption of a 32 MHz clock.

https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
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14.2.2 32 KiHz crystal

Reducing the frequency, we can get down to minimum power
consumption of 𝑃 = 100 fF × 1 V2 × 32 KiHz = 3.2 nW for a
clock.

For a system that sleeps most of the time, and only wakes up at
regular ticks to do something, then a low-frequency crystal might
be worth the effort.

14.2.3 PCB antenna

Since we can see the PCB antenna, we know that the IC includes a
radio. From that fact we can deduce what must be inside the SoC.
If we read the Product Specification we can understand more.

14.2.4 DC/DC inductor

Since we can see a large inductor, we can also make the assumption
that the IC contains a switched regulator. That switched regulator,
especially if it has a pulse-width-modulated control loop, will need
a clock.

From our assumptions we could make a guess what must be inside
the IC, something like the picture below.

There will be a crystal oscillator connected to the crystal. We’ll
learn about those later.

These crystal oscillators generate a fixed frequency, 32 MHz, or 32
KiHz, but there might be other clocks needed inside the IC.

To generate those clocks, there will be phase-locked loops (PLL),
frequency locked loops (FLL), or delay-locked loops (DLL).

PLLs take a reference input, and can generate a higher frequency,
(or indeed lower frequency) output. A PLL is a magical block. It’s
one of the few analog IPs where we can actually design for infinite
gain in our feedback loop.

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52832_ps.html
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Most of the digital blocks on an IC will be synchronous logic, see
figure below. A fundamental principle of sychnronous logic is that
the data at the flip-flops (DFF, rectangles with triangle clock input,
D, Q and Q) only need to be correct at certain times.

The sequence of transitions in the combinatorial logic is of no
consequence, as long as the B inputs are correct when the clock
goes high next time.

The registers, or flip-flops, are your SystemVerilog “always_ff”
code. While the blue cloud is your “always_comb” code.

In a SoC we have to check, for all paths between a Y[N] and B[M]
that the path is fast enough for all transients to settle before the
clock strikes next time. How early the B data must arrive in relation
to the clock edge is the setup time of the DFFs.

We also must check for all paths that the B[M] are held for long
enough after the clock strikes such that our flip-flop does not
change state. The hold time is the distance from the clock edge
to where the data is allowed to change. Negative hold times are
common in DFFs, so the data can start to change before the clock
edge.

In an IC with millions of flip-flops there can be billions of paths.
The setup and hold time for every single one must be checked.
One could imagine a simulation of all the paths on a netlist with
parasitics (capacitors and resistors from layout) to check the delays,
but there are so many combinations that the simulation time
becomes unpractical.

Static Timing Analysis (STA) is a light-weight way to check all
the paths. For the STA we make a model of the delay in each cell
(captured in a liberty file), the setup/hold times of all flip-flops,
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wire propagation delays, clock frequency (or period), and the
variation in the clock frequency. The process, voltage, temperature
variation must also be checked for all components, so the number
of liberty files can quickly grow large.

For an analog designer the constraints from digital will tell us
what’s the maximum frequency we can have at any point in time,
and what is the maximum cycle-to-cycle variation in the period.
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14.3 PLL

PLL, or it’s cousins FLL and DLL are really cool. A PLL is based
on the familiar concept of feedback, shown in the figure below. As
long as we make 𝐻(𝑠) infinite we can force the output to be an
exact copy of the input.

VI VX H s V0

VI Vo Ux Vo VxH s

VI Vo YE
Vo I

N

fin yes
to
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14.3.1 Integer PLL

For a frequency loop the figure looks a bit different. If we want a
higher output frequency we can divide the frequency by a number
(N) and compare with our reference (for example the 32 MHz
reference from the crystal oscillator).

We then take the error, apply a transfer function 𝐻(𝑠) with high
gain, and control our oscillator frequency.

If the down-divided output frequency is too high, we force the os-
cillator to a lower frequency. If the down-divided output frequency
is too low we force the oscillator to a higher frequency.

If we design the 𝐻(𝑠) correctly, then we have 𝑓𝑜 = 𝑁 × 𝑓𝑖𝑛

VI VX H s V0

VI Vo Ux Vo VxH s

VI Vo YE
Vo I

N

fin yes
to

Sometimes you want a finer frequency resolution, in that case
you’d add a divider on the reference and get 𝑓𝑜 = 𝑁 × 𝑓𝑖𝑛

𝑀 ..

fin M Hcs
to

ED N

fin yes
to

14.3.2 Fractional PLL

Trouble is that dividing down the input frequency will reduce your
loop bandwidth, as the low-pass filter needs to be about 1/10’th of
the reference frequency. As such, the PLL will respond slower to a
frequency change.

We can also use a fractional divider, where we swap between two,
or more, integeres in a sigma-delta fashion in the divider.
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fin M Hcs
to

ED N

fin yes
to

14.3.3 Modulation in PLLs

From your signal processing, or communication courses, you may
recognize the equation below.

𝐴𝑚(𝑡) × 𝑐𝑜𝑠
(
2𝜋 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑡 + 𝜙𝑚(𝑡)

)
The 𝐴𝑚 is the amplitude modulation, while the 𝜙𝑚 is the phase
modulation. Bluetooth Low Energy is constant envelope, so the
𝐴𝑚 is a constant. The phase modulation is applied to the carrier,
but how is it done?

One option is shown below. We could modulate our frequency
reference directly. That could maybe be a sigma-delta divider on
the reference, or directly modulating the oscillator.

ED N

fin yes
to

Amos N

fin to
His N

Most modern radios, however, will have a two-point modulation.
The modulation signal is applied to the VCO (or DCO), and the
opposite signal is applied to the feedback divider. As such, the
modulation is not seen by the loop.

food

ED N

fin yes
to

fmod
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14.4 PLL Example

I’ve made an example PLL that you can download and play with.
I make no claims that it’s a good PLL. Actually, I know it’s a bad
PLL. The ring-oscillator frequency varies to fast with the voltage
control. But it does give you a starting point.

A PLL can consist of a oscillator (SUN_PLL_ROSC) that generates
our output frequency. A divider (SUN_PLL_DIVN) that generates a
feedback frequency that we can compare to the reference. A Phase
and Frequency Detector (SUN_PLL_PFD) and a charge-pump
(SUN_PLL_CP) that model the +, or the comparison function
in our previous picture. And a loop filter (SUN_PLL_LPF and
SUN_PLL_BUF) that is our 𝐻(𝑠).

/Users/wulff/pro/aicex/ip/sun_pll_sky130nm/design/SUN_PLL_SKY130NM/SUN_PLL.sch
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Read any book on PLLs, talk to any PLL designer and they will all
tell you the same thing. PLLs require calculation. You must setup
a linear model of the feedback loop, and calculate the loop transfer
function to check the stability, and the loop gain. This is the way!
(to quote Mandalorian).

But how can we make a linear model of a non-linear system? The
voltages inside a PLL must be non-linear, they are clocks. A PLL is
not linear in time-domain!

I have no idea who first thought of the idea, but it turns out, that
one can model a PLL as a linear system if one consider the phase
of the voltages inside the PLL, especially when the PLL is locked
(phase of the output and reference is mostly aligned). Where the
phase is defined as

𝜙(𝑡) = 2𝜋
∫ 𝑡

0
𝑓 (𝑡)𝑑𝑡

As long as the bandwidth of the 𝐻(𝑠) is about 1
10 of the reference

frequency, then the linear model below holds (at least is good
enough).

https://github.com/wulffern/sun_pll_sky130nm
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The phase of our input is 𝜙𝑖𝑛(𝑠), the phase of the output is 𝜙(𝑠),
the divided phase is 𝜙𝑑𝑖𝑣(𝑠) and the phase error is 𝜙𝑑(𝑠).

The 𝐾𝑝𝑑 is the gain of our phase-frequency detector and charge-
pump. The 𝐾𝑙𝑝𝐻𝑙𝑝(𝑠) is our loop filter 𝐻(𝑠). The 𝐾𝑜𝑠𝑐/𝑠 is our
oscillator transfer function. And the 1/𝑁 is our feedback divider.

Girls OÉpd
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14.4.1 Loop gain

The loop transfer function can then be analyzed and we get.

𝜙𝑑
𝜙𝑖𝑛

=
1

1 + 𝐿(𝑠)

𝐿(𝑠) =
𝐾𝑜𝑠𝑐𝐾𝑝𝑑𝐾𝑙𝑝𝐻𝑙𝑝(𝑠)

𝑁𝑠

Here is the magic of PLLs. Notice what happens when 𝑠 = 𝑗𝜔 = 𝑗0,
or at zero frequency. If we assume that 𝐻𝑙𝑝(𝑠) is a low pass
filter, then 𝐻𝑙𝑝(0) = constant. The loop gain, however, will have a
𝐿(0) ∝ 1

0 which approaces infinity at 0.

That means, we have an infinite DC gain in the loop transfer
function. It is the only case I know of in an analog design where we
can actually have infinite gain. Infinite gain translate can translate
to infinite precision.

If the reference was a Rubidium oscillator we could generate
any frequency with the same precision as the frequency of the
Rubidium oscillator. Magic.

For the linear model, we need to figure out the factors, like 𝐾𝑣𝑐𝑜 ,
which must be determined by simulation.

14.4.2 Controlled oscillator

The gain of the oscillator is the change in output frequency as a
function of the change of the control node. For a voltage-controlled
oscillator (VCO) we could sweep the control voltage, and check the
frequency. The derivative of the f(V) would be proportional to the
𝐾𝑣𝑐𝑜 .
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The control node does not need to be a voltage. Anything that
changes the frequency of the oscillator can be used as a control node.
There exist PLLs with voltage control, current control, capacitance
control, and digital control.

For the SUN_PLL_ROSC it is the VDD of the ring-oscillator (VDD_-
ROSC) that is our control node.

𝐾𝑜𝑠𝑐 = 2𝜋
𝑑𝑓

𝑑𝑉𝑐𝑛𝑡𝑙
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14.4.2.1 SUN_PLL_SKY130NM/sim/ROSC/

I simulate the ring oscillator in ngspice with a transient simulation
and get the oscillator frequency as a function of voltage.

tran.spi

let start_v = 1.1
let stop_v = 1.7
let delta_v = 0.1
let v_act = start_v

* loop
while v_act le stop_v
alter VROSC v_act
tran 1p 40n
meas tran vrosc avg v(VDD_ROSC)
meas tran tpd trig v(CK) val='0.8' rise=10 targ v(CK) val='0.8' rise=11
let v_act = v_act + delta_v
end

https://github.com/wulffern/sun_pll_sky130nm/tree/main/sim/ROSC
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I use tran.py to extract the time-domain signal from ngspice into
a CSV file.

Then I use a python script to extract the 𝐾𝑜𝑠𝑐

kvco.py

df = pd.read_csv(f)
freq = 1/df["tpd"]
kvco = np.mean(freq.diff()/df["vrosc"].diff())

Below I’ve made a plot of the oscillation frequency over corners.
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14.4.3 Phase detector and charge pump

The gain of the phase-detector and charge pump is the current we
feed into the loop filter over a period. I don’t remember why, check
in the book for a detailed description.

The two blocks compare our reference clock to our feedback clock,
and produce an error signal.

𝐾𝑝𝑑 =
𝐼𝑐𝑝

2𝜋
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14.4.4 Loop filter

In the book you’ll find a first order loop filter, and a second order
loop filter. Engineers are creative, so you’ll likely find other loop
filters in the literature.

I would start with the “known to work” loop filters before you
explore on your own.

If you’re really interested in PLLs, you should buy Design of CMOS
Phase-Locked Loops by Behzad Razavi.

The loop filter has a unity gain buffer. My oscillator draws current,
while the VPLF node is high impedant, so I can’t draw current
from the loop filter without changing the filter transfer function.

𝐾𝑙𝑝𝐻𝑙𝑝(𝑠) = 𝐾𝑙𝑝

(
1
𝑠
+ 1

𝜔𝑧

)

𝐾𝑙𝑝𝐻𝑙𝑝(𝑠) =
1

𝑠(𝐶1 + 𝐶2)
1 + 𝑠𝑅𝐶1

1 + 𝑠𝑅 𝐶1𝐶2
𝐶1+𝐶2
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14.4.5 Divider

The divider is modelled as

𝐾𝑑𝑖𝑣 =
1
𝑁

https://www.amazon.com/Design-CMOS-Phase-Locked-Loops-Architecture/dp/1108494544
https://www.amazon.com/Design-CMOS-Phase-Locked-Loops-Architecture/dp/1108494544
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14.4.6 Loop transfer function

With the loop transfer function we can start to model what happens
in the linear loop. What is the phase response, and what is the gain
response.

𝐿(𝑠) =
𝐾𝑜𝑠𝑐𝐾𝑝𝑑𝐾𝑙𝑝𝐻𝑙𝑝(𝑠)

𝑁𝑠

14.4.6.1 Python model

I’ve made a python model of the loop, you can find it at sun_pll_-
sky130nm/jupyter/pll

In the jupyter notbook below you can find some more information
on the phase/frequency detector, and charge pump.

sun_pll_sky130nm/jupyter/pfd

Below is a plot of the loop gain, and the transfer function from
input phase to divider phase.

We can see that the loop gain at low frequency is large, and
proportional to 1/𝑠. As such, the phase of the divided down
feedback clock is the same as our reference.

The closed loop transfer function 𝜙𝑑𝑖𝑣/𝜙𝑖𝑛 shows us that the
divided phase at low frequency is the same as the input phase.
Since the phase is the same, and the frequency must be the same,
then we know that the output clock will be N times reference
frequency.

https://github.com/wulffern/sun_pll_sky130nm/blob/main/jupyter/pll.ipynb
https://github.com/wulffern/sun_pll_sky130nm/blob/main/jupyter/pll.ipynb
https://github.com/wulffern/sun_pll_sky130nm/blob/main/jupyter/pfd.ipynb


232 14 Clocks and PLLs

103 104 105 106 107 108

Frequency [Hz]

50

0

50

100

M
ag

ni
tu

de
 [d

B]

Lg
div/ in

103 104 105 106 107 108

Frequency [Hz]

150

100

50

0

Ph
as

e 
[D

eg
re

es
]

Phase margin = 55.0

Lg
div/ in

The top testbench for the PLL is tran.spi.

I power up the PLL and wait for the output clock to settle. I use
freq.py to plot the frequency as a function of time. The orange curve
is the average frequency. We can see that the output frequency
settles to 256 MHz.
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tran_LayGtVtKttTt.raw
mid,end:  259.270,256.04 MHz 

You can find the schematics, layout, testbenches, python script etc
at SUN_PLL_SKY130NM

Below are a couple layout images of the finished PLL

https://github.com/wulffern/sun_pll_sky130nm/blob/main/sim/SUN_PLL/tran.spi
https://github.com/wulffern/sun_pll_sky130nm/blob/main/sim/SUN_PLL/freq.py
https://github.com/wulffern/sun_pll_sky130nm
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14.5 Want to learn more?

Back in 2020 there was a Master student at NTNU on PLL. I would
recommend looking at that thesis to learn more, and to get inspired
Ultra Low Power Frequency Synthesizer.

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2778127
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A Low Noise Sub-Sampling PLL in Which Divider Noise is Elimi-
nated and PD/CP Noise is Not Multiplied by N2

All-digital PLL and transmitter for mobile phones

A 2.9–4.0-GHz Fractional-N Digital PLL With Bang-Bang Phase
Detector and 560-fsrms Integrated Jitter at 4.5-mW Power

https://ieeexplore.ieee.org/document/5342373
https://ieeexplore.ieee.org/document/5342373
https://ieeexplore.ieee.org/document/1546223
https://ieeexplore.ieee.org/document/6006551
https://ieeexplore.ieee.org/document/6006551
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The world depends on accurate clocks. From the timepiece on your
wrist, to the phone in your pocket, they all have a need for an
accurate way of counting the passing of time.

Without accurate clocks an accurate GPS location would not be
possible. In GPS we even correct for Special and General Relativity
to the tune of about +38.6𝜇s/day .

Let’s have a look at the most accurate clocks first.

15.1 Atomic clocks

Cesium standard

The second is defined by taking the fixed numerical value of the
cesium frequency Cs, the unperturbed ground-state hyper-fine
transition frequency of the cesium 133 atom, to be 9 192 631 770
when expressed in the unit Hz, which is equal to s–1

As a result, by definition, the cesium clocks are exact. That’s how
the second is defined. When we make a real circuit, however, we
never get a perfect, unperturbed system.

15.1.1 Microchip 5071B Cesium Primary Time and
Frequency Standard

One example of a ultra precise time piece is shown below. The
bullets in the list below is from the marketing blurb.

Why would the thing take 30 minutes to start up? Does the tem-
perature need to settle? Is it the loop bandwidth of the PLL that is
low? Who knows, but 30 minutes is too long for a IC startup time.
And we can’t really pack the big box onto a chip.

▶ < 5E-13 accuracy high-performance models
▶ Accuracy levels achieved within 30 minutes of startup
▶ < 8.5E-13 at 100s high-performance models
▶ < 1E-14 flicker floor high-performance models

https://en.wikipedia.org/wiki/Error_analysis_for_the_Global_Positioning_System
https://en.wikipedia.org/wiki/Caesium_standard
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Also, when they say

“Ask for a quote” => The price is really high, and we don’t want to
tell you yet

15.1.2 Rubidium standard

Rubidium standard, use the rubidium hyper-fine transition of 6.8
GHz (6834682610.904 Hz)

and can actually be made quite small. Below is a picture of a tiny
atomic clock. According to the marketing blurb:

The MAC is a passive atomic clock, incorporating the interrogation
technique of Coherent Population Trapping (CPT) and operating upon
the D1 optical resonance of atomic Rubidium Isotope 87.

A rubidium clock is basically a crystal oscillator locked to an
atomic reference.

https://en.wikipedia.org/wiki/Rubidium_standard
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But how do the clocks work? According to Wikipedia, the picture
below, is a common way to operate a rubidium clock.

A light passing through the Rubidium gas will be affected if the
frequency injected is at the hyper-fine energy levels (E = hf). The
change in brightness can be detected by the photo detector, and
we can adjust the frequency of the crystal oscillator, we’ll see later
how that can be done. The crystal oscillator is used as reference
for a PLL (freqency synthesizer ) to generate the exact frequency
needed.

The negative feedback loop ensures that the 5 MHz clock coming
out is proportional to the hyper-fine energy levels in the Rubidium
atoms. Negative feedback is cool! Especially when we have a pole
at DC and infinite gain.



238 15 Oscillators

15.2 Crystal oscillators

For accuracy’s of parts per million, which is sufficient for your
wrist watch, or most communication, it’s possible to use crystals.

A quartz crystal can resonate at specific frequencies. If we apply
a electric field across a crystal, we will induce a vibration in the
crystal, which can again affect the electric field. For some history,
see Crystal Oscillators

The vibrations in the crystal lattice can have many modes, as
illustrated by figure below.

All we need to do with a crystal is to inject sufficient energy to
sustain the oscillation, and the resonance of the crystal will ensure
we have a correct enough frequency.

https://en.wikipedia.org/wiki/Crystal_oscillator
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15.2.1 Impedance

The impedance of a crystal is usually modeled as below. A RLC
circuit with a parallel capacitor.

Our job is to make a circuit that we can connect to the two pins
and provide the energy we will loose due to 𝑅𝑠 .
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Assuming zero series resistance

𝑍𝑖𝑛 =
𝑠2𝐶𝐹𝐿 + 1

𝑠3𝐶𝑃𝐿𝐶𝐹 + 𝑠𝐶𝑃 + 𝑠𝐶𝐹

Notice that at 𝑠 = 0 the impedance goes to infinity, so a crystal is
high impedant at DC.

Since the 1/(sCp) does not change much at resonance, then

𝑍𝑖𝑛 ≈ 𝐿𝐶𝐹𝑠
2 + 1

𝐿𝐶𝐹𝐶𝑝𝑠2 + 𝐶𝐹 + 𝐶𝑃

See Crystal oscillator impedance for a detailed explanation.

In the impedance plot below we can clearly see that there are
two “resonance” points. Usually noted by series and parallel
resonance.

I would encourage you to read The Crystal Oscillator for more
details.

https://github.com/wulffern/aic2023/blob/main/jupyter/xosc.ipynb
https://ieeexplore.ieee.org/document/7954123
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15.2.2 Circuit

Below is a common oscillator circuit, a Pierce Oscillator. The crystal
is the below the dotted line, and the two capacitance’s are the
on-PCB capacitance’s.

Above the dotted line is what we have inside the IC. Call the left
side of the inverter XC1 and right side XC2. The inverter is biased
by a resistor, 𝑅1, to keep the XC1 at a reasonable voltage. The XC1
and XC2 will oscillate in opposite directions. As XC1 increases, XC2
will decrease. The 𝑅2 is to model the internal resistance (on-chip
wires, bond-wire).

n n
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Negative transconductance compensate crystal series resis-
tance

The transconductance of the inverter must compensate for the
energy loss caused by 𝑅𝑠 in the crystal model. The transconductor
also need to be large enough for the oscillation to start, and build
up.

I’ve found that sometimes people get confused by the negative
transconductance. There is nothing magical about that. Imagine
the PMOS and the NMOS in the inverter, and that the input voltage
is exactly the voltage we need for the current in the PMOS and
NMOS to be the same. If the current in the PMOS and NMOS is
the same, then there can be no current flowing in the output.

Imagine we increase the voltage. The PMOS current would de-
crease, and the NMOS current would increase. We would pull
current from the output.

Imagine we now decrease the voltage instead. The PMOS current
would increase, and the NMOS current would decrease. The
current in the output would increase.

As such, a negative transconductance is just that as we increase
the input voltage, the current into the output decreases, and visa
versa.

Long startup time caused by high Q

The Q factor has a few definitions, so it’s easy to get confused.
Think of Q like this, if a resonator has high Q, then the oscillations
die out slowly.

Imagine a perfect world without resistance, and an inductor and
capacitor in parallel. Imagine we initially store some voltage across
the capacitor, and we let the circuit go. The inductor shorts the
plates of the capacitor, and the current in the inductor will build up
until the voltage across the capacitor is zero. The inductor still has
stored current, and that current does not stop, so the voltage across
the capacitor will become negative, and continue decreasing until
the inductor current is zero. At that point the negative voltage will
flip the current in the inductor, and we go back again.

The LC circuit will resonate back and forth. If there was no resis-
tance in the circuit, then the oscillation would never die out. The
system would be infinite Q.

The Q of the crystal oscillator can be described as 𝑄 = 1/(𝜔𝑅𝑠𝐶 𝑓 ),
assuming some common values of 𝑅𝑠 = 50, 𝐶 𝑓 = 5𝑒−15 and
𝜔 = 2𝜋 × 32 MHz then 𝑄 ≈ 20 k.

That number may not tell you much, but think of it like this, it
will take 20 000 clock cycles before the amplitude falls by 1/e.
For example, if the amplitude of oscillation was 1 V, and you stop

https://en.wikipedia.org/wiki/Q_factor
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introducing energy into the system, then 20 000 clock cycles later,
or 0.6 ms, the amplitude would be 0.37 V.

The same is roughly true for startup of the oscillator. If the crystal
had almost no amplitude, then an increase 𝑒 would take 20 k
cycles. Increasing the amplitude of the crystal to 1 V could take
milliseconds.

Most circuits on-chip have startup times on the order of microsec-
onds, while crystal oscillators have startup time on the order of
milliseconds. As such, for low power IoT, the startup time of crystal
oscillators, or indeed keeping the oscillator running at a really low
current, are key research topics.

Can fine tune frequency with parasitic capacitance

The resonance frequency of the crystal oscillator can be modified by
the parasitic capacitance from XC1 and XC2 to ground. The tunabil-
ity of crystals is usually in ppm/pF. Sometimes micro-controller
vendors will include internal load capacitance’s to support multiple
crystal vendors without changing the PCB.

15.2.3 Temperature behavior

One of the key reasons for using crystals is their stability over
temperature. Below is a plot of a typical temperature behavior.
The cutting angle of the crystal affect the temperature behavior,
as such, the closer crystals are to “no change in frequency over
temperature”, the more expensive they become.

In communication standards, like Bluetooth Low Energy, it’s com-
mon to specify timing accuracy’s of +- 50 ppm. Have a look in
the Bluetooth Core Specification 5.4 Volume 6, Part A, Chapter 3.1
(page 2653) for details.

https://infocenter.nordicsemi.com/topic/ps_nrf5340/chapters/oscillators/doc/oscillators.html?cp=4_0_0_3_11_0_0#concept_internal_caps
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556599


244 15 Oscillators

15.3 Controlled Oscillators

On an integrated circuit way may need multiple clocks, and we
can’t have crystal oscillators for all of them. We can use frequency
locked loops, phase locked loops and delay locked loops to make
multiples of the crystal reference frequency.

All phase locked loops contain an oscillator where we control the
frequency of oscillation.

15.3.1 Ring oscillator

The simplest oscillator is a series of inverters biting their own tail,
a ring oscillator.

The delay of each stage can be thought of as a RC time constant,
where the R is the transconductance of the inverter, and the C is
the gate capacitance of the next inverter.

𝑡𝑝𝑑 ≈ 𝑅𝐶

𝑅 ≈ 1
𝑔𝑚

≈ 1
𝜇𝑛𝐶𝑜𝑥 𝑊𝐿 (𝑉𝐷𝐷 −𝑉𝑡ℎ)

𝐶 ≈ 2
3
𝐶𝑜𝑥𝑊𝐿

N r d

tpd
tpd r R C

R Ign Egert

C loxWL

Erd ELLIFF

Ivey

f t.dz

One way to change the oscillation frequency is to change the VDD
of the ring oscillator. Based on the delay of a single inverter we
can make an estimate of the oscillator gain. How large change in
frequency do we get for a change in VDD.

𝑡𝑝𝑑 ≈
2/3𝐶𝑜𝑥𝑊𝐿

𝑊
𝐿 𝜇𝑛𝐶𝑜𝑥(𝑉𝐷𝐷 −𝑉𝑡ℎ)

𝑓 =
1

2𝑁𝑡𝑝𝑑
=

𝜇𝑛(𝑉𝐷𝐷 −𝑉𝑡ℎ)
4
3𝑁𝐿

2
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𝐾𝑣𝑐𝑜 = 2𝜋
𝜕 𝑓

𝜕𝑉𝐷𝐷
=

2𝜋𝜇𝑛
4
3𝑁𝐿

2

The 𝐾𝑣𝑐𝑜 is proportional to mobility, and inversely proportional to
the number of stages and the length of the transistor squared. In
most PLLs we don’t want the 𝐾𝑣𝑐𝑜 to be too large. Ideally we want
the ring oscillator to oscillate close to the frequency we want, i.e 512
MHz, and a small 𝐾𝑣𝑐𝑜 to account for variation over temperature
(mobility of transistors decreases with increased temperature, the
threshold voltage of transistors decrease with temperature), and
changes in VDD.

To reduce the 𝐾𝑣𝑐𝑜 of the standard ring oscillator we can increase
the gate length, and increase the number of stages.

I think it’s a good idea to always have a prime number of stages in
the ring oscillator. I have seen some ring oscillators with 21 stages
oscillate at 3 times the frequency in measurement. Since 21 = 7× 3
it’s possible to have three “waves” of traveling through the ring
oscillator at all times, forever. If you use a prime number of stages,
then sustained oscillation at other frequencies cannot happen.

As such, then number of inverter stages should be ∈
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

15.3.2 Capacitive load

The oscillation frequency of the ring oscillator can also be changed
by adding capacitance.

𝑓 =
𝜇𝑛𝐶𝑜𝑥 𝑊𝐿 (𝑉𝐷𝐷 −𝑉𝑡ℎ)

2𝑁
( 2

3𝐶𝑜𝑥𝑊𝐿 + 𝐶
)

𝐾𝑣𝑐𝑜 =
2𝜋𝜇𝑛𝐶𝑜𝑥 𝑊𝐿

2𝑁
( 2

3𝐶𝑜𝑥𝑊𝐿 + 𝐶
)

Assume that the extra capacitance is much larger than the gate
capacitance, then

𝑓 =
𝜇𝑛𝐶𝑜𝑥 𝑊𝐿 (𝑉𝐷𝐷 −𝑉𝑡ℎ)

2𝑁𝐶

𝐾𝑣𝑐𝑜 =
2𝜋𝜇𝑛𝐶𝑜𝑥 𝑊𝐿

2𝑁𝐶

And maybe we could make the 𝐾𝑣𝑐𝑜 relatively small.



246 15 Oscillators

The power consumption of an oscillator, however, will be similar
to a digital circuit of 𝑃 = 𝐶 × 𝑓 ×𝑉𝐷𝐷2, so increasing capacitance
will also increase the power consumption.

f t.FI Fifty tamarett
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15.3.3 Realistic

Assume you wanted to design a phase-locked loop, what type
of oscillator should you try first? If the noise of the clock is not
too important, so you don’t need an LC-oscillator, then I’d try the
oscillator below, although I’d expand the number of stages to fit
the frequency.

The circuit has a capacitance loaded ring oscillator fed by a current.
The 𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 will give a coarse control of the frequency, while the
𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 can give a more precise control of the frequency.

Since the 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 can only increase the frequency it’s important
that the 𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is set such that the frequency is below the target.

Most PLLs will include some form of self calibration at startup. At
startup the PLL will do a coarse calibration to find a sweet-spot for
𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 , and then use 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 to do fine tuning.

Since PLLs always have a reference frequency, and a phase and
frequency detector, it’s possible to sweep the calibration word for
𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and then check whether the output frequency is above or
below the target based on the phase and frequency detector output.
Although we don’t know exactly what the oscillator frequency is,
we can know the frequency close enough.

It’s also possible to run a counter on the output frequency of the
VCO, and count the edges between two reference clocks. That way
we can get a precise estimate of the oscillation frequency.

Another advantage with the architecture below is that we have
some immunity towards supply noise. If we decouple both the
current mirror, and the 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 towards VDD, then any change to
VDD will not affect the current into the ring oscillator.

Maybe a small side track, but inject a signal into an oscillator from
an amplifier, the oscillator will have a tendency to lock to the
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injected signal, we call this “injection locking”, and it’s common
to do in ultra high frequency oscillators (60 - 160 GHz). Assume
we allow the PLL to find the right 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 that corresponds to the
injected frequency. Assume that the injected frequency changes,
for example frequency shift keying (two frequencies that mean 1
or 0), as in Bluetooth Low Energy. The PLL will vary the 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙
of the PLL to match the frequency change of the injected signal, as
such, the 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is now the demodulated frequency change.

Still today, there are radio recievers that use a PLLs to directly de-
modulate the incoming frequency shift keyed modulated carrier.

I

t

c c e

I cog t.CI Ijt
We can calculate the 𝐾𝑣𝑐𝑜 of the oscillator as shown below. The
inverters mostly act as switches, and when the PMOS is on, then the
rise time is controlled by the PMOS current mirror, the additional
𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and the capacitor. For the calculation below we assume
that the pull-down of the capacitor by the NMOS does not affect
the frequency much.

The advantage with the above ring-oscillator is that we can control
the frequency of oscillation with 𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and have a independent
𝐾𝑣𝑐𝑜 based on the sizing of the 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 transistors.

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡

𝑓 ≈
𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 1

2𝜇𝑝𝐶𝑜𝑥
𝑊
𝐿 (𝑉𝐷𝐷 −𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 −𝑉𝑡ℎ)2

𝐶𝑉𝐷𝐷
2 𝑁

𝐾𝑣𝑐𝑜 = 2𝜋
𝜕 𝑓

𝜕𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙
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𝐾𝑣𝑐𝑜 = 2𝜋
𝜇𝑝𝐶𝑜𝑥𝑊/𝐿
𝐶𝑉𝐷𝐷

2 𝑁

15.3.4 Digitally controlled oscillator

We can digitally control the oscillator frequency as shown below
by adding capacitors.

Today there are all digital loops where the oscillator is not really
a “voltage controlled oscillator”, but rather a “digital control
oscillator”. DCOs are common in all-digital PLLs.

Another reason to use digital frequency control is to compensate for
process variation. We know that mobility affects the 𝐾𝑣𝑐𝑜 , as such,
for fast transistors the frequency can go up. We could measure
the free-running frequency in production, and compensate with a
digital control word.

Do Di De

C 2C 4C
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15.3.5 Differential

Differential circuits are potentially less sensitive to supply noise

Imagine a single ended ring oscillator. If I inject a voltage onto the
input of one of the inverters that was just about to flip, I can either
delay the flip, or speed up the flip, depending on whether the
voltage pulse increases or decreases the input voltage for a while.
Such voltage pulses will lead to jitter.

Imagine the same scenario on a differential oscillator (think diff
pair). As long as the voltage pulse is the same for both inputs, then
no change will incur. I may change the current slightly, but that
depends on the tail current source.
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Another cool thing about differential circuits is that it’s easy to
multiply by -1, just flip the wires, as a result, I can use a 2 stage
ring differential ring oscillator.

Do Di De

C 2C 4C

EEEE.EE m

15.3.6 LC oscillator

Most radio’s are based on modulating information on-to a carrier
frequency, for example 2.402 GHz for a Bluetooth Low Energy
Advertiser. One of the key properties of the carrier waves is that it
must be “clean”. We’re adding a modulated signal on top of the
carrier, so if there is noise inherent on the carrier, then we add
noise to our modulation signal, which is bad.

Most ring oscillators are too high noise for radio’s, we must use a
inductor and capacitor to create the resonator.

Inductors are huge components on a IC. Take a look at the nRF51822
below, the two round inductors are easily identifiable. Actually,
based on the die image we can guess that there are two oscillators
in the nRF51822. Maybe it’s a multiple conversion superheterodyne
reciever

https://en.wikipedia.org/wiki/Superheterodyne_receiver#Multiple_conversion
https://en.wikipedia.org/wiki/Superheterodyne_receiver#Multiple_conversion
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Below is a typical LC oscillator. The main resonance is set by the
L and C, while the tunability is provided by a varactor, a voltage
variable capacitor. Or with less fancy words, the gate capacitance
of a transistor, since the gate capacitance of a transistor depends
on the effective voltage, and is thus a “varactor”

The NMOS at the bottom provide the “negative transconductance”
to compensate for the loss in the LC tank.

I 1

L

fateCVent



15.4 Relaxation oscillators 251

𝑓 ∝ 1√
𝐿𝐶

15.4 Relaxation oscillators

A last common oscillator is the relaxation oscillator, or “RC” oscil-
lator. By now you should be proficient enough to work through
the equations below, and understand how the circuit works. If not,
ask me.

I
V o n

U
R C

V RI

V2 I CLE
dt EI

re

𝑉1 = 𝐼𝑅

𝐼 = 𝐶
𝑑𝑉

𝑑𝑡

𝑑𝑡 =
𝐶𝑉2
𝐼

=
𝐶𝐼𝑅

𝐼

𝑓 =
1
𝑑𝑡

=
1
𝑅𝐶

𝑓𝑜 =
1
2
𝑓 =

1
2𝑅𝐶

15.5 Want to learn more?

15.5.1 Crystal oscillators

The Crystal Oscillator - A Circuit for All Seasons

High-performance crystal oscillator circuits: theory and applica-
tion

Ultra-low Power 32kHz Crystal Oscillators: Fundamentals and
Design Techniques

https://ieeexplore.ieee.org/document/7954123
https://ieeexplore.ieee.org/document/318
https://ieeexplore.ieee.org/document/318
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9542926
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9542926
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A Sub-nW Single-Supply 32-kHz Sub-Harmonic Pulse Injection
Crystal Oscillator

15.5.2 CMOS oscillators

The Ring Oscillator - A Circuit for All Seasons

A Study of Phase Noise in CMOS Oscillators

An Ultra-Low-Noise Swing-Boosted Differential Relaxation Oscil-
lator in 0.18-um CMOS

Ultra Low Power Frequency Synthesizer

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9173539
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9173539
https://ieeexplore.ieee.org/document/8901474
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=494195
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9081906
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9081906
https://hdl.handle.net/11250/2778127
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Radio’s are all around us. In our phone, on our wrist, in our house,
there is Bluetooth, WiFi, Zigbee, LTE, GPS and many more.

A radio is a device that receives and transmits light encoded with
information. The frequency of the light depends on the standard.
How the information is encoded onto the light depends on the
standard.

Assume that we did not know any standards, what would we do if
we wanted to make the best radio IC for gaming mice?

There are a few key concepts we would have to know before we
decide on a radio type: Data Rate, Carrier Frequency and range,
and the power supply.

16.1 Data Rate

16.1.1 Data

A mouse reports on the relative X and Y displacement of the mouse
as a function of time. A mouse has buttons. There can be many
mice in a room, as such, they must have an address , so PCs can
tell them apart.

A mouse must be low-power. As such, the radio cannot be on all
the time. The radio must start up and be ready to receive quickly.

We don’t know how far away from the PC the mice might be, as
such, we don’t know the dB loss in the communication channel. As
a result, the radio needs to have a high dynamic range, from weak
signals to strong signals. In order for the radio to adjust the gain
of the reciever we should include a pre-amble, a known sequence,
for example 01010101, such that the radio can adjust the gain, and
also, recover the symbol timing.

All in all, the packets we send from the mouse may need to have
the following bits.

What Bits Why

X displacement 8
Y displacement 8
CRC 4 Bit errors



254 16 Low Power Radio

What Bits Why

Buttons 16 One-hot coding. Most mice have buttons
Preamble 8 Synchronization
Address 32 Unique identifier
Total 76

16.1.2 Rate

Gamers are crazy for speed, they care about milliseconds. So our
mice needs to be able to send and receive data quite often.

Assume 1 ms update rate

16.1.3 Data Rate

To compute the data rate, let’s do a back of the envelope estimate
of the data, and the rate.

Application Data Rate > 76 bits/ms = 76 kbps

Assume 30 % packet loss

Raw Data Rate > 228 kbps

Multiply by 3.14 > 716 kbps

Round to nearest nice number = 1Mbps

The above statements are a exact copy of what happens in industry
when we start design of something. We make an educated guess
and multiply by a number. More optimistic people would multiply
with 𝑒.

16.2 Carrier Frequency & Range

16.2.1 ISM (industrial, scientific and medical) bands

There are rules and regulations that prevent us from transmitting
and receiving at any frequency we want. We need to pick one of the
ISM bands, or we need to get a license from governments around
the world.

For the ISM bands, there are regions, as seen below.
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▶ Yellow: Region 1
▶ Blue: Region 2
▶ Pink: Region 3

Below is a table of the available frequencies, but how should we
pick which one to use? There are at least two criteria that should
be investigated. Antenna and Range.

Flow Fhigh Bandwidth Description

40.66 MHz 40.7 MHz 40 kHz Worldwide
433.05 MHz 434.79 MHz 1.74 MHz Region 1
902 MHz 928 MHz 26 MHz Region 2
2.4 GHz 2.5 GHz 100 MHz Worldwide
5.725 GHz 5.875 GHz 150 MHz Worldwide
24 GHz 24.25 GHz 250 MHz Worldwide
61 GHz 61.5 GHz 500 MHz Subject to local acceptance

16.2.2 Antenna

For a mouse we want to hold in our hand, there is a size limit to
the antenna. There are many types of antenna, but

assume wavelength/4 is an OK antenna size (wavelength = light-
speed/frequency)

The below table shows the ISM band and the size of a quarter
wavelength antenna. Any frequency above 2.4 GHz may be OK
from a size perspective.

ISM band 𝜆/4 Unit OK/NOK

40.68 MHz 1.8 m :x:
433.92 MHz 17 cm :x:
915 MHz 8.2 cm
2450 MHz 3.06 cm :white_check_mark:
5800 MHz 1.29 cm :white_check_mark:
24.125 GHz 3.1 mm :white_check_mark:
61.25 GHz 1.2 mm :white_check_mark:
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16.2.3 Range (Friis)

One of the worst questions a radio designer can get is “What is
the range of your radio?”, especially if the people asking are those
that don’t understand physics, or the real world. The answer to the
question is incredibly complicated, as it depends on exactly what
is between two devices talking.

If we assume, however, that there is only free space, and no real
reflections from anywhere, then we can make an estimate of the
range.

Assume no antenna gain, power density p at distance D is

𝑝 =
𝑃𝑇𝑋

4𝜋𝐷2

Assume reciever antenna has no gain, then the effective aperture
is

𝐴𝑒 =
𝜆2

4𝜋

Power received is then

𝑃𝑅𝑋 =
𝑃𝑇𝑋

𝐷2

[
𝜆
4𝜋

]2

Or in terms of distance

𝐷 = 10
𝑃𝑇𝑋−𝑃𝑅𝑋+20𝑙𝑜𝑔10

(
𝑐

4𝜋 𝑓

)
20

16.2.4 Range (Free space)

If we take the ideal equation above, and use some realistic numbers
for TX and RX power, we can estimate a range.

Assume TX = 0 dBm, assume RX sensitivity is -80 dBm

Freq 20𝑙𝑜𝑔10
(
𝑐/4𝜋 𝑓

)
[dB] D [m] OK/NOK

915 MHz -31.7 260.9 :white_check_mark:
2.45 GHz -40.2 97.4 :white_check_mark:
5.80 GHz -47.7 41.2 :white_check_mark:
24.12 GHz -60.1 9.9 :x:
61.25 GHz -68.2 3.9 :x:
160 GHz -76.52 1.5 :x:
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16.2.5 Range (Real world)

In the real world, however, the

path loss factor,
𝑛 ∈ [1.6, 6]

,

𝐷 = 10
𝑃𝑇𝑋−𝑃𝑅𝑋+20𝑙𝑜𝑔10

(
𝑐

4𝜋 𝑓

)
𝑛×10

So the real world range of a radio can vary more than an order of
magnitude. Still, 2.4 GHz seems like a good choice for a mouse.

Freq

20𝑙𝑜𝑔10
(
𝑐/4𝜋 𝑓

)
[dB] D@n=2 [m] D@n=6 [m] OK/NOK

2.45 GHz -40.2 97.4 4.6 :white_-
check_mark:

5.80 GHz -47.7 41.2 3.45 :white_-
check_mark:

24.12 GHz -60.1 9.9 2.1 :x:

16.3 Power supply

We could have a wired mouse for power, but that’s boring. Why
would we want a wired mouse to have wireless communication?
It must be powered by a battery, but what type of battery?

There exists a bible of batteries, see picture below. It’s worth a
read if you want to dive deeper into chemistry and properties of
primary (non-chargeable) and secondary (chargeable) cells.
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16.3.1 Battery

Mouse is maybe AA, 3000 mAh

Cell Chemistry Voltage (V) Capacity (Ah)

AA LiFeS2 1.0 - 1.8 3
2xAA LiFeS2 2.0 - 3.6 3
AA Zn/Alk/MnO2 0.8 - 1.6 3
2xAA Zn/Alk/MnO2 1.6 - 3.2 3

16.4 Decisions

Now we know that we need a 1 Mbps radio at 2.4 GHz that runs
of a 1.0 V - 1.8 V or 2.0 V - 3.6 V supply.

Next we need to decide what modulation scheme we want for our
light. How should we encode the bits onto the 2.4 GHz carrier
wave?

16.4.1 Modulation

Any modulation can be described by the function below.

𝐴𝑚(𝑡) × 𝑐𝑜𝑠
(
2𝜋 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟(𝑡)𝑡 + 𝜙𝑚(𝑡)

)
The amplitude of the carrier can be modulated, or the phase of the
carrier.



16.4 Decisions 259

People have been creative over the last 50 years in terms of encoding
bits onto carriers. Below is a small excerpt of some common
schemes.

Scheme Acronym Pro Con

Binary phase shift
keying

BPSK Simple Not constant
envelope

Quadrature
phase-shift keying

QPSK 2bits/symbol Not constant
envelope

Offset QPSK OQPSK 2bits/symbol Constant envelope
with half-sine pulse
shaping

Gaussian
Frequency Shift
Keying

GFSK 1 bit/symbol Constant envelope

Quadrature
amplitude
modulation

QAM > 1024 bits/symbol Really non-constant
envelope

16.4.2 BPSK

In binary phase shift keying the 1 and 0 is encoded in the phase
change. Change the phase 180 degrees and we’ve transitioned from
a 0 to a 1. Do another 180 degrees and we’re back to where we
were.

It’s common to show modulation schemes in a constellation dia-
gram with the real axis and the complex axis. For the real light we
send the phase and amplitude is usually real.

I say usually, because in quantum mechanics, and the time evolution
of a particle, the amplitude of the wave function is actually a
complex variable. As such, nature is actually complex at the most
fundamental level.

But for now, let’s keep it real in the real world.

Still, the maths is much more elegant in the complex plane.

The equation for the unit circle is 𝑦 = 𝑒 𝑖(𝜔𝑡+𝜙) where 𝜙 is the phase,
and 𝜔 is the angular frequency.

Imagine we spin a bike wheel around at a constant frequency
(constant 𝜔), on the bike wheel there is a red dot. If you keep your
eyes open all the time, then the red dot would go round and round.
But imagine that you only opened your eyes every second for a
brief moment to see where the dot was. Sometimes it could be on
the right side, sometimes on the left side. If our “eye opening rate”,
or your sample rate, matched how fast the “wheel rotator” changed
the location of the dot, then you could receive information.

Now imagine you have a strobe light matched to the “normal” car-
rier frequency. If one rotation of the wheel matched the frequency
of the strobe light, then the red dot would stay in exactly the same
place. If the wheel rotation was slightly faster, then the red dot
would move one way around the circle at every strobe. If the wheel
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rotation was slightly slower, the red dot would move the other way
around the circle.

That’s exactly how we can change the position in the constellation.
We increase the carrier frequency for a bit to rotate 180 degrees,
and we can decrease the frequency to go back 180 degrees. In
this example the dot would move around the unit circle, and the
amplitude of the carrier can stay constant.

j

A eJE AE

Ae E AejoX X
R

B PSK
X

BW vs AM
Circuits

j

X X
R

There is another way to change phase 180 degrees, and that’s simply
to swap the phase in the transmitter circuit. Imagine as below we
have a local oscillator driving pseudo differential common source
stages with switches on top. If we flip the switches we can change
the phase 180 degrees pretty fast.

A challenge is, however, that the amplitude will change. In general,
constant envelope (don’t change amplitude) modulation is less
bandwidth efficient (slower) than schemes that change both phase
and amplitude.
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Standards like Zigbee used offset quadrature phase shift keying,
with a constellation as shown below. With 4 points we can send 2
bits per symbol.
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In ZigBee, or 802.15.4 as the standard is called, the phase changes
is actually done with a constant envelope.

The nice thing about constant envelope is that the radio transmitter
can be simple. We don’t need to change the amplitude. If we
have a PLL as a local oscillator, where we can change the phase
(or frequency), then we only need a power amplifier before the
antenna.
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For phase and amplitude modulation, or complex transmitters, we
need a way to change the amplitude and phase. What a shocker.
There are two ways to do that. A polar architecture where phase
change is done in the PLL, and amplitude in the power amplifier.
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Or a Cartesian architecture where we make the in-phase compo-
nent, and quadrature-phase components in digital, then use two
digital to analog converters, and a set of complex mixers to encode
onto the carrier. The power amplifier would not need to change
the amplitude, but it does need to be linear.
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We can continue to add constellation points around the unit circle.
Below we can see 8-PSK, where we can send 3-bits per symbol.
Assuming we could shift position between the constellation points
at a fixed rate, i.e 1 mega symbols per second. With 1-bit per symbol
we’d get 1 Mbps. With 3-bits per symbol we’d get 3 Mbps.

We could add 16 points, 32 points and so on to the unit circle,
however, there is always noise in the transmitter, which will create
a cloud around each constellation point, and it’s harder and harder
to distinguish the points from each other.
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Bluetooth Classic uses 𝜋/4-DQPSK and 8DPSK.

DPSK means differential phase shift keying. Think about DPSK
like this. In the QPSK diagram above the symbols (00,01,10,11) are
determined by the constellation point 1 + 𝑗, 1 − 𝑗 and so on. What
would happen if the constellation rotated slowly? Would 1+ 𝑗 turn
into 1 − 𝑗 at some point? That might screw up our decoding if
the received constellation point was at 1 + 0𝑗, we would not know
what it was.

If we encoded the symbols as a change in phase instead (differen-
tial), then it would not matter if the constellation rotated slowly. A
change from 1 + 𝑗 to 1 − 𝑗 would still be 90 degrees.

Why would the constellation rotate you ask? Imagine the trans-
mitter transmits at 2 400 000 000 Hz. How does our reciever
generate the same frequency? We need a reference and a PLL.
The crystal-oscillator reference has a variation of +-50 ppm, so
2.4𝑒9 × 50/1𝑒6 = 120 kHz.

Assume our receiver local oscillator was at 2 400 120 000 Hz. The
transmitter sends 2 400 000 000 Hz + modulation. At the reciever we
multiply with our local oscillator, and if you remember your math,
multiplication of two sine creates a sum and a difference between
the two frequencies. As such, the low frequency part (the difference
between the frequencies) would be 120 kHz + modulation. As a
result, our constellation would rotate 120 000 times per second.
Assuming a symbol rate of 1MS/s our constellation would rotate
roughly 1/10 of the way each symbol.

In DPSK the rotation is not that important. In PSK we have to
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measure the carrier offset, and continuously de-rotate the constel-
lation.

Most radios will de-rotate somewhat based on the preamble, for
example in Bluetooth Low Energy there is an initial 10101010
sequence that we can use to estimate the offset between TX and
RX carriers, or the frequency offset.

The 𝜋/4 part of 𝜋/4 − 𝐷𝑄𝑃𝑆𝐾 just means we actively rotate
the constellation 45 degrees every symbol, as a consequence, the
amplitude never goes through the origin. In the transmitter circuit,
it’s difficult to turn the carrier off, so we try to avoid the zero point
in the constellation.

I don’t think 16PSK is that common, at 4-bits per symbol it’s
common to switch to Quadrature Amplitude Modulation (QAM),
as shown below. The goal of QAM is to maximize the distance
between each symbol. The challenge with QAM is the amplitude
modulation. The modulation scheme is sensitive to variations in
the transmitter amplitude. As such, more complex circuits than
8PSK could be necessary.

If you wanted to research “new fancy modulation schemes” I’d
think about Sphere packing.

https://en.wikipedia.org/wiki/Sphere_packing
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16.4.3 Single carrier, or multi carrier?

Assume we wanted to send 1024 Mbps over the air. We could
choose a bandwidth of a about 1 GHz with 1-bit per symbol, or
have a bandwidth of 1 MHz if we sent 1024 QAM at 1MS/s. Both
cases would look like the figure below.

In both cases we get problems with the physical communication
channel, the change in phase and amplitude affect what is received.
For a 1 GHz bandwidth at 2.4 GHz carrier we’d have problems with
the phase. At 1024 QAM we’d have problems with the amplitude.
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Back in 1966 Orthogonal frequency division multiplexing was
introduced to deal with the communication channel. In OFDM we
modulate a number of sub-carriers in the frequency space with
our wanted modulation scheme (BPSK, PSK, QAM), then do an
inverse fourier transform to get the time domain signal, mix on
to the carrier, and transmit. At the reciever we take an FFT and
do demodulation in the frequency space. See example in figure
below.

https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing#:~:text=OFDM%20is%20a%20frequency%2Ddivision,is%20divided%20into%20multiple%20streams.
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The name “multiple carriers” is a bit misleading. Although there
are multiple carriers on the left and right side of the figure, there
is normally still just one carrier in the TX/RX.
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There are more details in OFDM than the simple statement above,
but the details are just to fix challenges, such as “How do I recover
the symbol timing? How do I correct for frequency offset? How do
I ensure that my time domain signal terminates correctly for every
FFT chunk”

The genius with OFDM is that we can pick a few of the sub-carriers
to be pilot tones that carry no new information. If we knew exactly
what was sent in phase and amplitude, then we could measure the
phase and amplitude change due to the physical communication
channel, and we could correct the frequency space before we tried
to de-modulate.

It’s possible to do the same with single carrier modulation also.
Imagine we made a 128-QAM modulation on a single carrier. As
long as we constructed the time domain signal correctly (cyclic
prefix to make the FFT work nicely, some preamble to measure the
communication channel, then we could take an FFT at the reciever,
correct the phase and amplitude, do an IFFT and demodulate the
time-domain signal as normal.

In radio design there are so many choices it’s easy to get lost.

16.4.4 Use a Software Defined Radio

For our mouse, what radio scheme should we choose? One common
instances of “how to make a choice” in industry is “Delay the choice
as long as possible so your sure the choice is right”.

Maybe the best would be to use a software defined radio reciever?
Something like the picture below, an antenna, low noise amplifier,
and a analog-to-digital converter. That way we could support any
transmitter. Fantastic idea, right?
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LNA ADC

Well, lets check if it’s a good idea. We know we’ll use 2.4 GHz, so
we need about 2.5 GHz bandwidth, at least. We know we want
good range, so maybe 100 dB dynamic range. In analog to digital
converter design there are figure of merits, so we can actually
compute a rough power consumption for such an ADC.

ADC FOM
=

𝑃

2𝐵𝑊2𝑛

State of the art FOM
≈ 5 fJ/step

𝐵𝑊 = 2.5 GHz

𝐷𝑅 = 100 dB = (96 − 1.76)/6.02 ≈ 16 bit

𝑃 = 5 fF × 5 GHz × 216 = 1.6 W

At 1.6 W our mouse would only last for 2 hours. That’s too short.
It will never be a low power idea to convert the full 2.5 GHz
bandwidth to digital, we need some bandwidth selectivity in the
receive chain.

16.5 Bluetooth

Bluetooth was made to be a “simple” standard and was introduced
in 1998. The standard has continued to develop, with Low Energy
introduced in 2010. The latest planned changes can be seen at
Specifications in Development.

https://www.bluetooth.com/specifications/specs/core-specification-5-4/
https://www.bluetooth.com/specifications/specifications-in-development/
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16.5.1 Bluetooth Basic Rate/Extended Data rate

▶ 2.400 GHz to 2.4835 GHz
▶ 1 MHz channel spacing
▶ 78 Channels
▶ Up to 20 dBm
▶ Minimum -70 dBm sensitivity (1 Mbps)
▶ 1 MHz GFSK (1 Mbps), pi/4-DQPSK (2 Mbps), 8DPSK (3

Mbps)

You’ll find BR/EDR in most audio equipment, cars and legacy
devices. For new devices (also audio), there is now a transition to
Bluetooth Low Energy.

16.5.2 Bluetooth Low Energy

▶ 2.400 GHz to 2.480 GHz
▶ 2 MHz channel spacing
▶ 40 Channels (3 primary advertising channels)
▶ Up to 20 dBm
▶ Minimum -70 dBm sensitivity (1 Mbps)
▶ 1 MHz GFSK (1 Mbps, 500 kbps, 125 kbps), 2 MHz GFSK (2

Mbps)

Below are the Bluetooth LE channels. The green are the advertiser
channels, the blue are the data channels, and the yellow is the WiFi
channels.

The advertiser channels have been intentionally placed where there
is space between the WiFi channels to decrease the probability of
collisions.

Any Bluetooth LE peripheral will advertise it’s presence, it will
wake up once in a while (every few hundred milliseconds, to
seconds) and transmit a short “I’m here” packet. After transmitting
it will wait a bit in receive to see if anyone responds.

A Bluetooth LE central will camp in receive on a advertiser channel
and look for these short messages from peripherals. If one is
observed, the Central may choose to respond.
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Take any spectrum analyzer anywhere, and you’ll see traffic on
2402, 2426, and 2480 MHz.

In a connection a central and peripheral (the master/slave names
below have been removed from the spec, that was a fun update
to a 3500 page document) will have agreed on an interval to talk.
Every “connection interval” they will transmit and receive data.
The connection interval is tunable from 7.5 ms to seconds.

Bluetooth LE is the perfect standard for wireless mice.

png further information Building a Bluetooth application on nRF
Connect SDK

Bluetooth Specifications in Development

16.6 Algorithm to design state-of-the-art LE
radio

▶ Find most recent digest from International Solid State Circuit
Conference (ISSCC)

▶ Find Bluetooth low energy papers
▶ Pick the best blocks from each paper

A typical Bluetooth radio may look something like the picture
below. There would be a single antenna for both RX and Tx. There

https://devzone.nordicsemi.com/guides/nrf-connect-sdk-guides/b/software/posts/building-a-ble-application-on-ncs-comparing-and-contrasting-to-softdevice-based-ble-applications
https://devzone.nordicsemi.com/guides/nrf-connect-sdk-guides/b/software/posts/building-a-ble-application-on-ncs-comparing-and-contrasting-to-softdevice-based-ble-applications
https://www.bluetooth.com/specifications/specifications-in-development/
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will be some way to combine the transmit and receive path in a
match, or balun.

The receive chain would have a LNA, mixer, anti-alias filter and
analog-to-digital converters. It’s likely that the receive path would
be complex (in-phase and quadrature phase) after mixer.

There would be a local oscillator (all-digital phase-locked-loop)
to provide the frequency to the mixers and transmit path, which
could be either polar or Cartesian.

AAF ADC IRX

LNA
MIX

AAF ADC QRX

MATCH

I ADPLL FREE

ITX
TX QTX

In the typical radio we’ll need the blocks below. I’ve added a column
for how many people I would want if I was to lead development
of a new radio.

Blocks Key parameter Architecture
Complexity (nr
people)

Antenna Gain, impedance lambda/4 <1
RF match loss, input impedance PI-match <1
Low noise amp NF, current, linearity LNTA 1
Mixer NF, current, linearity Passive 1
Anti-alias filter NF, current, linearity Active-RC 1
ADC Sample rate, dynamic range,

linearity
NS-SAR 1 - 2

PLL Phase noise, current AD-PLL 2-3
Baseband Eb/N0, gate count, current. SystemVerilog > 10

16.6.1 LNTA

The first thing that must happen in the radio is to amplify the noise
as early as possible. Any circuit has inherent noise, be it thermal-,
flicker-, burst-, or shot-noise. The earlier we can amplify the input
noise, the less contribution there will be from the radio circuits.

The challenges in the low noise amplifier is to provide the right
gain. If there is a strong input signal, then reduce the gain. If there
is a low input signal, then increase the gain.

One way to implement variable gain is to reconfigure the LNA. For
an example, see
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30.5 A 0.5V BLE Transceiver with a 1.9mW RX Achieving -96.4dBm
Sensitivity and 4.1dB Adjacent Channel Rejection at 1MHz Offset
in 22nm FDSOI

A typical Low Noise Transconductance Amplifier is seen below.
It’s a combination of both a common source, and a common gate
amplifier. The current in the NMOS and PMOS is controlled by
Vgp and Vgn. Keep in mind that at RF frequencies the signals are
weak, so it’s easy to provide the DC for the LNA with a resistor to
a diode connected PMOS or NMOS.

In a LNA the input impedance must be matched to what is required
by the antenna/match in order to have maximum power transfer,
that’s the role of the inductors/capacitors.
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16.6.2 MIXER

In the mixer we multiply the input signal with our local oscillator.
Most often a complex mixer is used. There is nothing complex
about complex signal processing, just read

Complex signal processing is not complex

In order to reduce power, it’s most common with a passive mixer
as shown below. A passive mixer is just MOS that we turn on and
off with 25% duty-cycle. See example in

A 370uW 5.5dB-NF BLE/BT5.0/IEEE 802.15.4-Compliant Receiver
with >63dB Adjacent Channel Rejection at >2 Channels Offset in
22nm FDSOI

https://ieeexplore.ieee.org/document/9063021
https://ieeexplore.ieee.org/document/9063021
https://ieeexplore.ieee.org/document/9063021
https://ieeexplore.ieee.org/document/1333231
https://ieeexplore.ieee.org/document/9062973/
https://ieeexplore.ieee.org/document/9062973/
https://ieeexplore.ieee.org/document/9062973/
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To generate the quadrature and in-phase clock signals, which must
be 90 degrees phase offset, it’s common to generate twice the
frequency in the local oscillator (4.8 GHz), and then divide down
to 4 2.4 GHz clock signals.

If the LO is the same as the carrier, then the modulation signal will
be at DC, often called direct conversion.

The challenge at DC is that there is flicker noise, offset, and burst
noise. The modulation type, however, can impact whether low
frequency noise is an issue. In OFDM we can choose to skip
the sub-carriers around 0 Hz, and direct conversion works well.
An advantage with direct conversion is that there is no “image
frequency” and we can use the full complex bandwidth.

For FSK and direct conversion the low frequency noise can cause
issues, as such, it’s common to offset the LO from the transmitted
signal, for example 4 MHz offset. The low frequency noise problem
disappears, however, we now have a challenge with the image
frequency (-4 MHz) that must be rejected, and we need an increased
bandwidth.

There is no “one correct choice”, there are trade-offs that both ways.
KISS (Keep It Simple Stupid) is one of my guiding principles when
working on radio architecture.

These days most de-modulation happens in digital, and we need
to convert the analog signal to digital, but first AAF.
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16.6.3 AAF

The anti alias filter rejects frequencies that can fold into the band
of interest due to sampling. A simple active-RC filters is often good
enough.

We often need gain in the AAF, as the LNA does not have sufficient
gain for the weakest signals. -100 dBm in 50 ohm is 6.2 nV RMS,
while input range of an ADC may be 1 V. Assume we place
the lowest input signal at 0.1 V, so we need a voltage gain of
20 log(0.1/6.2𝑒 − 9) = 76dB in the reciever.
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16.6.4 ADC

Aaah, ADCs, an IP close to my heart. I did my Ph.d and Post-Doc
on ADCs, and the Ph.D students I’ve co-supervised have worked
on ADCs.

At NTNU there have been multiple students through the years that
have made world-class ADCs, and there’s still students at NTNU
working on state-of-the-art ADCs.

These days, a good option is a SAR, or a Noise-Shaped SAR.

If I were to pick, I’d make something like A 68 dB SNDR Compiled
Noise-Shaping SAR ADC With On-Chip CDAC Calibration as
shown in the figure below.

Or if I did not need high resolution, I’d choose my trusty A
Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC in 28-nm
FDSOI for Bluetooth Low Energy Receivers.

https://ieeexplore.ieee.org/document/9056925
https://ieeexplore.ieee.org/document/9056925
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
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The main selling point of that ADC was that it’s compiled from a
JSON file, a SPICE file and a technology file into a DRC/LVS clean
layout.

I also included a few circuit improvements. The bottom plate of
the SAR capacitor is in the clock loop for the comparator (DN0,
DP1 below), as such, the delay of the comparator automatically
adjusts with capacitance corner, so it’s more robust over corners
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The compiled nature also made it possible to quickly change
the transistor technology. Below is a picture with 180 nm FDSOI
transistors on the left, and 28 nm FDSOI transistors on the right.

I detest doing anything twice, so I love the fact that I never have to
re-draw that ADC again. I just fix the technology file (and maybe
some tweaks to the other files), and I have a completed ADC.
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https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.json
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/ip.spi
https://github.com/wulffern/sun_sar9b_sky130nm/blob/main/cic/sky130.tech
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16.6.5 AD-PLL

The phase locked loop is the heart of the radio, and it’s probably
the most difficult part to make. Depends a bit on technology, but
these days, All Digital PLLs are cool. Start by reading Razavi’s PLL
book.

You can spend your life on PLLs.
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16.6.6 Baseband

Once the signal has been converted to digital, then the de-
modulation, and signal fixing start. That’s for another course, but
there are interesting challenges.

Baseband block Why

Mixer? If we’re using low intermediate frequency
to avoid DC offset problems and flicker
noise

Channel filters? If the AAF is insufficient for adjacent
channel

Power detection To be able to control the gain of the radio
Phase extraction Assuming we’re using FSK
Timing recovery Figure out when to slice the symbol
Bit detection single slice, multi-bit slice, correlators etc
Address detection Is the packet for us?
Header detection What does the packet contain
CRC Does the packet have bit errors
Payload de-crypt Most links are encrypted by AES
Memory access Payload need to be stored until CPU can do

something
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16.7 What do we really want, in the end?

The reciever part can be summed up in one equation for the
sensitivity. The noise in a certain bandwidth. The Noise Figure
of the analog reciever. The Energy per bit over Noise of the de-
modulator.

𝑃𝑅𝑋𝑠𝑒𝑛𝑠 = −174𝑑𝐵𝑚 + 10 × 𝑙𝑜𝑔10(𝐷𝑅) + 𝑁𝐹 + 𝐸𝑏/𝑁0

for example, for nRF5340

𝑃𝑅𝑋𝑠𝑒𝑛𝑠 + 174 − 60 = 𝑁𝐹 + 𝐸𝑏/𝑁0 = 17𝑑𝐵

In the block diagram of the device the radio might be a small box,
and the person using the radio might not realize how complex the
radio actually is.

I hope you understand now that it’s actually complicated.
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16.8 Want to learn more?

A 0.5V BLE Transceiver with a 1.9mW RX Achieving -96.4dBm
Sensitivity and 4.1dB Adjacent Channel Rejection at 1MHz Offset in
22nm FDSOI, M. Tamura, Sony Semiconductor Solutions, Atsugi,
Japan, 30.5, ISSCC 2020

A 370uW 5.5dB-NF BLE/BT5.0/IEEE 802.15.4-Compliant Receiver
with >63dB Adjacent Channel Rejection at >2 Channels Offset in
22nm FDSOI, B. J. Thĳssen, University of Twente, Enschede, The
Netherlands

A 68 dB SNDR Compiled Noise-Shaping SAR ADC With On-Chip
CDAC Calibration, H. Garvik, C. Wulff, T. Ytterdal

A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC in 28-nm
FDSOI for Bluetooth Low Energy Recievers, C. Wulff, T. Ytterdal

Cole Nielsen, https://github.com/nielscol/thesis_presentatio
ns

“Python Framework for Design and Simulation of Integer-N AD-
PLLs”, Cole Nielsen, https://github.com/nielscol/tfe4580-repor
t/blob/master/report.pdf

Design of CMOS Phase-Locked Loops, Behzad Razavi, University
of California, Los Angeles

https://ieeexplore.ieee.org/document/9063021
https://ieeexplore.ieee.org/document/9063021
https://ieeexplore.ieee.org/document/9063021
https://ieeexplore.ieee.org/document/9062973/
https://ieeexplore.ieee.org/document/9062973/
https://ieeexplore.ieee.org/document/9062973/
https://ieeexplore.ieee.org/document/9056925
https://ieeexplore.ieee.org/document/9056925
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
https://github.com/nielscol/thesis_presentations
https://github.com/nielscol/thesis_presentations
https://github.com/nielscol/tfe4580-report/blob/master/report.pdf
https://github.com/nielscol/tfe4580-report/blob/master/report.pdf
https://doi.org/10.1017/9781108626200
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Status: 0.3

Integrated circuits are wasteful of energy. Digital circuits charge
transistor gates to change states, and when discharged, the charges
are dumped to ground. In analog circuits the transconductance
requires a DC current, a continuous flow of charges from positive
supply to ground.

Integrated circuits are incredibly useful though. Life without would
be different.

A continuous effort from engineers like me have reduced the
power consumption of both digital and analog circuits by order of
magnitudes since the invention of the transistor 75 years ago.

One of the first commercial ADCs, the DATRAC on page 24, was
a 11-bit 50 kSps that consumed 500 W. That’s Walden figure of
merit of 4 𝜇J/conv.step. Today’s state-of-the-art ADCs in the same
sampling range have a Walden figure of merit of 0.6 fJ/conv.step.

4 𝜇 / 0.6 f = 8.1e9, a difference in power consumption of almost 10
billion times !!!

Improvements to power consumption have become harder and
harder, but I believe there is still far to go before we cannot reduce
power consumption any more.

Towards a Green and Self-Powered Internet of Things Using Piezo-
electric Energy Harvesting [1] has a nice overview of power con-
sumption of technologies, seen in the next figures below.

In the context of energy harvesting, there is energy in electromag-
netic fields, temperature, and mechanical stress, and there are ways
to translate between them the energy forms.

https://en.wikipedia.org/wiki/Thermoelectric_effect
https://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator
https://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator
https://en.wikipedia.org/wiki/Thermoelectric_generator
https://en.wikipedia.org/wiki/Thermoelectric_generator
https://en.wikipedia.org/wiki/Photovoltaic_effect
https://en.wikipedia.org/wiki/Piezoelectricity
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter1.pdf
https://ieeexplore.ieee.org/document/8310273
https://ieeexplore.ieee.org/document/8762143
https://ieeexplore.ieee.org/document/8762143
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Below we can see a figure of the potential energy that can be
harvested per volume, and the type power consumption of tech-
nologies [1].

As devices approach average power consumption of𝜇𝑊 it becomes
possible to harvest the energy from the environment, and do away
with the battery.

For wireless standards, there are some that can be run on en-
ergy harvesting. Below is an overview from [1]. Many of us will
have a NFC card in our pocket for payment, or entry to build-
ings. NFC card has a integrated circuit that is powered from the
electromagnetic field from the NFC reader.

Other standards, like Bluetooth, WiFi, LTE are harder to run battery
less, because the energy requirement above 1 mW.
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Technologies like Bluetooth LE, however, can approach < 10 𝜇W
for some applications, although the burst power may still be 10
mW to 100 mW. As such, although the average power is low, the
energy harvesting cannot support peak loads and a charge storage
device is required (battery, super-capacitor, large capacitor).

I’d like to give you an introduction to the possible ways of harvest-
ing energy. I know of five methods: - thermoelectric - photovoltaic
- piezoelectric - electromagnetic - triboelectric

17.1 Thermoelectric

Apply heat to one end of a metal wire, what happens to the free
electrons? As we heat the material we must increase the energy
of the free electrons at the hot end of the wire. The atoms wiggle
more, and when the free electrons scatter off the atomic structure
there should be an exchange of energy. Think of the electrons at
the hot side as high energy electrons, while on the cold side there
are low energy electrons, I think.

There will be diffusion current of electrons in both directions in
the material, however, if the mobility of electrons in the material is
dependent on the energy, then we would get a difference in current
of low energy electrons and high energy electrons. A difference in
current would lead to a charge difference at the hot end and cold
end, which would give a difference in voltage.

Take a copper wire, bend it in half, heat the end with the loop, and
measure the voltage at the cold end. Would we measure a voltage
difference?

NO, there would not be a voltage difference between the two ends
of the wire. The voltage on the loop side would be different, but on
the cold side, where we have the ends, there would be no voltage
difference.

Gauss law tell us that inside a conductor there cannot be a static
field without a current. As such, if there was a voltage difference

https://en.wikipedia.org/wiki/Thermoelectric_effect
https://en.wikipedia.org/wiki/Thermoelectric_effect
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between the cold ends, it would quickly dissipated, and no DC
current would flow.

The voltage difference in the material between the hot and cold
end will create currents, but we can’t use them if we only have one
type of material.

Imagine we have Iron and copper wires, as shown below, and we
heat one end. In that case, we can draw current between the cold
ends.

The voltage difference at the hot and cold end is described by the

Seebeck coefficient

Imagine two parallel wires with different Seebeck coefficients, one
of copper (6.5 𝜇𝑉/𝐾) and one of iron (19 𝜇/𝐾). We connect them
at the hot end. The voltage difference between hot and cold would
be higher in the iron, than in the copper. At the cold end, we would
now measure a difference in voltage between the wires!

In silicon, the Seebeck coefficient can be modified through doping.
A model of Seebeck coefficient is shown below. The value of the
Seebeck coefficient depends on the location of the Fermi level in
relation to the Conduction band or the V valence band.

https://en.wikipedia.org/wiki/Seebeck_coefficient
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In the picture below we have a silicon (the cyan and yellow col-
ors).

Assume we dope with acceptors (yellow, p-type), that shifts the
Fermi level closer to the Valence band (𝐸𝑉 ), and the dominant
current transport will be by holes, maybe we get 1 mV/K from the
picture above.

For the material doped with donors (cyan, n-type) the Fermi level
is shifted towards the Conduction band (𝐸𝐶), and the dominant
charge transport is by electrons, maybe we get -1 mV/K from the
picture above.

https://en.wikipedia.org/wiki/Thermoelectric_effect
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Assume we have a temperature difference of 50 degrees, then
maybe we could get a voltage difference at the cold end of 100 mV.
That’s a low voltage, but is possible to use.

The process can be run in reverse. In the picture below we force a
current through the material, we heat one end, and cool the other.
Maybe you’ve heard of Peltier elements.

https://en.wikipedia.org/wiki/Thermoelectric_cooling
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17.1.1 Radioisotope Thermoelectric generator

Maybe you’ve heard of a nuclear battery. Sounds fancy, right? Must
be complicated, right?

Not really, take some radioactive material, which generates heat,
stick a thermoelectric generator to the hot side, make sure you can
cool the cold side, and we have a nuclear battery.

Nuclear batteries are “simple”, and ultra reliable. There’s not
really a chemical reaction. The nucleus of the radioactive material
degrades, but not fast. In the thermoelectric generator, there are
no moving parts.

In a normal battery there is a chemical reaction that happens when
we pull a current. Atoms move around. Eventually the chemical
battery will change and degrade.

Nuclear batteries were used in Voyager, and they still work to this
day. The nuclear battery is the round thing underneath Voyager
in the picture below. The radioisotopes provide the heat, space
provides the cold, and voila, 470 W to run the electronics.

17.1.2 Thermoelectric generators

Assume a we wanted to drive a watch from a thermoelectric
generator (TEG). The skin temperature is maybe 33 degrees Celsius,
while the ambient temperature is maybe 23 degrees Celsius on
average.

From the model of a thermoelectric generator below we’d get a
voltage of 10 mV to 500 mV, too low for most integrated circuits.

In order to drive an integrated circuit we’d need to boost the voltage
to maybe 1.8 V.

https://en.wikipedia.org/wiki/Thermoelectric_effect
https://en.wikipedia.org/wiki/Radioisotope_thermoelectric_generator
https://en.wikipedia.org/wiki/Voyager_1
https://en.wikipedia.org/wiki/Thermoelectric_generator
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The main challenge with thermoelectric generators is to provide a
cold-boot function where the energy harvester starts up at a low
voltage.

In silicon, it is tricky to make anything work below some thermal
voltages (kT/q). We at least need about 3 – 4 thermal voltages to
make anything function.

The key enabler for an efficient, low temperature differential, energy
harvester is an oscillator that works at low voltage (i.e 75 mV). If
we have a clock, then we can boost with capacitors

In A 3.5-mV Input Single-Inductor Self-Starting Boost Converter
With Loss-Aware MPPT for Efficient Autonomous Body-Heat En-
ergy Harvesting they use a combination of both switched capacitor
and switched inductor boost.
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17.2 Photovoltaic

In silicon, photons can knock out electron/hole pairs. If we have
a PN junction, then it’s possible to separate the electron/holes
before they recombine as shown in figure below.

An electron/hole pair knocked out in the depletion region (1) will
separate due to the built-in field. The hole will go to P and the
electron to N. This increases the voltage VD across the diode.

A similar effect will occur if the electron/hole pair is knocked out
in the P region (2). Although the P region has an abundance of
holes, the electron will not recombine immediately. If the electron
diffuses close to the depletion region, then it will be swept across
to the N side, and further increase VD.

https://ieeexplore.ieee.org/document/9302641
https://ieeexplore.ieee.org/document/9302641
https://ieeexplore.ieee.org/document/9302641
https://en.wikipedia.org/wiki/Photovoltaic_effect
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On the N-side the same minority carrier effect would further
increase the voltage (3).
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A circuit model of a Photodiode can be seen in figure below, where
it is assumed that a single photodiode is used. It is possible to stack
photodiodes to get a higher output voltage.
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As the load current is increased, the voltage VD will drop. As the
photo current is increased, the voltage VD will increase. As such,
there is an optimum current load where there is a balance between
the photocurrent, the voltage VD and the load current.

𝐼𝐷 = 𝐼𝑆

(
𝑒
𝑉𝐷
𝑉𝑇 − 1

)

https://en.wikipedia.org/wiki/Photovoltaic_effect
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𝐼𝐷 = 𝐼𝑃ℎ𝑜𝑡𝑜 − 𝐼𝐿𝑜𝑎𝑑

𝑉𝐷 = 𝑉𝑇 𝑙𝑛

(
𝐼𝑃ℎ𝑜𝑡𝑜 − 𝐼𝐿𝑜𝑎𝑑

𝐼𝑆
+ 1

)

𝑃𝐿𝑜𝑎𝑑 = 𝑉𝐷 𝐼𝐿𝑜𝑎𝑑

Below is a model of the power in the load as a function of diode
voltage

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt

m = 1e-3
i_load = np.linspace(1e-5,1e-3,200)

i_s = 1e-12 # saturation current
i_ph = 1e-3 # Photocurrent

V_T = 1.38e-23*300/1.6e-19 #Thermal voltage

V_D = V_T*np.log((i_ph - i_load)/(i_s) + 1)

P_load = V_D*i_load

plt.subplot(2,1,1)
plt.plot(i_load/m,V_D)
plt.ylabel("Diode voltage [mA]")
plt.grid()
plt.subplot(2,1,2)
plt.plot(i_load/m,P_load/m)
plt.xlabel("Current load [mA]")
plt.ylabel("Power Load [mW]")
plt.grid()
plt.savefig("pv.pdf")
plt.show()

From the plot below we can see that to optimize the power we
could extract from the photovoltaic cell we’d want to have a current
of 0.9 mA in the model above.
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Most photovoltaic energy harvesting circuits will include a max-
imum power point tracker as the optimum changes with light
conditions.

In A Reconfigurable Capacitive Power Converter With Capacitance
Redistribution for Indoor Light-Powered Batteryless Internet-of-
Things Devices they include a maximum power point tracker and
a reconfigurable charge pump to optimize efficiency.

17.3 Piezoelectric

I’m not sure I understand the piezoelectric effect, but I think it goes
something like this.

Consider a crystal made of a combination of elements, for example
Gallium Nitride. In GaN it’s possible to get a polarization of the unit
cell, with a more negative charge on one side, and a positive charge
on the other side. The polarization comes from an asymmetry in
the electron and nucleus distribution within the material.

In a polycrystaline substance the polarization domains will usually
be random, and no electric field will observable. The polarization
domains can be aligned by heating the material and applying a
electric field. Now all the small electric fields point in the same
direction.

From Gausses law we know that the electric field through a surface
is determined by the volume integral of the charges inside.

∮
𝜕Ω

E · 𝑑S =
1
𝜖0

∭
𝑉

𝜌 · 𝑑𝑉

https://en.wikipedia.org/wiki/Piezoelectricity
https://ieeexplore.ieee.org/abstract/document/9423810
https://ieeexplore.ieee.org/abstract/document/9423810
https://ieeexplore.ieee.org/abstract/document/9423810
https://en.wikipedia.org/wiki/Piezoelectricity
http://lampx.tugraz.at/~hadley/ss1/crystalstructure/structures/semiconductors/GaN.html


290 17 Energy Sources

Although there is a net zero charge inside the material, there is an
uneven distribution of charges, as such, some of the field lines will
cross through the surface.

Assume we have a polycrystaline GaN material with polarized
domains. If we measure the voltage across the material we will
read 0 V. Even though the domains are polarized, and we should
observe an external electric field, the free charges in the material
will redistribute if there is a field inside, such that there is no
current flowing, and thus no external field.

If we apply stress, however, all the domains inside the material
will shift. Now the free charges do not exactly cancel the electric
field in the material, the free charges are in the wrong place. If we
have a material with low conductivity, then it will take time for the
free charges to redistribute. As such, for a while, we can measure
an voltage across the material.

Assuming the above explanation is true, then there should not be
piezoelectric materials with high conductivity, and indeed, most
piezoelectric materials have resistance of 1012 to 1014 Ohm.

Vibrations on a piezoelectric material will result in a AC voltage
across the surface, which we can harvest.

A model of a piezoelectric transducer can be seen below.

The voltage on the transducer can be on the order of a few volts,
but the current is usually low (nA – µA). The key challenge is to
rectify the AC signal into a DC signal. It is common to use tricks to
reduce the energy waste due to the rectifier.

An example of piezoelectric energy harvester can be found in A
Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric
Energy Harvesting

https://www.f3lix-tutorial.com/piezo-materials
https://ieeexplore.ieee.org/document/8642406
https://ieeexplore.ieee.org/document/8642406
https://ieeexplore.ieee.org/document/8642406
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17.4 Electromagnetic

17.4.1 “Near field” harvesting

Near Field Communication (NFC) operates at close physical dis-
tances

Reactive near field or inductive near field

Inductive <
𝜆
2𝜋

Within the inductive near field the antenna’s can “feel” each other.
The NFC reader inside the card reader can “feel” the antenna of
the NFC tag. When the tag get’s close it will load down the NFC
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reader by presenting a load impedance. As the circuit inside the
tag is powered, it can change the impedance of it’s antenna, which
is sensed by the reader, and thus the reader can get data from the
tag. The tag could lock in on the 13.56 MHz frequency and decode
both amplitude and phase modulation from the reader.

Since the NFC or Qi system operates at close distances, then the
coupling factor between antenna’s, or really, inductors, can be
decent, and it’s possible to achieve efficiencies of maybe 70 %.

At Bluetooth frequencies, as can be seen below, it does not really
make sense to couple inductors, as they need to be within 2 cm to be
in the inductive near field. The inductive near field is a significant
problem for the coupling between inductors on chip, but I don’t
think I would use it to transfer power.

Standard Frequency [MHz] Inductive [m]

AirFuel Resonant 6.78 7.03
NFC 13.56 3.52
Qi 0.205 232
Bluetooth 2400 0.02

17.4.2 Ambient RF Harvesting

Extremely inefficient idea, but may find special use-cases at short-
distance.

Will get better with beam-forming and directive antennas

There are companies that think RF harvesting is a good idea.

AirFuel RF

I think that ambient RF harvesting should tingle your science spidy
senses.

Let’s consider the power transmitted in wireless standards. Your
cellphone may transmit 30 dBm, your WiFi router maybe 20 dBm,
and your Bluetooth LE device 10 dBm.

In case those numbers don’t mean anything to you, below is a
conversion to watts.

dBm W

30 1
0 1 m

-30 1 u
-60 1 n
-90 1 p

Now ask your self the question “What’s the power at a certain
distance?”. It’s easier to flip the question, and use Friis to calculate
the distance.

https://airfuel.org/airfuel-rf/
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Assume
𝑃𝑇𝑋

= 1 W (30 dBm) and
𝑃𝑅𝑋

= 10 uW (-20 dBm)

then

𝐷 = 10
𝑃𝑇𝑋−𝑃𝑅𝑋+20𝑙𝑜𝑔10

(
𝑐

4𝜋 𝑓

)
20

In the table below we can see the distance is not that far!

Freq 20𝑙𝑜𝑔10
(
𝑐/4𝜋 𝑓

)
[dB] D [m]

915M -31.7 8.2
2.45G -40.2 3.1
5.80G -47.7 1.3

I believe ambient RF is a stupid idea.

Assuming an antenna that transmits equally in all direction, then
the loss on the first meter is 40 dB at 2.4 GHz. If I transmitted
1 W, there would only be 100 µW available at 1 meter. That’s an
efficiency of 0.01 %.

Just fundamentally stupid. Stupid, I tell you!!!

Stupidity in engineering really annoys me, especially when people
don’t understand how stupid ideas are.

17.5 Triboelectric generator

Although static electricity is an old phenomenon, it is only re-
cently that triboelectric nanogenerators have been used to harvest
energy.

An overview can be seen in Current progress on power manage-
ment systems for triboelectric nanogenerators.

A model of a triboelectric generator can be seen in below. Although
the current is low (nA) the voltage can be high, tens to hundreds
of volts.

The key circuit challenge is the rectifier, and the high voltage output
of the triboelectric generator.

Take a look in A Fully Energy-Autonomous Temperature-to-Time
Converter Powered by a Triboelectric Energy Harvester for Biomed-
ical Applications for more details.

https://ieeexplore.ieee.org/document/9729411
https://ieeexplore.ieee.org/document/9729411
https://ieeexplore.ieee.org/document/9441315
https://ieeexplore.ieee.org/document/9441315
https://ieeexplore.ieee.org/document/9441315
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Below is a custom triboelectric material that converts friction into
a sparse electric field.

The key idea of the triboelectric circuit below is to rectify the sparse
voltage pulses and store the charge on a capacitor. Once the voltage
is high enough, then a temperature sensor is started.
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Below is some more details on the operation of the harvesting
circuit, and the temperature sensor. Notice how the temperature
sensor part of the circuit (PTAT bandgap, capacitor and compara-
tor) produce a pulse width modulated signal that depends on
temperature.

Also notice the “VDD_ext” in the figure. That means the system is
not fully harvested. The paper is a prime example on how we in
academia can ignore key portions of a system. They’ve focused on
the harvesting part, and making the temperature dependent pulse
width modulated signal. Maybe they’ve completely ignored how
the data is transmitted from the system to where it would be used,
and that’s OK.

It’s academia’s job to prove that something could be possible. It’s
industry’s job to make some that could be possible actually work.
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17.6 Comparison

Imagine you’re a engineer in a company that makes integrated
circuits. Your CEO comes to you and says “You need to make
a power management IC that harvest energy and works with
everything”.

Hopefully, your response would now be “That’s a stupid idea, any
energy harvester circuit must be made specifically for the energy
source”.

Thermoelectric and photovoltaic provide low DC voltage. Piezo-
electric and Triboelectric provide an AC voltage. Ambient RF is
stupid.

For a “energy harvesting circuit” you must also know the applica-
tion (wrist watch, or wall switch) to know what energy source is
available.

Below is a table that show’s a comparison in the power that can be
extracted.

The power levels below are too low for the peak power consumption
of integrated circuits, so most applications must include a charge
storage device, either a battery, or a capacitor.
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17.7 Want to learn more?

[1] Towards a Green and Self-Powered Internet of Things Using
Piezoelectric Energy Harvesting

A 3.5-mV Input Single-Inductor Self-Starting Boost Converter With
Loss-Aware MPPT for Efficient Autonomous Body-Heat Energy
Harvesting

A Reconfigurable Capacitive Power Converter With Capacitance
Redistribution for Indoor Light-Powered Batteryless Internet- of-
Things Devices

A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric
Energy Harvesting

Current progress on power management systems for triboelectric
nanogenerators

A Fully Energy-Autonomous Temperature-to-Time Converter Pow-
ered by a Triboelectric Energy Harvester for Biomedical Applica-
tions

https://ieeexplore.ieee.org/document/8762143
https://ieeexplore.ieee.org/document/8762143
https://ieeexplore.ieee.org/document/9302641
https://ieeexplore.ieee.org/document/9302641
https://ieeexplore.ieee.org/document/9302641
https://ieeexplore.ieee.org/abstract/document/9423810
https://ieeexplore.ieee.org/abstract/document/9423810
https://ieeexplore.ieee.org/abstract/document/9423810
https://ieeexplore.ieee.org/document/8642406
https://ieeexplore.ieee.org/document/8642406
https://ieeexplore.ieee.org/document/9729411
https://ieeexplore.ieee.org/document/9729411
https://ieeexplore.ieee.org/document/9441315
https://ieeexplore.ieee.org/document/9441315
https://ieeexplore.ieee.org/document/9441315
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Design of integrated circuits is split in two, analog design, and
digital design.

Digital design is highly automated. The digital functions are coded
in SystemVerilog (yes, I know there are others, but don’t use those),
translated into a gate level netlist, and automatically generated
layout. Not everything is push-button automation, but most is.

Analog design, however, is manual work. We draw schematic,
simulation with a mathematical model of the real world, draw the
analog layout needed for the foundries to make the circuit, verify
that we drew the schematic and layout the same, extract parasitics,
simulate again, and in the end get a GDSII file.

When we mix analog and digital designs, we have two choices,
analog on top, or digital on top.

In analog on top we take the digital IP, and do the top level layout
by hand in analog tools.

In digital on top we include the analog IPs in the SystemVerilog,
and allow the digital tools to do the layout. The digital layout is
still orchestrated by people.

Which strategy is chosen depends on the complexity of the inte-
grated circuit. For medium to low level of complexity, analog on
top is fine. For high complexity ICs, then digital on top is the way
to go.

Below is a description of the open source digital-on-top flow. The
analog is included into GDSII at the OpenRoad stage of the flow.

The GDSII is not sufficient to integrate the analog IP. The digital
needs to know how the analog works, what capacitance is on every
digital input, the propagation delay for digital input to digital
outputs , the relation between digital outputs and clock inputs,
and the possible load on digital outputs.

The details on timing and capacitance is covered in a Liberty file.
The behavior, or function of the analog circuit must be described
in a SystemVerilog file.

But how do we describe an analog function in SystemVerilog?
SystemVerilog is simulated in an digital simulator.
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Idea

Digital Design
SystemVerilog

Analog Design
Xschem

Digital Simulation
iverilog/vpp/verilator/gtkwave

RTL to GDSII
OpenLane

Tapeout

Analog Model
SystemVerilog

Analog Simulation
ngspice

Analog Layout
Magic

LVS
netgen

Parasitics
MagicGDSII

18.1 Digital simulation

Conceptually, the digital simulator is easy.

▶ The order of execution of events at the same time-step do
not matter

▶ The system is causal. Changes in the future do not affect
signals in the past or the now

In a digital simulator there will be an event queue, see below. From
start, set the current time step equals to the next time step. Check
if there are any events scheduled for the time step. Assume that
execution of events will add new time steps. Check if there is
another time step, and repeat.

Since the digital simulator only acts when something is supposed
to be done, they are inherently fast, and can handle complex
systems.
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It’s a fun exercise to make a digital simulator. On my Ph.D I wanted
to model ADCs, and first I had a look at SystemC, however, I
disliked C++, so I made SystemDotNet

In SystemDotNet I implemented the event queue as a hash table,
so it ran a bit faster. See below.

18.1.0.1 Digital Simulators

There are both commercial an open source tools for digital simula-
tion. If you’ve never used a digital simulator, then I’d recommend
you start with iverilog. I’ve made some examples at dicex.

Commercial

▶ Cadence Excelium

https://sourceforge.net/projects/systemdotnet/
https://github.com/wulffern/dicex/tree/main/project/verilog
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
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▶ Siemens Questa
▶ Synopsys VCS

Open Source - iverilog/vpp - Verilator - SystemDotNet

18.1.0.2 Counter

Below is an example of a counter in SystemVerilog. The code can
be found at counter_sv.

In the always_comb section we code what will become the combi-
natorial logic. In the always_ff section we code what will become
our registers.

module counter(
output logic [WIDTH-1:0] out,
input logic clk,
input logic reset
);

parameter WIDTH = 8;

logic [WIDTH-1:0] count;
always_comb begin

count = out + 1;
end

always_ff @(posedge clk or posedge reset) begin
if (reset)
out <= 0;

else
out <= count;

end

endmodule // counter

In the context of a digital simulator, we can think through how the
event queue will look.

When the clk or reset changes from zero to 1, then schedule an
event where if the reset is 1, then out will be zero in the next time
step. If reset is 0, then out will be count in the next time step.

In a time-step where out changes, then schedule an event

to setcounttoout‘ plus one. As such, each positive edge of the
clock at least 2 events must be scheduled in the register transfer
level (RTL) simulation.

For example:

Assume `clk, reset, out = 0`

Assume event with `clk = 1`

0: Set `out = count` in next event (1)

1: Set `count = out + 1` using
logic (may consume multiple events)

X: no further events

https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://www.synopsys.com/verification/simulation/vcs.html
https://github.com/steveicarus/iverilog
https://www.veripool.org/verilator/
https://sourceforge.net/projects/systemdotnet/
https://github.com/wulffern/dicex/tree/main/sim/verilog/counter_sv
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When we synthesis the code below into a netlist it’s a bit harder to
see how the events will be scheduled, but we can notice that clk
and reset are still inputs, and for example the clock is connected to
d-flip-flops. The image below is the synthesized netlist

It should feel intuitive that a gate-level netlist will take longer to
simulate than an RTL, there are more events.

18.2 Transient analog simulation

Analog simulation is different. There is no quantized time step.
How fast “things” happen in the circuit is entirely determined by
the time constants, change in voltage, and change in current in the
system.

It is possible to have a fixed time-step in analog simulation, for
example, we say that nothing is faster than 1 fs, so we pick that
as our time step. If we wanted to simulate 1 s, however, that’s at
least 1e15 events, and with 1 event per microsecond on a computer
it’s still a simulation time of 31 years. Not a viable solution for all
analog circuits.

Analog circuits are also non-linear, properties of resistors, capac-
itors, inductors, diodes may depend on the voltage or current
across, or in, the device. Solving for all the non-linear differential
equations is tricky.

An analog simulation engine must parse spice netlist, and setup
partial/ordinary differential equations for node matrix

The nodal matrix could look like the matrix below, 𝑖 are the currents,
𝑣 the voltages, and 𝐺 the conductances between nodes.

©­­­­«
𝐺11 𝐺12 · · · 𝐺1𝑁
𝐺21 𝐺22 · · · 𝐺2𝑁
...

...
. . .

...

𝐺𝑁1 𝐺𝑁2 · · · 𝐺𝑁𝑁

ª®®®®¬
©­­­­«
𝑣1
𝑣2
...

𝑣𝑁

ª®®®®¬
=

©­­­­«
𝑖1
𝑖2
...

𝑖𝑁

ª®®®®¬

https://github.com/wulffern/dicex/blob/main/sim/verilog/counter_sv/counter_netlist.v
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The simulator, and devices model the non-linear current/voltage
behavior between all nodes

as such, the 𝐺’s may be non-linear functions, and include the 𝑣’s
and 𝑖’s.

Transient analysis use numerical methods to compute time evolu-
tion

The time step is adjusted automatically, often by proprietary algo-
rithms, to trade accuracy and simulation speed.

The numerical methods can be forward/backward Euler, or the
others listed below.

▶ Euler
▶ Runge-Kutta
▶ Crank-Nicolson
▶ Gear

If you wish to learn more, I would recommend starting with the
original paper on analog transient analysis.

SPICE (Simulation Program with Integrated Circuit Emphasis)
published in 1973 by Nagel and Pederson

The original paper has spawned a multitude of commercial, free
and open source simulators, some are listed below.

If you have money, then buy Cadence Spectre. If you have no
money, then start with ngspice.

Commercial - Cadence Spectre - Siemens Eldo - Synopsys
HSPICE

Free - Aimspice - Analog Devices LTspice - xyce

Open Source - ngspice

18.3 Mixed signal simulation

It is possible to co-simulate both analog and digital functions. An
illustration is shown below.

The system will have two simulators, one analog, with transient
simulation and differential equation solver, and a digital, with
event queue.

Between the two simulators there would be analog-to-digital, and
digital-to-analog converters.

To orchestrate the time between simulators there must be a global
event and time-step control. Most often, the digital simulator will
end up waiting for the analog simulator.

https://aquaulb.github.io/book_solving_pde_mooc/solving_pde_mooc/notebooks/02_TimeIntegration/02_01_EulerMethod.html
https://aquaulb.github.io/book_solving_pde_mooc/solving_pde_mooc/notebooks/02_TimeIntegration/02_02_RungeKutta.html
https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://ieeexplore.ieee.org/document/1083221
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/ERL-m-382.pdf
https://www.cadence.com/ko_KR/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-simulation-platform.html
https://eda.sw.siemens.com/en-US/ic/eldo/
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
http://aimspice.com
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://xyce.sandia.gov
http://ngspice.sourceforge.net
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The challenge with mixed-mode simulation is that if the digital
circuit becomes to large, and the digital simulation must wait for
analog solver, then the simulation would take too long.

Most of the time, it’s stupid to try and simulate complex system-
on-chip with mixed-signal , full detail, simulation.

For IPs, like an ADC, co-simulation works well, and is the best way
to verify the digital and analog.

But if we can’t run mixed simulation, how do we verify analog
with digital?

 

Digital Analog
Simulator Simulator

Event Timester Control
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18.4 Analog SystemVerilog Example

18.4.1 TinyTapeout TT06_SAR

8-bit successive approximation register analog-to-digital-converter

Power decoupling

# Signal interface
uio_out[0] : When the output DFFs sample SAR output. If it does not come, then clock is too fast
uo_out[7:0] : Digital output. Two's complement
ui_in[0] : Enable ADC. Useful to measure current consumption 

clk : Clock, ~ 4 MHz

Output capture
SAR core

VPWR

VGND

ui_in[7:0]

uo_out[7:0]

uio_in[7:0]

uio_out[7:0]

uio_oe[7:0]

ua[7:0]

ena

clk

rst_n
D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

EN

CK_SAMPLE_BSSW

CK_SAMPLE

ui_in[0]

clk

uo_out[7]

uo_out[6]

uo_out[5]

uo_out[4]

uo_out[3]

uo_out[2]

uo_out[1]

uo_out[0]

DONE

VPWR

VGND

D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

DONE

EN

CK_SAMPLE_BSSW

CK_SAMPLE

VPWR

VPWR

VGND

ua[1]

ua[0]

SARN

SARP

TIE_L

TIE_L

TIE_L1

TIE_L2

VPWR

DONE

uio_out[7:1]

uio_oe[7:1]

uio_oe[0] uio_out[0]

VGND

VGND

VGND

VGND

ui_in[0]

SAR_IP

SAR_IN

SARN

SARP

DONE

D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

EN

CK_SAMPLE

CK_SAMPLE_BSSW

VREF

AVDD

AVSS

SUNSAR_SAR8B_CV

x1

Updated

Library/Cell

Designer

Modified

Copyright

wulff

2024-04-12 15:40:24

Carsten Wulff Software

tt_um_TT06_SAR_wulffern

Carsten Wulff

CKS

ENABLE

CK_SAMPLE

CK_SAMPLE_BSSW

EN

D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

DO<7>

DO<6>

DO<5>

DO<4>

DO<3>

DO<2>

DO<1>

DO<0>

DONE

AVDD
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TIE_L

SUNSAR_CAPT8B_CV
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R
1
[7
:1
]

1
 
* 
0
.3

 
/ 
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7

R
2
[7
:1
]

1
 
* 
0
.3

 
/ 
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7R
3

1
 
* 
0
.3

 
/ 
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7

R
4

1
 
* 
0
.3

 
/ 
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7

c0

c1 MF=1

C2[8:0]

18 / 18
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diode
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d1
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diode
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pj=1.8e6

D3

diode_pw2nd_05v5

diode

d0

d1
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pj=1.8e6

18.4.2 SAR operation

The key idea is to model the analog behavior to sufficient detail
such that we can verify the digital code. I think it’s best to have a
look at a concrete example.

▶ Analog input is sampled when clock goes low (sarp/sarn)
▶ uio_out[0] goes high when bit-cycling is done
▶ Digital output (ro) changes when uio_out[0] goes high
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//tt06-sar/src/project.v
module tt_um_TT06_SAR_wulffern (

input wire VGND,
input wire VPWR,
input wire [7:0] ui_in,
output wire [7:0] uo_out,
input wire [7:0] uio_in,
output wire [7:0] uio_out,
output wire [7:0] uio_oe,

`ifdef ANA_TYPE_REAL
input real ua_0,
input real ua_1,

`else
// analog pins
inout wire [7:0] ua,

`endif
input wire ena,
input wire clk,
input wire rst_n
);

//tt06-sar/src/tb_ana.v
`ifdef ANA_TYPE_REAL

real ua_0 = 0;
real ua_1 = 0;

`else
tri [7:0] ua;
logic uain = 0;
assign ua = uain;

`endif

`ifdef ANA_TYPE_REAL
always #100 begin

ua_0 = $sin(2*3.14*1/7750*$time);
ua_1 = -$sin(2*3.14*1/7750*$time);

end
`endif

//tt06-sar/src/tb_ana.v
tt_um_TT06_SAR_wulffern dut (

.VGND(VGND),

.VPWR(VPWR),

.ui_in(ui_in),

.uo_out(uo_out),

.uio_in(uio_in),

.uio_out(uio_out),

.uio_oe(uio_oe),
`ifdef ANA_TYPE_REAL

.ua_0(ua_0),

.ua_1(ua_1),
`else

.ua(ua),
`endif

.ena(ena),

.clk(clk),

.rst_n(rst_n)
);

#tt06-sar/src/Makefile
runa:

iverilog -g2012 -o my_design -c tb_ana.fl -DANA_TYPE_REAL
vvp -n my_design

rund:
iverilog -g2012 -o my_design -c tb_ana.fl
vvp -n my_design

//tt06-sar/src/project.v
//Main SAR loop
always_ff @(posedge clk or negedge clk) begin



308 18 Analog SystemVerilog

if(~ui_in[0]) begin
state <= OFF;
tmp = 0;
dout = 0;

end
else begin

if(OFF) begin

end
else if(clk == 1) begin

state = SAMPLE;
end
else if(clk == 0) begin

state = CONVERT;
`ifdef ANA_TYPE_REAL

smpl = ua_0 - ua_1;
tmp = smpl;

for(int i=7;i>=0;i--) begin
if(tmp >= 0) begin

tmp = tmp - lsb*2**(i-1);
if(i==7)

dout[i] <= 0;
else

dout[i] <= 1;
end

else begin
tmp = tmp + lsb*2**(i-1);
if(i==7)

dout[i] = 1;
else

dout[i] = 0;
end

end
`else

if(tmp == 0) begin
dout[7] <= 1;
tmp <= 1;

end
else begin

dout[7] <= 0;
tmp = 0;

end
`endif

end
state = next_state;

end // else: !if(~ui_in[0])
end // always_ff @ (posedge clk)

//tt06-sar/src/project.v
always @(posedge done) begin

state = DONE;
sampled_dout = dout;

end

always @(state) begin
if(state == OFF)
#2 done = 0;

else if(state == SAMPLE)
#1.6 done = 0;

else if(state == CONVERT)
#115 done = 1;

end
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18.5 Want to learn more?

For more information on real-number modeling I would recom-
mend The Evolution of Real Number Modeling

https://youtu.be/gNpPslQZT-Y
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19.1 Why

Them who has a Why? in life can tolerate almost any
How?

You’re writing the report on the project for me to be able to see
inside your head, and grade how much of the project you have
understood.

▶ Have you learned what is to be expected?
▶ Do you understand what you’re trying to explain?

You will work on the project in groups, however, on the report,
you will write on your own.

That means, that there will be X projects reports that describe the
same circuit. You shall not copy someone elses report text.

It’s fine to share figures between reports, and also references.

I’m also forcing you to use a report format that matches well with
what would be expected if you were to publish a paper.

Should you make a fantastic temperature sensor, and maybe even
reach close to a tapeout I would strongly suggest you submit a
paper to NorCas. The deadline is August 15 2024.

19.2 On writing English

Writing well is important. I would recommend that you read On
writing Well.

Most of you won’t buy the book, as such, a few tips.

https://events.tuni.fi/uploads/2023/12/8af07ce6-norcas2024_cfp.pdf
https://www.amazon.com/Writing-Well-Classic-Guide-Nonfiction/dp/0060891548
https://www.amazon.com/Writing-Well-Classic-Guide-Nonfiction/dp/0060891548
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19.2.1 Shorter is better

I can write the section title idea in many words:

A shorter text will more elequently describe the intrica-
cies of your thoughts than a long, distinguished, tirade
of carefully, wonderfully, choosen words.

or

Shorter is better

Describe an idea with as few words as possible. The text will be
better, and more readable.

19.2.2 Be careful with adjectives

Words like “very, extremely, easily, simply, . . . ” don’t belong in a
readable text. They serve no purpose. Delete them.

19.2.3 Use paragraphs

You write a text to place ideas into anothers head. Ideas and
thoughts are best communicated in chunks. I can write a dense set
of text, or I can split a dense set of text into multiple paragraphs.
The more I try to cram into a paragraph, for example, how magical
the weather has been the last weeks, with lots of snow, and good
skiing, the more difficult the paragraph is to read.

One paragraph, one thought. For example:

You write a text to place ideas into anothers head. Ideas and
thoughts are best communicated in chunks.

I can write a dense set of text, or I can split a dense set of text into
multiple paragraphs.

The more I try to cram into a paragraph, for example, how magical
the weather has been the last weeks, with lots of snow, and good
skiing, the more difficult the paragraph is to read.

19.2.4 Don’t be afraid of I

If you did something, then say “I” in the text. If there were more
people, then use “we”.
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19.2.5 Transitions are important

Sentences within a paragraph are sometimes linked. Use

▶ As a result,
▶ As such,
▶ Accordingly,
▶ Consequently,

And mix them up.

19.2.6 However, is not a start of a sentence

If you have to use “However” it should come in the middle of the
sentence.

I want to go skiing, however, I cannot today due to work.

19.3 Report Structure

The sections below go through the expected structure of a report,
and what the sections should contain.

19.3.1 Introduction

The purpose of the introduction is to put the reader into the right
frame of mind. Introduce the problem statement, key references,
the key contribution of your work, and an outline of the work
presented. Think of the introduction as explaining the “Why” of
the work.

Although everyone has the same assignment for the project, you
have chosen to solve the problem in different ways. Explain what
you consider the problem statement, and tailor the problem state-
ment to what the reader will read.

Key references are introduced. Don’t copy the paper text, write
why they designed the circuit, how they chose to implement it,
and what they achieved. The reason we reference other papers
in the introduction is to show that we understand the current
state-of-the-art. Provide a summary where state-of-the-art has
moved since the original paper.

The outline should be included towards the end of the introduction.
The purpose of the outline is to make this document easy to read. A
reader should never be surprised by the text. All concepts should
be eased into. We don’t want the reader to feel like they been
thrown in at the end of a long story. As such, if you chosen to solve
the problem statement in a way not previously solved in a key
references, then you should explain that.
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A checklist for all chapters can be seen in table below.

19.3.2 Theory

It is safe to assume that all readers have read the key references, if
they have not, then expect them to do so.

The purpose of the theory section is not to demonstrate that you
have read the references, but rather, highlight theory that the
reader probably does not know.

The theory section should give sufficient explanation to bridge the
gap between references, and what you apply in this text.

19.3.3 Implementation

The purpose of the implementation is to explain what you did.
How have you chosen to architect the solution, how did you split
it up in analog and digital parts? Use one subsection per circuit.

For the analog, explain the design decisions you made, how did
you pick the transistor sizes, and the currents. Did you make other
choices than in the references? How does the circuit work?

For the digital, how did you divide up the digital? What were the
design choices you made? How did you implement readout of the
data? Explain what you did, and how it works. Use state diagrams
and block diagrams.

Use clear figures (i.e. circuitikz), don’t use pictures from schematic
editors.

19.3.4 Result

The purpose of the results is to convince the reader that what
you made actually works. To do that, explain testbenches and
simulation results. The key to good results is to be critical of your
own work. Do not try to oversell the results. Your result should
speak for themself.

For analog circuits, show results from each block. Highlight key
parameters, like current and delay of comparator. Demonstrate
that the full analog system works.

Show simulations that demonstrate that the digital works.

19.3.5 Discussion

Explain what the circuit and results show. Be critical.
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19.3.6 Future work

Give some insight into what is missing in the work. What should
be the next steps?

19.3.7 Conclusion

Summarize why, how, what and what the results show.

19.3.8 Appendix

Include in appendix the necessary files to reproduce the work. One
good way to do it is to make a github repository with the files, and
give a link here.

19.4 Checklist

Item Description OK

Is the problem
description
clearly defined?

Describe which parts of the problem you chose to focus on. The
problem description should match the results you’ve achieved.

Is there a clear
explanation
why the
problem is
worth solving?

The reader might need help to understand why the problem is
interesting

Is status of
state-of-the-art
clearly
explained?

You should make sure that you know what others have done for
the same problem. Check IEEEXplore. Provide summary and
references. Explain how your problem or solution is different

Is the key
contribution
clearly
explained?

Highlight what you’ve achieved. What was your contribution?

Is there an
outline of the
report?

Give a short summary of what the reader is about to read

Is it possible for
a reader skilled
in the art to
understand the
work?

Have you included references to relevant papers

Is the theory
section too long

The theory section should be less than 10 % of the work

Are all circuits
explained?

Have you explained how every single block works?

Are figures
clear?

Remember to explain all colors, and all symbols. Explain what
the reader should understand from the figure. All figures must
be referenced in the text.

Is it clear how
you verified the
circuit?

It’s a good idea to explain what type of testbenches you used. For
example, did you use dc, ac or transient to verify your circuit?

Are key
parameters
simulated?

You at least need current from VDD. Think through what you
would need to simulate to prove that the circuit works.

Have you tried
to make the
circuit fail?

Knowing how circuits fail will increase confidence that it will
work under normal conditions.
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Item Description OK

Have you been
critical of your
own results?

Try to look at the verification from different perspectives. Play
devil’s advocate, try to think through what could go wrong, then
explain how your verification proves that the circuit does work.

Have you
explained the
next steps?

Imagine that someone reads your work. Maybe they want to
reproduce it, and take one step further. What should that step be?

No new
information in
conclusion.

Never put new information into conclusion. It’s a summary of
what’s been done

Story Does the work tell a story, is it readable? Don’t surprise the reader
by introducing new topics without background information.

Chronology Don’t let the report follow the timeline of the work done. What I
mean by that is don’t write “first I did this, then I spent huge
amount of time on this, then I did that”. No one cares what the
timeline was. The report does not need to follow the same
timeline as the actual work.

Too much time How much time you spent on something should not be
correlated to how much text there is in the report. No one cares
how much time you spent on something. The report is about
why, how, what and does it work.

Length A report should be concise. Only include what is necessary, but
no more. Shorter is almost always better than longer.

Template Use IEEEtran.cls. Example can be seen from an old version of this
document at https://github.com/wulffern/dic2021/tree/main
/2021-10-19_project_report. Write in LaTeX. You will need
LaTeX for your project and master thesis. Use
http://overleaf.com if you’re uncomfortable with local text
editors and LaTeX.

Spellcheck Always use a spellchecker. Misspelled words are annoying, and
may change content and context (peaked versus piqued)

https://www.ieee.org/conferences/publishing/templates.html
https://github.com/wulffern/dic2021/tree/main/2021-10-19_project_report
https://github.com/wulffern/dic2021/tree/main/2021-10-19_project_report
http://overleaf.com


Layout Generation 20
20.1 Layout . . . . . . . . . 317
20.2 Setup . . . . . . . . . . 317
20.3 CICPY . . . . . . . . . 317
20.4 Placement . . . . . . . 318

Status: 0.5

20.1 Layout

The open source tools don’t have any automatic analog layout.
To my knowledge, there is no general purpose analog automagic
layout anywhere in the world. It’s an unsovled problem. Many
have tried (including myself), but none have succeeded with a
generic analog layout engine.

There are a few things, though, that could help you on the way.

20.2 Setup

I assume that you have the latest and greatest aicex\ip setup.

See SKY130NM Tutorial if aicex is unfamiliar.

Let’s assume we use jnw_gr05_sky130a to test out our layout

cd aicex/ip/
cd jnw_gr05_sky130a
git checkout a1e3dfc324194729e042f5e653777b052759863b
cd work

20.3 CICPY

The first thing we need to do is to place all transistors. I do have a
script to help. Install cicpy.

cd aicex/ip/cicpy
git checkout master
git pull
python3 -m pip install -e .
cd ..
cd cicspi
git checkout main
git pull
python3 -m pip install -e .

https://analogicus.com/aic2025/2025/01/01/Sky130nm-tutorial.html
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20.4 Placement

To generate an initial placement we can do the command below. If
a layout exists it will be overriden

cd jnw_gr05_sky130a/work
cicpy sch2mag JNW_GR05_SKY130A OTA_Manuel

The layout engine has no idea what components belong together,
for example, the current mirror below should have been place
together

We can instruct the layout engine by adding a “group” name
to the instance name. The instance name always starts with
x<something><number> where the something can be nothing, or a
group name (a,b, not a number).

The rules for placement are:

1. Sort all instances by groups
2. Sort all groups by instance name
3. Place the first instance.
4. For all instances: If the next instance has the same group,

then add on top. Otherwise increment the x location.

As such, if I rename my instances, as shown below,
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Then the layout becomes a bit better

cicpy sch2mag JNW_GR05_SKY130A OTA_Manuel --gbreak 3 --xspace 34000 --yspace 30000

The gbreak command inserts a “group break” after the fourth
group, such that a new Y coordinate is selected.

The X and Y space is for the distance between groups. The unit is
“Ångstrøm”, so 1 um is 10 000 Å.
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I’m stunned if you’ve never heared the word “transistor”. I think
most people have heard the word. What I find funny is that almost
nobody understand in full detail how transistors work.

Through my 30 year venture into the world of electronics I’ve
met “analog designers”, or people that should understand exactly
how transistors work. I used to hire analog designers, and I’ve
interviewed hundred plus “analog designers” in my 8 years as
manager and I’ve met hundreds of students of analog design. I
would go as far as to say none of them know everything about
transistors, including myself.

Most of the people I’ve met have a good brain, so that is not the
reason they don’t understand. Transistors are incredibly compli-
cated! I say this, because if at some point in this document, you
don’t understand, then don’t worry, you are not alone.

In this document I’m focusing on Metal Oxide Semiconductor Field
Effect Transistors (MOSFETs), and ignore all other transistors.

21.1 Metal Oxide Semiconductor

The first part of the MOSFET name illustrates the 3 dimensional
composition of the transistor. Take a semiconductor (Silicon), grow
some oxide (Silicon Oxide, SiO2), and place a metal, or conductive,
gate on top of the oxide. With those three components we can build
our transistor.

Something like the cartoon below where only the Metal (gate) of
the MOS name is shown.

The oxide and the silicon bulk is not visible, but you can imagine
them to be underneath the gate, with a thin oxide (a few nano
meters thick) and the silicon the transparent part of the picture.

The length (L), and width (W) of the MOS is annotated in blue.
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Figure 1: 3D crossection of a transistor

MOSFETs come in two main types. There is NMOS, and PMOS.
The symbols are as shown below. The NMOS is MN1 and PMOS is
MP1.

MN1
VG

VS

VD

MP1
VG

VS

VD

Figure 2: Transistor symbols

The MOS part of the name can be seen in MN1, where𝑉𝐺 is the gate
connected to a vertical line (metal), a space (oxide), and another
vertical line (the silicon substrate or silicon bulk).

On the sides of the gate we have two connections, a drain 𝑉𝐷 and
a source 𝑉𝑆.

If we have a sufficient voltage between gate and source 𝑉𝐺𝑆, then
the transistor will conduct from drain to source. If the voltage is
too low, then there will not be much current.

The “source” name is because that’s where the charge carrier
(electrons) come from, they come from the source, and flow towards
the drain. As you may remember, the “current”, as we’ve defined
it, flows opposite of the electron current, from drain to source.

The PMOS works in a similar manner, however, the PMOS is made
of a different type of silicon, where the dominant charge carrier
is holes in the valence band. As a result, the gate-source voltage
needs to be negative for the PMOS to conduct.

In a PMOS the holes come from the source, and flow to the drain.
Since holes are positive charge carriers, the current flows from
source to drain.
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In most MOSFETs there is no physical difference between source
and drain. If you flip the transistor it would work almost exactly
the same.

21.2 Field Effect

Imagine that the bulk (the empty space underneath the gate), and
the source is connected to 0 V. Assume that the gate is 0 V.

In the source and drain parts of the transistor there is an abundance
of free electrons that can move around, exactly like in a metal
conductor, however, underneath the gate there are almost no free
electrons.

There are electrons underneath the gate though, trillions upon
trillions of electrons, but they are stuck in co-valent bonds between
the Silicon atoms, and around the nucleus of the Silicon atoms.
These electrons are what we call bound electrons, they cannot
move, or more precisely, they cannot contribute to current (because
they do move, all the time, but mostly around the atoms).

Imagine that your eyes could see the free electrons as a blue
fluorescent color. What you would see is a bright blue drain, and
bright blue source, but no color underneath the gate.

Figure 3: MOSFET in “off” state

As you increase the gate voltage, the color underneath the gate
would change. First, you would think there might be some blue
color, but it would be barely noticeable.
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Figure 4: MOSFET in subthreshold

At a certain voltage, suddenly, there would be a thin blue sheet
underneath the gate. You’d have to zoom in to see it, in reality it’s
a ultra thin, 2 dimensional electron sheet.

As you continue to increase the gate voltage the blue color would
become a little brighter, but not much.

Figure 5: MOSFET in strong inversion

This thin blue sheet extend from source to drain, and create a
conductive channel where the electrons can move from source to
drain (or drain to source), exactly like a resistor. The conductance of
the sheet is the same as the brightness, higher gate source voltage,
more bright blue, higher conductance, less resistance.

Assume you raise the drain voltage. The electrons would move from
source to drain proportional to the voltage. How many electrons
could move would depend on the gate voltage.

If the gate voltage was low, then there is low density of electrons
in the sheet, and low current.

If the gate voltage is high, then the electron density in the sheet
is high, and there can be a high current, although, the electrons
do have a maximum speed, so at some point the current does not
change as fast with the gate voltage.
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At a certain drain voltage you would see the blue color disappear
close to the drain and there would be a gap in the sheet.

Figure 6: MOSFET in strong inversion and saturation

That could make you think the current would stop, but it turns out,
that the electrons close to drain get swept across the gap because
the electric field is so high from the edge of the sheet to the drain.

As you continue to increase the drain voltage, the gap increases,
but the current does not really increase that much. It’s this exact
feature that make transistor so attractive in analog circuits. I can
create a current from drain to source that does not depend much
on the drain to source voltage! That’s why we sometimes imagine
transistors as a “trans-conductance”. The conductance between
drain and source depends on the voltage somewhere else, the
gate-source voltage.

And now you may think you understand how the transistor works.
By changing the gate voltage, we can change the electron current
from source to drain. We can turn on, and off, currents, creating a
0 and 1 state.

For example, if I take a PMOS and connect the source to a high
voltage, the drain to an output, and an NMOS with the source to
ground and the drain to the output, and connect the gates together,
I would have the simplest logic gate, an inverter, as shown below.

If the input 𝑉𝑖𝑛 is a high voltage, then the output 𝑉𝑜𝑢𝑡 is a low
voltage, because the NMOS is on. If the input 𝑉𝑖𝑛 is a low voltage,
then the output 𝑉𝑜𝑢𝑡 is a high voltage, because the PMOS is on.
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MN1

MP1

Vin Vout

Figure 7: Inverter

I can now build more complex “logic gates”. The one below is a
Not-AND gate (NAND). If both inputs (A and B) are high, then
the output is low (both NMOS are on). Otherwise, the output is
high.

I find it amazing that all digital computers in existence can be
constructed from the NAND gate. In principle, it’s the only logic
gate you need. If you actually did construct computers from
NANDs only, they would be costly, and consume lots of power.
There are smarter ways to use the transistors.
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Figure 8: NAND

You may be too young to have seen the Matrix, but now is the time
to decide between the red pill and the blue pill.

The red will start your journey to discover the reality behind the
transistor, the blue pill will return you to your normal life, and you
can continue to think that you now understand how transistors
work.

Figure 9: The choice

Because:

▶ Why did the area underneath the gate turn blue?
▶ Why is it only a thin sheet that turns blue?
▶ Where did the electrons for the sheet come from?
▶ Why did the blue color change suddenly?

https://en.m.wikipedia.org/wiki/Red_pill_and_blue_pill
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▶ How does the brightness of the blue change with gate-source
voltage?

▶ How can the electrons stay in that sheet when we connect
the bulk to 0 V?

▶ Why is there not a current from the bulk (0 V) to drain?
▶ Why does not the electrons jump from source to drain? It’s a

gap, the same as from the sheet to drain?

And did you realize I never in this chapter explained how the field
effect worked?

Someday, I may write all the details, if I ever understand it all. For
now, I hope that the sections below will help you a bit.

21.3 Analog transistors in the books

In the books we learn the equations for weak inversion

𝐼𝐷 ∝ (𝑒(𝑉𝑔𝑠−𝑉𝑡ℎ)/𝑈𝑇 − 1)

, where 𝐼𝐷 is the drain current, 𝑉𝑔𝑠 is the gate source voltage, 𝑉𝑡ℎ
is the threshold voltage and𝑈𝑇 = 𝑘𝑇/𝑞, where 𝑘 is Boltzmann’s
constant, 𝑇 is the temperature in Kelvin and 𝑞 is the unit charge

The equation is similar to bipolar and diode equations, because
the physics is the same.

The drain current in weak inversion is mostly a diffusion current
and relates to the density of electrons in the conduction band (for
an NMOS), which can be computed from the density of available
energy states, and the Fermi-Dirac distribution.

𝑛 =

∫ ∞

𝐸𝐶

𝑁(𝐸) 1
𝑒(𝐸−𝐸𝐹)/𝑘𝑇 + 1

𝑑𝐸

, where 𝑛 is the density of electrons in the conduction band,𝑁(𝐸) is
the density of available energy states, 𝐸 is the integration variable
(and the energy) and 𝐸𝐹 is the Fermi-level.

Maybe the equation looks complicated, but it’s really “Multiply
the available energy state with the probability of being in that state,
and sum for all available energy states”.

Changing the voltage changes the number of free electrons, simply
because we bring the conduction band closer to the Fermi level.

The Fermi level is just something we invented, and just means
“If there was an quantum state at the Fermi level Energy, then it
would have a 50 % probability of being occupied by a electron”.
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In the equation above, moving the conduction band edge is equiva-
lent to reducing the 𝐸𝐶 . As such, more of the Fermi-Dirac distribu-
tion has available energy states 𝑁(𝐸), and the density of electrons
𝑛 in conduction band becomes higher.

In strong inversion, the MOSFET is more like a voltage controlled
resistor with a conductance that is proportional to gate-source
voltage.

The density of electrons increases because we bend the conduction
band beyond the Fermi level, as a result, most of the available
energy states in the conduction band are filled by electrons.

Electrons are only free to move, however, close to the surface of
the silicon, as far away from the surface, we don’t feel the effects
of the gate-source voltage, and the conduction band stays at the
same energy. As a result, electrons form a 2 dimensional electron
gas close to the silicon surface. What we call an inversion layer.

Once we have that electron gas, or inversion layer, we have a
connection between the drain and source n-type regions, and the
current can be estimated by a drift current. Parts of the diffusion
current will still be there, but much smaller magnitude than the
drift current, so we drop the diffusion current, and get

𝐼𝐷 =
1
2
𝜇𝑛𝐶𝑜𝑥

𝑊

𝐿
(𝑉𝑔𝑠 −𝑉𝑡ℎ)2

The equations in the books are good to give a physical understand-
ing of what happens. Although, we tend to forget that everybody
forgets.

We teach quantum physics one year, and how to compute the
density of states 𝑁(𝐸) from Schrodinger, the wave-function and
Fermi-Dirac distribution.

Next year we talk about semiconductors, crystal lattice, band
structure (density of states as a function of space), energy diagrams
(band structure is complex, so we just use the lowest conduction
band and highest valence band), doping to shift the Fermi level,
and how we can create PN-junctions, bipolars and MOSFETS.

The year after we teach the current equations for MOSFETs, and
the books don’t have the link back to solid-state physics, after all,
we already told the students that, they should remember!

I think, quite often, we just end up with confused students. And
I don’t think it’s necessary to end up with confused students.
Maybe sometimes we end up with confused students because the
Professors can’t necessarily remember where the equations come
from either, nor how electrons and holes really behave.

It’s not necessary for an analog design student to remember how
to compute the density of available energy states from Schrodinger
and the wave function. If we wanted to use the relativistc version
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of Schrodinger (which includes magnetic fields, and if you did not
know, magnetic fields is just a relativistic effect of the electric field)
and the wave function to compute how an Silicon atom actually
behaves, I don’t think we can. As far as I’ve been able to figure out,
it’s not possible to have a closed form solution (symbolic), nor is
it possible with supercomputers to do a numeric time-evolution
of the states in a single Silicon atom with all the inter-particle
interactions, space, momentum, spins, electric fields and magnetic
fields.

But we can make sure we connect the links from Schrodinger to the
MOSFET equations, the short version of that was above, but the
following sections tries to explain with words how the transistor
actually works.

I’m not going to give all the equations and all the maths. For that,
there are excelent books and resources. I would recommend Mark
Lundstrom for the best in detail description of MOSFETs.

21.4 Transistors in weak inversion

Consider the cartoon below which shows the hole concentration
in the valence band, and electron concentration in the conduction
band versus the x direction of the transistor.

For the moment we’ll ignore the field effect of the gate, and how
that modulates the hole concentration underneath the gate.

If you’re familiar with bipolars, then you may think I’ve drawn the
wrong transistor, because you see an NPN bipolar transistor. The
picture is correct, however, this is how a normal MOSFET looks.
It’s actually also a NPN bipolar transistor, but we don’t usually use
that part (you’ll see more when we get to ESD)

In the source we’ve doped with donors, and have an abundance of
free electrons. Underneath the gate, or the bulk, we have doped
with acceptors, and have an abundance of holes.
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Figure 10: Charge carrier density in a MOSFET

https://www.youtube.com/watch?v=5eG6CvcEHJ8&list=PLtkeUZItwHK6F4a4OpCOaKXKmYBKGWcHi
https://www.youtube.com/watch?v=5eG6CvcEHJ8&list=PLtkeUZItwHK6F4a4OpCOaKXKmYBKGWcHi
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Let’s consider electron current for now, and only look at the
conduction band.

An electron in the source would see a energy barrier of𝜙𝐵, and most
electrons would be turned around at the barrier. Some, however,
do have the energy to traverse the barrier and flow through the
bulk. Not all of them would reach the bulk, due to recombination,
but let’s assume the bulk is short, and all electrons injected into
the bulk show up at the drain.

At the drain side they would fall down the potential barrier to the
drain. The same process would happen in reverse, from drain to
source.
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Figure 11: MOSFET subthreshold , 𝑉𝐷𝑆 = 0

There would also be hole currents flowing between source/bulk/drain
and visa versa

Assume source and drain are at the same potential, then the sum
of all currents (1,2,3,4) for both electrons and holes in Figure 11
must equal zero.

Assume that we increase the drain voltage, as shown in Figure 12.
Increasing the drain voltage is the same as reducing the conduction
band in the drain.

Since there now is a higher barrier from drain to bulk, it’s now
much less probable that electrons are injected from drain to bulk.

Now the sum of all currents would not equal zero, as the 1 and 3
currents are larger than 2 and 4.

As such, there would be a net flow of electron current from source
to drain.
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Figure 12: MOSFET subthreshold, 𝑉𝑆 = 0 V, 𝑉𝐷 > 0 V

Notice that if we increase the drain voltage further, then the electron
injection from drain to bulk would quickly approach zero.

At that point, even though we increase the drain voltage further,
the current does not really change. As the current is only now
given by the barrier height at the source.

The barrier height at the source is the built in voltage of the
junction, and as we’ve seen before, that voltage depends on doping
concentration. If we increase the hole concentration in bulk, then we
increase the barrier height, and it’s less probable that the electrons
have enough energy to be injected from source to bulk.

If we only need to consider the electrons and holes at source for the
subthreshold current (assuming the drain voltage is high enough),
then we should expect the equation look very similar to a diode,
and indeed it does.

The drain current, which is mostly a diffusion current, is given
by

𝐼𝐷 = 𝐼𝐷0
𝑊

𝐿
𝑒𝑞(𝑉𝐺𝑆−𝑉𝑇𝐻 )/𝑛𝑘𝑇

where

𝑛 = (𝐶𝑜𝑥 + 𝐶 𝑗0)/𝐶𝑜𝑥

𝐼𝐷0 = (𝑛 − 1)𝜇𝑛𝐶𝑜𝑥
(
𝑘𝑇

𝑞

)2

This is not exactly the same as the diode equation, but we can see
that it looks similar. Most of the quantum mechanics is baked into
the 𝑉𝑇𝐻

The transconductance (𝑑𝐼𝐷/𝑑𝑉𝐺𝑆) in weak inversion is then
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𝑔𝑚 =
𝐼𝐷

𝑛𝑉𝑇

A big difference from the diode equation is the fact that the gate-
source voltage seems to determine the current, and not the voltage
across the pn junction.

21.5 Transistors in strong inversion

Consider the band diagram in Figure 13, in the figure we’re looking
at a cross section of the transistor. From left we’re in the gate, then
we have the oxide, and then the bulk of the transistor.

We don’t see the drain and source, as the source would be towards
you, and the drain would be into the picture.

The cartoon is not a real transistor. I don’t think there is necessarily
a combination of semiconductor and metal where we end up with
the same Fermi level (𝐸𝐹) without some bending of the conduction
band and valence band, but for illustration, let’s assume that’s the
case.

We can see the Fermi level in the semiconductor is shifted towards
the valence band, and thus we have a P-type semiconductor.

The gate is metallic, so it does not have a bandgap, and we assume
that the Fermi level is at the conduction band edge.
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Figure 13: Band diagram of a fictive MOSFET.

Assume we increase the gate-source voltage. In a band diagram
that corresponds to shifting the energy down.
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Figure 14: Band diagram with gate-source voltage applied

Moving the gate down has the effect of bending the bands in the
semiconductor. We’ll lose some voltage across the oxide, but not
necessarily that much.

The bending of the valence band will decrease the hole concen-
tration close to the silicon surface, and the semiconductor will be
depleted of mobile charge carriers.

The valence band bending will also reduce the barrier height in
Figure 12, which increases the number of carriers that can be
injected at source/bulk interface, so the subthreshold current will
start to increase.

At some point, the band bending of the conduction band will
become so large that the electron concentration underneath the
gate will increase signficantly. The gate-source voltage where the
electron concentration equals the bulk hole concentration far away
from the silicon surface is called the “threshold voltage”.

As you continue to increase the gate-source voltage there is a limit
to how much the electron concentration increases. When the band
bending of the conduction band passes the Fermi level, then over
50 percent of the available states in the conduction band are filled
with electrons.
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Figure 13: Band diagram with high gate-source voltage applied

The conditions to be in strong inversion is that the gate/source
voltage is above some magic values (threshold voltage), and then
some.

The quantum state of the electron is fully determined by it’s spin,
momentum and position in space. How those parameters evolve
with time is determined by the Schrodinger equation. In the general
form

𝑖ℏ
𝑑

𝑑𝑡
Ψ(𝑟, 𝑡) = 𝐻Ψ(𝑟, 𝑡)

The Hamiltonian (𝐻) is an “energy matrix” operator and may
contain terms both for the momentum and Columb force (electric
field) experienced by the system.

But what does the Schrodinger equation tell us? Well, the equation
above does not tell me much, it can’t be “solved”, or rather, it does
not have a single solution. It’s more a framework for how the wave
function, and the Hamiltonian, describes the quantum states of
a system, and the probability ampltiudes of transition between
states.

The Schrodinger equation describes the time evolution of the
bound electrons shared between the Silicon atoms, and the fact
that applying a electric field to silicon can free co-valent bonds.

As the gate-source voltage increases the wave function that fits in
the Schrodinger equation predicts that the free electrons will form
a 2d sheet underneath the gate. The thickness of the sheet is only a
few nano meters.
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In Figure 2 in

Carrier transport near the Si/SiO2 interface of a MOSFET

you can see how the free electron density is located underneath
the gate.

I would really recommend that you have a look at Mark Lund-
strom’s lecture series on Essentials of MOSFETs. It’s the most
complete description of electrons in MOSFET’s I’ve seen

21.6 How should I size my transistor?

The method that makes most sense to me, is to use the inversion-
coefficient method, described in Nanoscale MOSFET Modeling:
Part 1 and Nanoscale MOSFET Modeling: Part 2.

The inversion coefficient tells us how strongly inverted the MOSFET
channel (inversion layer) is. A number below 0.1 is weak inversion,
between 0.1 and 10 is moderate inversion. A number above 10 is
strong inversion.

There are also some blog posts worth looking at Inversion Coeffi-
cient Based Circuit Design and My Circuit Design Methodology.

I should caveat my proposal for method. For the past 7 years I’ve
not had the luxury to do full time, hardcore, analog design. As my
career progressed, most of my time is now spent telling others what
I think is a good idea to do, and not doing hardcore analog design
myself. I think, however, I have a pretty decent understanding of
analog circuits, and how to design them, so I think I’m correct in
the proposal. If I were to start hardcore analog design now, I would
go all in on inversion-coefficient based transistor size selection.

21.7 Introduction to behavior

Let’s assume we know nothing about how transistors work, but
we do know how to simulate them in ngspice.

We could sit down, and try and figure out how the transistors
work.

You can find the testbenches at Testbenches at dicex/sim/spice/N-
CHIO

https://www.sciencedirect.com/science/article/pii/0038110189900609
https://www.youtube.com/watch?v=5eG6CvcEHJ8&list=PLtkeUZItwHK6F4a4OpCOaKXKmYBKGWcHi
https://ieeexplore.ieee.org/document/8016485
https://ieeexplore.ieee.org/document/8016485
https://ieeexplore.ieee.org/document/8110872
https://kevinfronczak.com/blog/inversion-coefficient-based-circuit-design
https://kevinfronczak.com/blog/inversion-coefficient-based-circuit-design
https://kevinfronczak.com/blog/my-circuit-design-methodology
https://github.com/wulffern/dicex/tree/main/sim/spice/NCHIO
https://github.com/wulffern/dicex/tree/main/sim/spice/NCHIO
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21.7.1 Drain Source Current

Let’s see what happens to the drain to source current when we
change the voltages. We would expect the drain to source current
to change as a function of the drain to source, 𝑉𝐷𝑆, and gate to
source 𝑉𝐺𝑆 voltages. Or mathematically

𝐼𝐷𝑆 = 𝑓 (𝑉𝐺𝑆 , 𝑉𝐷𝑆 , ...)

or symbolically

The symbolic model above is what we call a “Large Signal Model”.
We could expand the function above to

𝐼𝐷𝑆 = 𝑓 (𝑉𝐺𝑆 , 𝑉𝐷𝑆) = 𝐺𝑚(𝑉𝐺𝑆 , 𝑉𝐷𝑆 , 𝐼𝐷𝑆)𝑉𝐺𝑆+𝐺𝑑𝑠(𝑉𝐺𝑆 , 𝑉𝐷𝑆 , 𝐼𝐷𝑆)𝑉𝐷𝑆

, where the 𝐺𝑚 is a trans-conductance (the current depends on
a voltage somewhere else), and 𝐺𝑑𝑠 is a conductance (current
depends on the voltage across the conductance).

Even now we can see that the model above is complicated. The
transconductance and conductance of the transistor is a function
of the other voltages, and the output current. It’s a non-linear
system!

If the transistor was linear, then we would expect that the current
increased proportionally to gate/source voltage, but how does the
current look when we change the gate source voltage?

21.7.2 Gate-source voltage

Below are the conditions I’ve used in the testbench. Notice there
is a 𝑉𝐵 that is the 𝑝− substrate, or bulk, of the transistor. When
we draw symbols of a transistor we don’t always include the bulk
node, because that’s most of the time connected to ground for
NMOS.
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But sometimes, we connect the bulk to another voltage, so the bulk
terminal will be in our schematics.

Param Voltage

VGS 0 to 1.8
VDS 1.0
VS 0
VB 0

In the plot below we can see the sweep of the gate voltage.

𝑖(𝑣𝑐𝑢𝑟) = 𝐼𝐷𝑆

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
vgate

10 9

10 8
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10 5

10 4

10 3

i(vcur)

21.7.3 Inversion level

Define
𝑉𝑒 𝑓 𝑓 ≡ 𝑉𝐺𝑆 −𝑉𝑡𝑛

, where
𝑉𝑡𝑛

is the “threshold voltage”

Veff Inversion level

less than 0 weak inversion or subthreshold
0 moderate inversion

more than 100 mV strong inversion

Weak inversion

The drain current is low, but not zero, when

𝑉𝑒 𝑓 𝑓 << 0
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𝐼𝐷𝑆 ≈ 𝐼𝐷0
𝑊

𝐿
𝑒𝑉𝑒 𝑓 𝑓 /𝑛𝑉𝑇 if 𝑉𝐷𝑆 > 3𝑉𝑇

𝑛 ≈ 1.5

Moderate inversion

Very useful region in real designs. Hard for hand-calculation. Trust
the model.

Strong inversion

𝐼𝐷𝑆 = 𝜇𝑛𝐶𝑜𝑥
𝑊

𝐿



𝑉𝑒 𝑓 𝑓𝑉𝐷𝑆 if 𝑉𝐷𝑆 << 𝑉𝑒 𝑓 𝑓

𝑉𝑒 𝑓 𝑓𝑉𝐷𝑆 −𝑉2
𝐷𝑆

/2 if 𝑉𝐷𝑆 < 𝑉𝑒 𝑓 𝑓

1
2𝑉

2
𝑒 𝑓 𝑓

if 𝑉𝐷𝑆 > 𝑉𝑒 𝑓 𝑓
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21.7.4 Drain source voltage

Param Voltage [V]

VGS 0.5
VDS 0 to 1.8
VS 0
VB 0

𝑖(𝑣𝑐𝑢𝑟) = 𝐼𝐷𝑆
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21.7.5 Strong inversion

𝐼𝐷𝑆 = 𝜇𝑛𝐶𝑜𝑥
𝑊

𝐿



𝑉𝑒 𝑓 𝑓𝑉𝐷𝑆 if 𝑉𝐷𝑆 << 𝑉𝑒 𝑓 𝑓

𝑉𝑒 𝑓 𝑓𝑉𝐷𝑆 −𝑉2
𝐷𝑆

/2 if 𝑉𝐷𝑆 < 𝑉𝑒 𝑓 𝑓

1
2𝑉

2
𝑒 𝑓 𝑓

if 𝑉𝐷𝑆 > 𝑉𝑒 𝑓 𝑓
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21.7.6 Low frequency model

𝑔𝑚 =
𝜕𝐼𝐷𝑆
𝜕𝑉𝐺𝑆

𝑔𝑑𝑠 =
1
𝑟𝑑𝑠

=
𝜕𝐼𝐷𝑆
𝜕𝑉𝐷𝑆

21.7.7 Transconductance

Define
ℓ = 𝜇𝑛𝐶𝑜𝑥

𝑊

𝐿

and
𝑉𝑒 𝑓 𝑓 = 𝑉𝐺𝑆 −𝑉𝑡𝑛
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𝐼𝐷 =
1
2
ℓ (𝑉𝑒 𝑓 𝑓 )2

and

𝑉𝑒 𝑓 𝑓 =

√
2𝐼𝐷
ℓ

and
ℓ =

2𝐼𝐷
𝑉2
𝑒 𝑓 𝑓

𝑔𝑚 =
𝜕𝐼𝐷𝑆
𝜕𝑉𝐺𝑆

= ℓ𝑉𝑒 𝑓 𝑓 =
√

2ℓ 𝐼𝐷

𝑔𝑚 = ℓ𝑉𝑒 𝑓 𝑓 = 2
𝐼𝐷

𝑉2
𝑒 𝑓 𝑓

𝑉𝑒 𝑓 𝑓 =
2𝐼𝐷
𝑉𝑒 𝑓 𝑓

Define
ℓ = 𝜇𝑛𝐶𝑜𝑥

𝑊

𝐿

and
𝑉𝑒 𝑓 𝑓 = 𝑉𝐺𝑆 −𝑉𝑡𝑛

𝐼𝐷 =
1
2
ℓ𝑉2

𝑒 𝑓 𝑓
[1 + 𝜆𝑉𝐷𝑆 − 𝜆𝑉𝑒 𝑓 𝑓 )]

1
𝑟𝑑𝑠

= 𝑔𝑑𝑠 =
𝜕𝐼𝐷
𝜕𝑉𝐷𝑆

= 𝜆
1
2
ℓ𝑉2

𝑒 𝑓 𝑓

Assume channel length modulation is not there, then

𝐼𝐷 =
1
2
ℓ𝑉2

𝑒 𝑓 𝑓

which means
1
𝑟𝑑𝑠

= 𝑔𝑑𝑠 ≈ 𝜆𝐼𝐷

21.7.8 Intrinsic gain

Define intrinsic gain as

𝐴 =

����𝑣𝑜𝑢𝑡𝑣𝑖𝑛

���� = 𝑔𝑚𝑟𝑑𝑠 =
𝑔𝑚

𝑔𝑑𝑠

𝐴 =
2𝐼𝐷
𝑉𝑒 𝑓 𝑓

× 1
𝜆𝐼𝐷

=
2

𝜆𝑉𝑒 𝑓 𝑓



344 21 MOSFETs

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
vgaini

6

8

10

12

v(
a)

v(a)

vgaini = Gate Source Voltage =

𝑉𝑒 𝑓 𝑓 +𝑉𝑡𝑛

21.7.9 High frequency model
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𝐶𝑔𝑠

and
𝐶𝑔𝑑

𝐶𝑔𝑠 =


𝑊𝐿𝐶𝑜𝑥 if 𝑉𝐷𝑆 = 0

2
3𝑊𝐿𝐶𝑜𝑥 if 𝑉𝐷𝑆 > 𝑉𝑒 𝑓 𝑓

𝐶𝑔𝑑 = 𝐶𝑜𝑥𝑊𝐿𝑜𝑣

𝐶𝑠𝑏

and
𝐶𝑑𝑏

Both are depletion capacitances

𝐶𝑠𝑏 = (𝐴𝑠 + 𝐴𝑐ℎ)𝐶 𝑗𝑠

𝐶 𝑗𝑠 =
𝐶 𝑗0√

1 + 𝑉𝑆𝐵
Φ0

Φ0 = 𝑉𝑇 𝑙𝑛

(
𝑁𝐴𝑁𝐷

𝑛2
𝑖

)

𝐶𝑑𝑏 = 𝐴𝑑𝐶 𝑗𝑑

𝐶 𝑗𝑠 =
𝐶 𝑗0√

1 + 𝑉𝐷𝐵
Φ0
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21.7.10 Be careful with Cgd (blame Miller)

If
𝑌(𝑠) = 1/𝑠𝐶

then
𝑌1(𝑠) = 1/𝑠𝐶𝑖𝑛

and
𝑌2(𝑠) = 1/𝑠𝐶𝑜𝑢𝑡

where
𝐶𝑖𝑛 = (1 + 𝐴)𝐶

,
𝐶𝑜𝑢𝑡 = (1 + 1

2
)𝐶

𝐶1 = 𝐶𝑔𝑑𝑔𝑚𝑟𝑑𝑠

𝐶𝑔𝑑

can appear to be 10 to 100 times larger!

if gain from input to output is large
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21.8 Weak inversion

If
𝑉𝑒 𝑓 𝑓 < 0

diffusion currents dominate.

𝐼𝐷 = 𝐼𝐷0
𝑊

𝐿
𝑒𝑉𝑒 𝑓 𝑓 /𝑛𝑉𝑇

, where

𝑉𝑇 = 𝑘𝑇/𝑞
,

𝑛 = (𝐶𝑜𝑥 + 𝐶 𝑗0)/𝐶𝑜𝑥

𝐼𝐷0 = (𝑛 − 1)𝜇𝑛𝐶𝑜𝑥𝑉2
𝑇

𝑔𝑚 =
𝐼𝐷

𝑛𝑉𝑇

Bang for the buck

Subthreshold:

𝑔𝑚

𝐼𝐷
=

1
𝑛𝑉𝑇

≈ 25.6 [S/A] @ 300 K

Strong inversion:

𝑔𝑚

𝐼𝐷
=

2
𝑉𝑒 𝑓 𝑓
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21.9 Velocity saturation

Electron speed limit in silicon

𝑣 ≈ 107𝑐𝑚/𝑠

𝑣 = 𝜇𝑛𝐸 = 𝜇𝑛
𝑑𝑉

𝑑𝑥

𝜇𝑛 ≈ 100 to 600 𝑐𝑚2/𝑉𝑠
in nanoscale CMOS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
106

107

108

109 Rough estimate!

v=µ×dv
dx

speed limit in silicon

speed of light
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21.9.1 Square law model

𝑄(𝑥) = 𝐶𝑜𝑥
[
𝑉𝑒 𝑓 𝑓 −𝑉(𝑥)

]
𝑣 = 𝜇𝑛𝐸 = 𝜇𝑛

𝑑𝑉

𝑑𝑥

ℓ = 𝜇𝑛𝐶𝑜𝑥
𝑊

𝐿

𝐼𝐷 =𝑊𝑄(𝑥)𝑣 = ℓ𝐿
[
𝑉𝑒 𝑓 𝑓 −𝑉(𝑥)

] 𝑑𝑉
𝑑𝑥

𝐼𝐷𝑑𝑥 = ℓ𝐿
[
𝑉𝑒 𝑓 𝑓 −𝑉(𝑥)

]
𝑑𝑉

𝐼𝐷

∫ 𝐿

0
𝑑𝑥 = ℓ𝐿

∫ 𝑉𝐷𝑆

0

[
𝑉𝑒 𝑓 𝑓 −𝑉(𝑥)

]
𝑑𝑉

𝐼𝐷 [𝑥]𝐿0 = ℓ𝐿

[
𝑉𝑒 𝑓 𝑓𝑉 − 1

2
𝑉2

]𝑉𝐷𝑆
0

𝐼𝐷𝐿 = ℓ𝐿

[
𝑉𝑒 𝑓 𝑓𝑉𝐷𝑆 −

1
2
𝑉2
𝐷𝑆

]
@𝑉𝐷𝑆 = 𝑉𝑒 𝑓 𝑓 ⇒ 𝐼𝐷 =

1
2
ℓ𝑉2

𝑒 𝑓 𝑓

21.9.2 Mobility Degradation

Multiple effects degrade mobility

▶ Velocity saturation
▶ Vertical fields reduce channel depth => more charge-carrier

scattering

ℓ = 𝜇𝑛𝐶𝑜𝑥
𝑊

𝐿

𝜇𝑛_𝑒 𝑓 𝑓 =
𝜇𝑛

([1 + (𝜃𝑉𝑒 𝑓 𝑓 )𝑚])1/𝑚

𝐼𝐷 =
1
2
ℓ𝑉2

𝑒 𝑓 𝑓

1
([1 + (𝜃𝑉𝑒 𝑓 𝑓 )𝑚])1/𝑚
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From square law

𝑔𝑚 =
𝜕𝐼𝐷
𝜕𝑉𝐺𝑆

= ℓ𝑉𝑒 𝑓 𝑓

With mobility degradation

𝑔𝑚(𝑚𝑜𝑏−𝑑𝑒𝑔) =
ℓ

2𝜃

21.9.3 What about holes (PMOS)

In PMOS holes are the charge-carrier (electron movement in valence
band)

𝜇𝑝 < 𝜇𝑛

In intrinsic silicon:

𝜇𝑛 ≤ 1400[𝑐𝑚2/𝑉𝑠] = 0.14[𝑚2/𝑉𝑠]

𝜇𝑝 ≤ 450[𝑐𝑚2/𝑉𝑠] = 0.045[𝑚2/𝑉𝑠]

𝜇𝑛 ≈ 3𝜇𝑝

𝑣𝑛_𝑚𝑎𝑥 ≈ 2.3 × 105[𝑚/𝑠]
𝑣𝑝_𝑚𝑎𝑥 ≈ 1.6 × 105[𝑚/𝑠]

Doping (
𝑁𝐴or𝑁𝐷

) reduces
𝜇

21.10 OTHER

As we make transistors smaller, we find new effects that matter,
and that must be modeled.

which is an opportunity for engineers to come up with cool
names
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https://ieeexplore.ieee.org/document/5247174

21.10.1 Drain induced barrier lowering (DIBL)

https://ieeexplore.ieee.org/document/5247174
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21.10.2 Well Proximity Effect (WPE)

21.10.3 Stress effects

Stress PMOS NMOS

Stretch Fz Good Good
Compress Fy OK Good
Compress Fx Good Bad

What can change stress?
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21.10.4 Gate current

21.10.5 Hot carrier injection
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21.10.6 Channel initiated secondary-electron (CHISEL)

21.11 Variability

Provide
𝐼2 = 1𝜇𝐴

Let’s use off-chip resistor
𝑅

, and pick
𝑅

such that
𝐼1 = 1𝜇𝐴

Use
𝑊1
𝐿1

=
𝑊2
𝐿2

What makes
𝐼2 ≠ 1𝜇𝐴

?



21.11 Variability 355

R

I1

M1 M2

I2

▶ Voltage variation
▶ Systematic variations
▶ Process variations
▶ Temperature variation
▶ Random variations
▶ Noise

21.11.1 Voltage variation

𝐼1 =
𝑉𝐷𝐷 −𝑉𝐺𝑆1

𝑅

If
𝑉𝐷𝐷

changes, then current changes.

Fix: Keep
𝑉𝐷𝐷

constant

21.11.2 Systematic variations

If
𝑉𝐷𝑆1 ≠ 𝑉𝐷𝑆2 → 𝐼1 ≠ 𝐼2
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If layout direction of

𝑀1 ≠ 𝑀2 → 𝐼1 ≠ 𝐼2

If current direction of

𝑀1 ≠ 𝑀2 → 𝐼1 ≠ 𝐼2

If
𝑉𝑆1 ≠ 𝑉𝑆2 → 𝐼1 ≠ 𝐼2

If
𝑉𝐵1 ≠ 𝑉𝐵2 → 𝐼1 ≠ 𝐼2

If
𝑊𝑃𝐸1 ≠𝑊𝑃𝐸2 → 𝐼1 ≠ 𝐼2

If
𝑆𝑡𝑟𝑒𝑠𝑠1 ≠ 𝑆𝑡𝑟𝑒𝑠𝑠2 → 𝐼1 ≠ 𝐼2

. . .

21.11.3 Process variations

Assume strong inversion and active

𝑉𝑒 𝑓 𝑓 =

√
2

𝜇𝑝𝐶𝑜𝑥 𝑊𝐿
𝐼1

,
𝑉𝐺𝑆 = 𝑉𝑒 𝑓 𝑓 +𝑉𝑡𝑝

𝐼1 =
𝑉𝐷𝐷 −𝑉𝐺𝑆

𝑅
=

𝑉𝐷𝐷 −
√

2
𝜇𝑝𝐶𝑜𝑥 𝑊𝐿

𝐼1 −𝑉𝑡𝑝
𝑅

𝜇𝑝

,
𝐶𝑜𝑥

,
𝑉𝑡𝑝

will all vary from die to die, and wafer lot to wafer lot.

21.11.4 Process corners

Common to use 5 corners, or Monte-Carlo process simulation

https://en.wikipedia.org/wiki/Monte_Carlo_method
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Corner NMOS PMOS

Mtt Typical Typical
Mss Slow Slow
Mff Fast Fast
Msf Slowish Fastish
Mfs Fastish Slowish

21.11.5 Fix process variation

Use calibration: measure error, tune circuit to fix error

For every single chip, measure voltage across known resistor

𝑅1

and tune
𝑅𝑣𝑎𝑟

such that we get
𝐼1 = 1𝜇𝐴

Be careful with multimeters, they have finite input resistance
(approximately 1 M

Ω

)

21.11.6 Temperature variation

Mobility decreases with temperature

Threshold voltage decreases with temperature.

𝐼𝐷 =
1
2
𝜇𝑛𝐶𝑜𝑥(𝑉𝐺𝑆 −𝑉𝑡𝑛)2

High
𝐼𝐷 =

fast digital circuits

Low
𝐼𝐷 =

slow digital circuits

What is fast? High temperature or low temperature?
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21.11.7 It depends on
𝑉𝐷𝐷

Fast corner - Mff (high mobility, low threshold voltage) - High

𝑉𝐷𝐷

- High or low temperature

Slow corner - Mss (low mobility, high threshold voltage) - Low

𝑉𝐷𝐷

- High or low temperature

21.11.8 How do we fix temperature variation?

Accept it, or don’t use this circuit.

If you need stability over temperature, use 7.3.2 and 7.3.4 in CJM
(SUN_BIAS_GF130N)

21.11.9 Random Variation

ℓ = 𝜇𝑝𝐶𝑜𝑥
𝑊

𝐿

𝐼𝐷 =
1
2
ℓ (𝑉𝐺𝑆 −𝑉𝑡𝑝)2

Due to doping , length, width,

𝐶𝑜𝑥

,
𝑉𝑡𝑝

, . . . random varation

ℓ1 ≠ ℓ2

𝑉𝑡𝑝1 ≠ 𝑉𝑡𝑝2

As a result
𝐼1 ≠ 𝐼2

, but we can make them close.



21.11 Variability 359

21.11.10 Pelgrom’s‗ law

Given a random gaussian process parameter

Δ𝑃

with zero mean, the variance is given by

𝜎2(Δ𝑃) =
𝐴2
𝑃

𝑊𝐿
+ 𝑆2

𝑃𝐷
2

where
𝐴𝑃

and
𝑆𝑃

are measured, and
𝐷

is the distance between devices

Assume closely spaced devices (

𝐷 ≈ 0

)

⇒ 𝜎2(Δ𝑃) =
𝐴2
𝑃

𝑊𝐿

21.11.11 Transistors with same

𝑉𝐺𝑆

†

𝜎2
𝐼𝐷

𝐼2
𝐷

=
1
𝑊𝐿

[(
𝑔𝑚

𝐼𝐷

)2

𝜎2
𝑣𝑡 +

𝜎2
ℓ

ℓ

]
Valid in weak, moderate and strong inversion

𝜎2
𝐼𝐷

𝐼2
𝐷

=
1
𝑊𝐿

[(
𝑔𝑚

𝐼𝐷

)2

𝜎2
𝑣𝑡 +

𝜎2
ℓ

ℓ

]
𝜎𝐼𝐷
𝐼𝐷

∝ 1√
𝑊𝐿

‗ M. J. M. Pelgrom, C. J. Duinmaĳer, and A. P. G. Welbers, “Matching properties
of MOS transistors,” IEEE J. Solid-State Cir- cuits, vol. 24, no. 5, pp. 1433–1440,
Oct. 1989.

† Peter Kinget, see CJM
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Assume
𝜎𝐼𝐷
𝐼𝐷

= 10%

, We want
5%

, how much do we need to change WL?

𝜎𝐼𝐷
𝐼𝐷

2
∝ 1

2
√
𝑊𝐿

=
1√

4𝑊𝐿

We must quadruple the area to half the standard deviation

1%

would require 100 times the area

Rvar

−

R1

+

I1

M1 M2

I2

21.11.12 What else can we do?

𝜎2
𝐼𝐷

𝐼2
𝐷

=
1
𝑊𝐿

[(
𝑔𝑚

𝐼𝐷

)2

𝜎2
𝑣𝑡 +

𝜎2
ℓ

ℓ

]
Strong inversion

⇒ 𝑔𝑚

𝐼𝐷
=

1
2𝑉𝑒 𝑓 𝑓

= 𝑙𝑜𝑤
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Weak inversion
⇒ 𝑔𝑚

𝐼𝐷
=

𝑞

𝑛𝑘𝑇
≈ 25

Current mirrors achieve best matching in strong inversion

𝜎2
𝐼𝐷

𝐼2
𝐷

=
1
𝑊𝐿

[(
𝑔𝑚

𝐼𝐷

)2

𝜎2
𝑣𝑡 +

𝜎2
ℓ

ℓ

]

𝜎2
𝐼𝐷

=
1
𝑊𝐿

[
𝑔𝑚2𝜎2

𝑣𝑡 + 𝐼2𝐷
𝜎2
ℓ

ℓ

]
Offset voltage for a differential pair

𝑖𝑜 = 𝑖𝑜+ − 𝑖𝑜− = 𝑔𝑚𝑣𝑖 = 𝑔𝑚(𝑣𝑖+ − 𝑣𝑖−)

𝜎2
𝑣𝑖
=

𝜎2
𝐼𝐷

𝑔𝑚2 =
1
𝑊𝐿

[
𝜎2
𝑣𝑡 +

𝐼2
𝐷

𝑔𝑚2

𝜎2
ℓ

ℓ

]
High

𝑔𝑚

𝐼𝐷

is better (best in weak inversion)

vi+ vi−

io− io+

21.11.13 Transistor Noise

Thermal noise Random scattering of carriers, generation-
recombination in channel?

𝑃𝑆𝐷𝑇𝐻( 𝑓 ) = Constant
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Popcorn noise Carriers get “stuck” in oxide traps (dangling bonds)
for a while. Can cause a short-lived (seconds to minutes) shift in
threshold voltage

𝑃𝑆𝐷𝐺𝑅( 𝑓 ) ∝ Lorentzian shape ≈ 𝐴

1 + 𝑓 2

𝑓0

Flicker noise Assume there are many sources of popcorn noise
at different energy levels and time constants, then the sum of the
spectral densities approaches flicker noise.

𝑃𝑆𝐷 𝑓 𝑙𝑖𝑐𝑘𝑒𝑟( 𝑓 ) ∝
1
𝑓
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22.1 Current Mirrors

MOSFETs need a current for the transistor to be biased in the
correct operating region. The current must come from somewhere,
we’ll look at bias generators later. Usually there is a central bias
circuit that provides a single, good, reference current.

On an IC, however, there will be many circuits, and they all need
a bias current (usually). As such, we need a circuit to copy a
current.

In the figure below you can see a selection of current mirros. They
all do the same thing. Try to ensure that 𝑖𝑖 and 𝑖𝑜 are the same
current.

Which one we choose is usually determined by what we mean by
𝑖𝑖 = 𝑖𝑜 . Do we mean “within ± 10 %”, or “within ± 2 %”.

M1

ii

M2

io

a) “normal”

M3

M1

ii

M4

M2

io

b) Self Cascode

M1

M3

ii

M2

M4

io

vb

c) Cascode

M1

M3

ii

M2

M4

io

d) Lazy Cascode

22.1.1 Normal current mirror

The normal current mirror consists of a diode connected transistor
(𝑀1) and a common source transistor 𝑀2.

If we assume infinite output resistance of the MOSFETs, then the
drain voltage does not affect the current.

If the two transistors are the same size, threshold voltage, mobility,
etc, and they have the same gate-source voltage, then the current
in them must be the same.

A current pushed into 𝑀1 will cause the 𝑉𝐺𝑆1 to rise, and at some
point, find a stable point where the current pushed in is equal to
the current in 𝑀1

𝑀2 will see the same 𝑉𝐺𝑆1 = 𝑉𝐺𝑆2 so the current will be the same,
provided the voltage at 𝑖𝑜 is sufficient to pinch-off the channel of
𝑀2, or the 𝑉𝐷𝑆2 ≈ 3𝑘𝑇/𝑞 if the transitor is in weak-inversion.
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M1

ii

M2

io

22.1.1.1 Input resistance

To see the small signal input resistance we can apply a test voltage
to the diode connected resistor, as shown in the figure below.

Observe the current

𝑖𝑦 = 𝑔𝑑𝑠𝑣𝑦 + 𝑔𝑚𝑣𝑦

While the input resistance

𝑟𝑖𝑛 =
𝑣𝑦

𝑖𝑦
=

1
𝑔𝑚 + 𝑔𝑑𝑠
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which, assuming 𝑔𝑑𝑠 >> 𝑔𝑚 , reduces to

𝑟𝑖𝑛 ≈ 1
𝑔𝑚

.

Assume now I apply 1 𝜇𝐴 current to the diode connected transistor,
and the 𝑔𝑚 = 1 𝜇𝑆.

Would the voltage be 𝑣𝑦 = 𝑟𝑖𝑛 𝑖𝑦 =
1 𝜇𝐴
1 𝜇𝑆 = 1 𝑉? NO! It’s important to

understand the difference between the small signal input resistance,
and the large signal impedance.

The large signal impedance is a highly non-linear function (we’ve
seen before that the current in a MOSFET has both an exponential,
and a square-law, and sometimes a linear with voltage), as such,
there is no single function describing what the gate-source voltage
will be.

To see the DC voltage, apply a current in SPICE, and use a simulator
to find the voltage.

22.1.1.2 Output resistance
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22.1.1.3 Current gain

22.1.2 Source degeneration

M3

M1

ii

M4

M2

io

What is the operating region of M3 and M4?

What is the operating region of M1 and M2?

22.1.2.1 Input resistance

M1 and M2 are in linear region, can be simplified to resistors
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𝑟𝑖𝑛 =
1
𝑔𝑚1

+ 𝑅𝑠

Rs

M1

ii

Rs

M2

io

22.1.3 Output resistance

𝑣𝑔𝑠 = −𝑣𝑠
,

𝑣𝑠 = 𝑖𝑥𝑅𝑠
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,
𝑟𝑜𝑢𝑡 =

𝑣𝑥

𝑖𝑥

𝑖𝑥 = 𝑔𝑚2𝑣𝑔𝑠 +
𝑣𝑥 − 𝑣𝑠
𝑟𝑑𝑠2

𝑖𝑥 = −𝑖𝑥 𝑔𝑚2𝑅𝑠 +
𝑣𝑥 − 𝑖𝑥𝑅𝑠
𝑟𝑑𝑠2

𝑣𝑥 = 𝑖𝑥
[
𝑟𝑑𝑠2 + 𝑅𝑠(𝑔𝑚2𝑟𝑑𝑠2 + 1)

]
Rearranging

𝑟𝑜𝑢𝑡 = 𝑟𝑑𝑠2[1 + 𝑅𝑠(𝑔𝑚1 + 𝑔𝑑𝑠2)] ≈ 𝑟𝑑𝑠2[1 + 𝑔𝑚1𝑅𝑠]

22.1.3.1 Cascode output resistance

From source degeneration (ignoring bulk effect)

𝑟𝑜𝑢𝑡 = 𝑟𝑑𝑠4[1 + 𝑅𝑠(𝑔𝑚4 + 𝑔𝑑𝑠4)]

𝑅𝑆 = 𝑟𝑑𝑠2

𝑟𝑜𝑢𝑡 = 𝑟𝑑𝑠4[1 + 𝑟𝑑𝑠2(𝑔𝑚4 + 𝑔𝑑𝑠4)]

𝑟𝑜𝑢𝑡 ≈ 𝑟𝑑𝑠2(𝑟𝑑𝑠4𝑔𝑚4)
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M1

M3

ii

M2

M4

io

vb

22.1.3.2 Active cascodes

𝑟𝑜𝑢𝑡 ≈ 𝑟𝑑𝑠2(𝐴𝑟𝑑𝑠4𝑔𝑚4)
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22.2 Amplifiers

22.3 Source follower

Input resistance
≈ ∞

Gain
𝐴 =

𝑣𝑜

𝑣𝑖

Output resistance
𝑟𝑜𝑢𝑡

22.3.1 Output resistance

𝑖𝑜 = 𝑣𝑜(𝑔𝑑𝑠 + 𝑔𝑠) − 𝑔𝑚𝑣𝑖 + 𝑣𝑜 𝑔𝑚
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𝑣𝑖 = 0

𝑖𝑜 = 𝑣𝑜(𝑔𝑑𝑠 + 𝑔𝑠 + 𝑔𝑚)

𝑟𝑜𝑢𝑡 =
𝑣𝑜

𝑖𝑜
=

1
𝑔𝑚 + 𝑔𝑑𝑠 + 𝑔𝑠

𝑟𝑜𝑢𝑡 ≈
1
𝑔𝑚

22.3.2 Why use a source follower?

Assume 100 electrons

Δ𝑉 = 𝑄/𝐶 = −1.6 × 10−19 × 100/(1 × 10−15) = −16 mV

Δ𝑉 = 𝑄/𝐶 = −1.6 × 10−19 × 100/(1 × 10−12) = −16 uV
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22.4 Common gate

Input resistance

Gain

Output resistance
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22.4.1 Input resistance

𝑖 = 𝑔𝑚𝑣 + 𝑔𝑑𝑠𝑣

𝑟𝑖𝑛 =
1

𝑔𝑚 + 𝑔𝑑𝑠
≈ 1
𝑔𝑚

However, we’ve ignored load resistance.

𝑟𝑖𝑛 ≈ 1
𝑔𝑚

(
1 + 𝑅𝐿

𝑟𝑑𝑠

)
22.4.2 Output resistance

22.4.3 Gain

𝑖𝑜 = −𝑔𝑚𝑣𝑖 +
𝑣𝑜 − 𝑣𝑖
𝑟𝑑𝑠

𝑖𝑜 = 0
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0 = −𝑔𝑚𝑣𝑖𝑟𝑑𝑠 + 𝑣𝑜 − 𝑣𝑖

𝑣𝑖(1 + 𝑔𝑚𝑟𝑑𝑠) = 𝑣𝑜

𝑣𝑜

𝑣𝑖
= 1 + 𝑔𝑚𝑟𝑑𝑠

We’ve ignored bulk effect (
𝑔𝑠

), source resistance (
𝑅𝑆

) and load resistance (
𝑅𝐿

)

𝐴 =
(𝑔𝑚 + 𝑔𝑠 + 𝑔𝑑𝑠)(𝑅𝐿||𝑟𝑑𝑠)

1 + 𝑅𝑆
(
𝑔𝑚+𝑔𝑠+𝑔𝑑𝑠
1+𝑅𝐿/𝑟𝑑𝑠

)
If

𝑅𝐿 >> 𝑟𝑑𝑠

,
𝑅𝑆 = 0

and
𝑔𝑠 = 0

𝐴 =
(𝑔𝑚 + 𝑔𝑑𝑠)𝑟𝑑𝑠

1
= 1 + 𝑔𝑚𝑟𝑑𝑠

22.5 Common source

𝑟𝑖𝑛 ≈ ∞

𝑟𝑜𝑢𝑡 = 𝑟𝑑𝑠

, it’s same circuit as the output of a current mirror

Gain
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22.5.1 Gain

𝑖𝑜 = 𝑔𝑚𝑣𝑖 +
𝑣𝑜

𝑟𝑑𝑠

𝑖𝑜 = 0

−𝑔𝑚𝑣𝑖 =
𝑣𝑜

𝑟𝑑𝑠

𝑣𝑜

𝑣𝑖
= −𝑔𝑚𝑟𝑑𝑠
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22.5.2 Why common source?

22.6 Differential pair

Input resistance
𝑟𝑖𝑛 ≈ ∞

Gain
𝐴 = 𝑔𝑚𝑟𝑑𝑠

Output resistance
𝑟𝑜𝑢𝑡 = 𝑟𝑑𝑠

Best analyzed with T model of transistor (see CJM page 31)
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22.6.1 Diff pairs are cool

Can choose between

𝑣𝑜 = 𝑔𝑚𝑟𝑑𝑠𝑣𝑖

and

𝑣𝑜 = −𝑔𝑚𝑟𝑑𝑠𝑣𝑖

by flipping input (or output) connections
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Status: 0.3

23.1 Metal in ICs is not wire in schematic

Metal wires in an integrated circuit comes in two types, copper
and aluminium.

Most of the routing layers will be copper. To ensure that the copper
ions don’t diffuse into the silicon-oxide a barrier material surrounds
all copper interconnect.

Copper is too stiff to be wire-bonded. As such, the top layer metals
would be aluminium.

Since the routing is so small, we have to care about the parasitic
properties of the routing. Below is a table with some common
quantities for copper. For example, if we have 1000 𝜇m metal wire
with 1 𝜇m width, then it would be approximately 150 Ω, 1 nH , 1
pF and tolerate a maximum of 1 mA DC current.

Parameter Typ. Value Unit

Resistance 150 mΩ/□
Capacitance 1 fF/𝜇m
Inductance 1 nH/mm

Max DC current 1 mA/□

The type of circuit we have determine what we must simulate.
Everything needs to be simulated with parasitc capacitance and
max current. Only RF, however, usually needs to be simulated with
resistance, capacitance, inductance and maximum current.

Circuit type Must simulate/know

All C Imax
Analog, Power R C Imax

Some RF, Some Power R L C Imax

To simulate the effects of parasitics, we need a description of the
technology. A Process Design Kit (PDK). Most PDKs are closely
guarded secrets, as they describe many things about the way the
foundry makes the integrated circuits.

Some PDKs are open source, however, see Skywater 130 nm and
IHP-Open-PDK

In addition to the PDK, we need tools that can calculate from the
layout the parasitic elements. Some of the tools are

https://skywater-pdk.readthedocs.io
https://github.com/IHP-GmbH/IHP-Open-PDK
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Layout parasitic extraction tools

▶ Calibre xRC
▶ Synopsys StarRC
▶ Cadence Quantus
▶ Magic VLSI

3D EM Simulators

▶ Keysight ADS
▶ HFSS

Transistor CAD (TCAD)

▶ Synopsys TCAD

23.2 Resistors

Sometimes we want a specific resistance. In general, any resistance
on IC will vary in absolute value by maybe up to ± 20 %. The
relative size, however, can be controlled to within 0.1 %.

In other words, you can’t rely on a 1 kOhm resistor actually being 1
kOhm, it might be 0.8 kOhm. If you have two, however, you can
trust that both of them will be 0.8 kOhm.

That’s why almost all analog circuits rely on the relative sizes of
passives, not the absolute value. If a circuit does rely on absolute
values, then it usually needs to be trimmed in production.

23.2.1 Polysilicon

Can be both N-doped, and P-doped

Often with two flavors, with, and without silicide

Silicide reduces resistance of polysilicon

https://eda.sw.siemens.com/en-US/ic/calibre-design/circuit-verification/xrc/
https://eda.sw.siemens.com/en-US/ic/calibre-design/circuit-verification/xrc/
https://eda.sw.siemens.com/en-US/ic/calibre-design/circuit-verification/xrc/
http://opencircuitdesign.com/magic/
https://www.keysight.com/zz/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html
https://www.keysight.com/zz/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html
https://www.synopsys.com/silicon/tcad.html
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23.2.2 Diffusion

Use doped region as resistor

Usually without silicide

Non-linear capacitance

Tricky temperature dependence

23.2.3 Metal

Usually too low omhic to be a useful resistor

Useful for “separating nets” in schematic and layout

Must be considered for power supply and ground routing (high
currents)
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23.3 Capacitors

23.3.1 What is S, M, L, XL on a chip?

nRF52832
3200𝜇𝑚 × 3000𝜇𝑚 = 9600𝑘𝜇𝑚2

S
< 5 𝑘𝜇𝑚2

M
< 50 𝑘𝜇𝑚2

L
< 200 𝑘𝜇𝑚2

XL
> 200 𝑘𝜇𝑚2

23.3.2 Metal-Oxide-Metal finger capacitors

Unit capacitance
≈ 1 𝑓 𝐹/𝜇𝑚2/𝑙𝑎𝑦𝑒𝑟

10𝑝𝐹 = 100𝜇𝑚 × 100𝜇𝑚 = 10𝑘𝜇𝑚2

https://www.nordicsemi.com/products/nrf52832
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(a)

(b)
CTOP

C1A

C1B

C2

C4

C8

C16

M1 M2 M3 M4

23.3.3 MOS capacitors

dicex/sim/spice/NCHIO/vcap.cir

* gate cap

.include ../../../models/ptm_130.spi

vdrain D 0 dc 1
vgaini G 0 dc 0.5
vbulk B 0 dc 0
vcur S 0 dc 0

M1 D G S B nmos w=1u l=1u

.op

Moscap is
≈ 10 𝑓 𝐹/𝜇𝑚2

10𝑝𝐹 = 31𝜇𝑚 × 31𝜇𝑚 ≈ 1𝑘𝜇𝑚2

dicex/sim/spice/NCHIO/vcap.vlog
Device m1:

Vgs (gate-source voltage) [V] : 0.5
Vgd (gate-drain voltage) [V] : -0.5
Vds (drain-source voltage) [V] : 1
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Vbs (bulk-source voltage) [V] : 1.90808e-12
Vbd (bulk-drain voltage) [V] : -1
Id (drain current) [A] : 7.32634e-06
Is (source current) [A] : -7.32633e-06
Ibd (bulk-drain current) [A] : -1.01e-12
Ibs (bulk-source current) [A] : 9.581e-25
Vt (threshold voltage) [V] : 0.378198
Vgt (gate overdrive voltage) [V] : 0.121802
Vgsteff (effective vgt) [V] : 0.12515
Gm (transconductance) [S] : 8.44164e-05
Gmb (bulk bias transconductance) [S] : 2.00071e-05
Ueff (mobility) [cmˆ2/Vs] : 417.675
Gds (channel conductance) [S] : 1.95043e-07
Rds (output resistance) [Ohm] : 5.12708e+06
Vdsat (drain saturation voltage) [V] : 0.14171
IC (inversion coefficient) [] : 4.42478
Cgs (gate-source capacitance) [F] : 9.98457e-15
Csg (source-gate capacitance) [F] : 5.86932e-15
Cgd (gate-drain capacitance) [F] : 3.98239e-16
Cdg (drain-gate capacitance) [F] : 3.91086e-15
Cds (drain-source capacitance) [F] : 4.30968e-15
Cgg (gate-gate capacitance) [F] : 1.05198e-14
Cdd (drain-drain capacitance) [F] : 1.05198e-14
Css (source-source capacitance) [F] : 0
Cgb (gate-bulk capacitance) [F] : 1.05198e-14
Cbg (bulk-gate capacitance) [F] : 1.74123e-15
Cbs (bulk-source capacitance) [F] : 8e-16
Cbd (bulk-drain capacitance) [F] : 3.97768e-16

23.3.4 Varactors

A varactor is a “variable capacitor”, usually it’s a device that varies
the capacitance with the voltage across the device.

23.4 Inductors

Usually two top metals, because they are thick (low ohmic)

Use foundry model

3D electro magnetic simulation often needed
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23.5 Variation in passives

Absolute value for resistors and capacitors

≈ ±10

% to
±20

%

Relative precision for closely spaced devices

≈

0.1 % to 1 %

Relative precision for devices on same die

> 2

% or more

23.6 Relative precision

Resistors and Capacitors can be matched extremely well
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𝑖3 = 0 = 𝑖1 − 𝑖2

0 =
𝑉𝑖 −𝑉𝑜
𝑅

− 𝑉𝑜

1/𝑠𝐶

0 = 𝑉𝑖 −𝑉𝑜 −𝑉𝑜𝑠𝑅𝐶
𝑉𝑜(1 + 𝑠𝑅𝐶) = 𝑉𝑖

𝑉𝑜

𝑉𝑖
=

1
1 + 𝑠𝑅𝐶
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Assume standard deviation (

𝜎

)‗ of

𝜎𝑅 = 20

%,
𝜎𝐶 = 20

%

𝜎𝑅𝐶 =
√

0.22 + 0.22 = 28

%

23.7 Diodes

Many, many ways

Reverse bias diodes to ground are useful for signals with long
routing to transistor gate. Protects gate from breakdown during
chemical mechanical polish.

‗ If you don’t remember how standard deviation works, read Introduction to
mathematics of noise sources

http://www.wulff.no/publications/noise.pdf
http://www.wulff.no/publications/noise.pdf
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24.1 SPICE

Status: 0.3

24.2 Simulation Program with Integrated
Circuit Emphasis

To manufacture an integrated circuit we have to be able to predict
how it’s going to work. The only way to predict is to rely on our
knowledge of physics, and build models of the real world in our
computers.

One simulation strategy for a model of the real world, which
absolutely every single integrated circuit in the world has used to
come into existence, is SPICE.

Published in 1973 by Nagel and Pederson

SPICE (Simulation Program with Integrated Circuit Emphasis)

24.2.1 Today

There are multiple SPICE programs that has been written, but
they all work in a similar fashion. There are expensive ones, closed
source, and open source.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/ERL-m-382.pdf
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Some are better at dealing with complex circuits, some are faster,
and some are more accurate. If you don’t have money, then start
with ngspice.

Commercial Cadence Spectre Siemens Eldo Synopsys HSPICE

Free Aimspice Analog Devices LTspice

Open Source ngspice

24.2.2 But

All SPICE simulators understand the same language (yes, even
spectre can speak SPICE). We write our testbenches in a text file,
and give it to the SPICE program. That’s the same for all programs.
Some may have built fancy GUI’s to hide the fact that we’re really
writing text files, but text files is what is under the hood.

Pretty much the same usage model as 48 years ago

<spice program> testbench.cir

for example

ngspice testbench.cir

Or in the most expensive analog tool (Cadence Spectre)

spectre input.scs +escchars +log ../psf/spectre.out
-format psfxl -raw ../psf +aps +lqtimeout 900 -maxw 5
-maxn 5 -env ade -ahdllibdir
/tmp/wulff/virtuoso/TB_SUN_BIAS_GF130N/TB_SUN_BIAS/maestro/
results/maestro/Interactive.15/sharedData/CDS/ahdl/input.ahdlSimDB
+logstatus

The expensive tools have built graphical user interface around the
SPICE simulator to make it easier to run multiple scenarios.

Corner Typical Fast Slow All

Mosfet Mtt Mff Mss Mff,Mfs,Msf,Mss
Resistor Rt Rl Rh Rl,Rh
Capacitors Ct Cl Ch Cl,Ch
Diode Dt Df Ds Df,Ds
Bipolar Bt Bf Bs Bf,Bs
Temperature Tt Th,Tl Th,Tl Th,Tl
Voltage Vt Vh,Vl Vh,Vl Vh,Vl

https://www.cadence.com/ko_KR/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-simulation-platform.html
https://eda.sw.siemens.com/en-US/ic/eldo/
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
http://aimspice.com
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
http://ngspice.sourceforge.net
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I’m a fan of launching multiple simulations from the command
line. I don’t like GUI’s. As such, I wrote cicsim, and that’s what I
use in the video and demo.

24.2.3 Sources

The SPICE language is a set of conventions for how to write the
text files. In general, it’s one line, one command (although, lines
can be continued with a +).

I’m not going to go through an extensive tutorial in this document,
and there are dialects with different SPICE programs. You’ll find
more info at ngspice

24.2.3.1 Independent current sources

Infinite output impedance, changing voltage does not change
current

I<name> <from> <to> dc <number> ac <number>

I1 0 VDN dc In
I2 VDP 0 dc Ip

24.2.3.2 Independent voltage source

Zero output impedance, changing current does not change volt-
age

V<name> <+> <-> dc <number> ac <number>

V2 VSS 0 dc 0
V1 VDD 0 dc 1.5

https://github.com/wulffern/cicsim/tree/main
http://ngspice.sourceforge.net/docs.html
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24.2.4 Passives

Resistors

R<name> <node 1> <node 2> <value>

R1 N1 N2 10k
R2 N2 N3 1Meg
R3 N3 N4 1G
R4 N4 N5 1T

Capacitors

C<name> <node 1> <node 2> <value>

C1 N1 N2 1a
C2 N1 N2 1f
C4 N1 N2 1p
C3 N1 N2 1n
C5 N1 N2 1u

24.2.5 Transistor Models

Needs a model file the transistor model

BSIM (Berkeley Short-channel IGFET Model) http://bsim.berkele
y.edu/models/bsim4/

M1Gate

Drain

Source
284 parameters in BSIM 4.5

.MODEL N1 NMOS LEVEL=14 VERSION=4.5.0 BINUNIT=1
PARAMCHK=1 MOBMOD=0 CAPMOD=2 IGCMOD=1 IGBMOD=1
GEOMOD=1 DIOMOD=1 RDSMOD=0 RBODYMOD=0 RGATEMOD=3
PERMOD=1 ACNQSMOD=0 TRNQSMOD=0 TEMPMOD=0 TNOM=27
TOXE=1.8E-009 TOXP=10E-010 TOXM=1.8E-009 DTOX=8E-10
EPSROX=3.9 WINT=5E-009 LINT=1E-009 LL=0 WL=0 LLN=1
WLN=1 LW=0 WW=0 LWN=1 WWN=1 LWL=0 WWL=0 XPART=0
TOXREF=1.4E-009 SAREF=5E-6 SBREF=5E-6 WLOD=2E-6
KU0=-4E-6 KVSAT=0.2 KVTH0=-2E-8 TKU0=0.0 LLODKU0=1.1

http://bsim.berkeley.edu/models/bsim4/
http://bsim.berkeley.edu/models/bsim4/
http://www-device.eecs.berkeley.edu/~bsim/Files/BSIM4/BSIM480/BSIM480_Manual.pdf
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WLODKU0=1.1 LLODVTH=1.0 WLODVTH=1.0 LKU0=1E-6
WKU0=1E-6 PKU0=0.0 LKVTH0=1.1E-6 WKVTH0=1.1E-6
PKVTH0=0.0 STK2=0.0 LODK2=1.0 STETA0=0.0 LODETA0=1.0
LAMBDA=4E-10 VSAT=1.1E 005 VTL=2.0E5 XN=6.0 LC=5E-9
RNOIA=0.577 RNOIB=0.37 LINTNOI=1E-009 WPEMOD=0
WEB=0.0 WEC=0.0 KVTH0WE=1.0 K2WE=1.0 KU0WE=1.0 SCREF=5.0E-6
TVOFF=0.0 TVFBSDOFF=0.0 VTH0=0.25 K1=0.35 K2=0.05
K3=0 K3B=0 W0=2.5E-006 DVT0=1.8 DVT1=0.52 DVT2=-0.032
DVT0W=0 DVT1W=0 DVT2W=0 DSUB=2 MINV=0.05 VOFFL=0
DVTP0=1E-007 DVTP1=0.05 LPE0=5.75E-008 LPEB=2.3E-010
XJ=2E-008 NGATE=5E 020 NDEP=2.8E 018 NSD=1E 020 PHIN=0
CDSC=0.0002 CDSCB=0 CDSCD=0 CIT=0 VOFF=-0.15 NFACTOR=1.2
ETA0=0.05 ETAB=0 UC=-3E-011 VFB=-0.55 U0=0.032
UA=5.0E-011 UB=3.5E-018 A0=2 AGS=1E-020 A1=0 A2=1
B0=-1E-020 B1=0 KETA=0.04 DWG=0 DWB=0 PCLM=0.08
PDIBLC1=0.028 PDIBLC2=0.022 PDIBLCB=-0.005 DROUT=0.45
PVAG=1E-020 DELTA=0.01 PSCBE1=8.14E 008 PSCBE2=5E-008
RSH=0 RDSW=0 RSW=0 RDW=0 FPROUT=0.2 PDITS=0.2 PDITSD=0.23
PDITSL=2.3E 006 RSH=0 RDSW=50 RSW=150
RDW=150 RDSWMIN=0 RDWMIN=0 RSWMIN=0 PRWG=0 PRWB=6.8E-011
WR=1 ALPHA0=0.074 ALPHA1=0.005 BETA0=30 AGIDL=0.0002
BGIDL=2.1E 009 CGIDL=0.0002 EGIDL=0.8 AIGBACC=0.012
BIGBACC=0.0028 CIGBACC=0.002 NIGBACC=1 AIGBINV=0.014
BIGBINV=0.004 CIGBINV=0.004 EIGBINV=1.1 NIGBINV=3 AIGC=0.012
BIGC=0.0028 CIGC=0.002 AIGSD=0.012 BIGSD=0.0028 CIGSD=0.002 NIGC=1
POXEDGE=1 PIGCD=1 NTOX=1 VFBSDOFF=0.0 XRCRG1=12 XRCRG2=5
CGSO=6.238E-010 CGDO=6.238E-010 CGBO=2.56E-011 CGDL=2.495E-10
CGSL=2.495E-10 CKAPPAS=0.03 CKAPPAD=0.03 ACDE=1 MOIN=15
NOFF=0.9 VOFFCV=0.02 KT1=-0.37 KT1L=0.0 KT2=-0.042 UTE=-1.5
UA1=1E-009 UB1=-3.5E-019 UC1=0 PRT=0 AT=53000 FNOIMOD=1
TNOIMOD=0 JSS=0.0001 JSWS=1E-011 JSWGS=1E-010 NJS=1
IJTHSFWD=0.01 IJTHSREV=0.001 BVS=10 XJBVS=1 JSD=0.0001
JSWD=1E-011 JSWGD=1E-010 NJD=1 IJTHDFWD=0.01 IJTHDREV=0.001
BVD=10 XJBVD=1 PBS=1 CJS=0.0005 MJS=0.5 PBSWS=1 CJSWS=5E-010
MJSWS=0.33 PBSWGS=1 CJSWGS=3E-010 MJSWGS=0.33 PBD=1 CJD=0.0005
MJD=0.5 PBSWD=1 CJSWD=5E-010 MJSWD=0.33 PBSWGD=1
CJSWGD=5E-010MJSWGD=0.33 TPB=0.005 TCJ=0.001 TPBSW=0.005
TCJSW=0.001 TPBSWG=0.005 TCJSWG=0.001 XTIS=3 XTID=3 DMCG=0E-006
DMCI=0E-006 DMDG=0E-006 DMCGT=0E-007 DWJ=0.0E-008 XGW=0E-007
XGL=0E-008 RSHG=0.4 GBMIN=1E-010 RBPB=5 RBPD=15 RBPS=15 RBDB=15
RBSB=15 NGCON=1 JTSS=1E-4 JTSD=1E-4 JTSSWS=1E-10 JTSSWD=1E-10
JTSSWGS=1E-7 JTSSWGD=1E-7 NJTS=20.0 NJTSSW=20 NJTSSWG=6
VTSS=10 VTSD=10 VTSSWS=10 VTSSWD=10 VTSSWGS=2 VTSSWGD=2
XTSS=0.02 XTSD=0.02 XTSSWS=0.02 XTSSWD=0.02 XTSSWGS=0.02
XTSSWGD=0.02

24.2.6 Transistors

M<name> <drain> <gate> <source> <bulk> <modelname> [parameters]

M1 VDN VDN VSS VSS nmos W=0.6u L=0.15u
M2 VDP VDP VDD VDD pmos W=0.6u L=0.15u

24.2.7 Foundries

Each foundry has their own SPICE models bacause the transistor
parameters depend on the exact physics of the technology!

https://skywater-pdk.readthedocs.io/en/main/

https://skywater-pdk.readthedocs.io/en/main/
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24.3 Find right transistor sizes

Assume active (
𝑉𝑑𝑠 > 𝑉𝑒 𝑓 𝑓

in strong inversion, or
𝑉𝑑𝑠 > 3𝑉𝑇

in weak inversion). For diode connected transistors, that is always
true.

Weak inversion:
𝐼𝐷 = 𝐼𝐷0

𝑊

𝐿
𝑒𝑉𝑒 𝑓 𝑓 /𝑛𝑉𝑇

,
𝑉𝑒 𝑓 𝑓 ∝ ln 𝐼𝐷

Strong inversion:

𝐼𝐷 =
1
2
𝜇𝑛𝐶𝑜𝑥

𝑊

𝐿
𝑉2
𝑒 𝑓 𝑓

,
𝑉𝑒 𝑓 𝑓 ∝

√
𝐼𝐷

Operating region for a diode connected transistor only depends
on the current

24.3.1 Use unit size transistors for analog design

𝑊/𝐿 ≈∈ [4, 6, 10]
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, but should have space for two contacts

Use parallel transistors for larger W/L

Amplifiers
⇒ 𝐿 ≈ 1.2 × 𝐿𝑚𝑖𝑛

Current mirrors
⇒ 𝐿 ≈ 4 × 𝐿𝑚𝑖𝑛

Choose sizes that have been used by foundry for measurement to
match SPICE model

24.3.2 What about gm/Id ?

Weak
𝑔𝑚

𝐼𝑑
=

1
𝑛𝑉𝑇

Strong
𝑔𝑚

𝐼𝑑
=

2
𝑉𝑒 𝑓 𝑓

24.3.3 Characterize the transistors

http://analogicus.com/cnr_atr_sky130nm/mos/CNRATR_N
CH_2C1F2.html

24.4 More information

Ngspice Manual

Installing tools

24.5 Analog Design

1. Define the problem, what are you trying to solve?
2. Find a circuit that can solve the problem (papers, books)
3. Find right transistor sizes. What transistors should be weak

inversion, strong inversion, or don’t care?
4. Check operating region of transistors (.op)
5. Check key parameters (.dc, .ac, .tran)
6. Check function. Exercise all inputs. Check all control sig-

nals
7. Check key parameters in all corners. Check mismatch (Monte-

Carlo simulation)
8. Do layout, and check it’s error free. Run design rule checks

(DRC). Check layout versus schematic (LVS)

http://analogicus.com/cnr_atr_sky130nm/mos/CNRATR_NCH_2C1F2.html
http://analogicus.com/cnr_atr_sky130nm/mos/CNRATR_NCH_2C1F2.html
http://ngspice.sourceforge.net/docs/ngspice-43-manual.pdf
https://analogicus.com/aicex/started/
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9. Extract parasitics from layout. Resistance, capacitance, and
inductance if necessary.

10. On extracted parasitic netlist, check key parameters in all
corners and mismatch (if possible).

11. If everything works, then your done.

On failure, go back

24.6 Demo

https://github.com/analogicus/jnw_spice_sky130A/tree/mai
n

https://github.com/analogicus/jnw_spice_sky130A/tree/main
https://github.com/analogicus/jnw_spice_sky130A/tree/main
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25.1 CMOS Logic

Status: 0.3

25.2 Analog transistor to digital transistor

NMOS current (W = 0.4u L=0.15u) as a function of

𝑉𝐺𝑆

and
𝑉𝐷𝑆

dicex/lectures/l13/mos.py
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Gate NMOS PMOS

VDD ON OFF
VDD -> VSS X X
VSS -> VDD X X

VSS OFF ON

Gate NMOS PMOS

1 ON OFF
1 -> 0 X X
0 -> 1 X X

0 OFF ON

25.3 CMOS static logic assumptions

NMOS source is connected to low potential

𝑉𝐺𝑆 > 𝑉𝑇𝐻

when
𝑉𝐺 = 𝑉𝐷𝐷

PMOS source is connected to high potential

𝑉𝐺𝑆 < 𝑉𝑇𝐻

when
𝑉𝐺 = 0
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NOT
A A

B B

y y
A B A B
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25.4 Don’t break rules unless you know exactly
why it will be OK

25.5 Logic cells









































































































A B AB AB AB ATB
0 0 1 I o o AI ITE DM

0 1 I 0 O l ATB FB DM
1 0 T O O 1
1 1 O O f y AB AT

ATB ART
I B ATB AB FEED AT AT
1 I 1 I 0 0
I 0 I 0 0 1 Atb AT
0 I 1 0 0 I

00 0 0 1 I

25.5.1 CMOS static logic is inverting

A Y

1 0
0 1
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                                         PU
PD

OFF ON

ON

OFF Z

0

1

X

PD = Pull-down PU = Pull-up

logic => [0,1,Z,X];

[.table-separator: #000000, stroke-width(1)] [.table: margin(8)]

Pull-up series

A B Y

0 0 1
0 1 Z
1 0 Z
1 1 Z

Pull-up paralell
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A B Y

0 0 1
0 1 1
1 0 1
1 1 Z










































































































A ABY
00 1
Of X

IO X
B

1 ItY

1 ABY
00 1

A B 01 1

19

Y
ABYA
00 X

of X

B lot
111

Y ABY
OO X

A B ol
101
I l

[.table-separator: #000000, stroke-width(1)] [.table: margin(8)]

Pull-down series

A B Y

0 0 Z
0 1 Z
1 0 Z
1 1 0

Pull-down paralell

A B Y

0 0 Z
0 1 0
1 0 0
1 1 0
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A ABY
00 1
Of X

IO X
B

1 ItY

1 ABY
00 1

A B 01 1

19

Y
ABYA
00 X

of X

B lot
111

Y ABY
OO X

A B ol
101
I l

25.5.2 Rules for inverting logic

Pull-up OR
⇒

PMOS in series
⇒

POS AND
⇒

PMOS in paralell
⇒

PAP

Pull-down OR
⇒

NMOS in paralell
⇒

NOP AND
⇒

NMOS in series
⇒

NAS
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[.table-separator: #000000, stroke-width(1)] [.table: margin(8)]

Y = AB = NOT ( A AND B)

AND PU
⇒

PMOS in paralell PD
⇒

NMOS in series
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A B NOT(A AND B)

0 0 1
0 1 1
1 0 1
1 1 0

[.table-separator: #000000, stroke-width(1)] [.table: margin(8)]

Y = A + B = NOT ( A OR B)

OR PU
⇒
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PMOS in series PD
⇒

NMOS in paralell

A B NOT(A OR B)

0 0 1
0 1 0
1 0 0
1 1 0
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25.6 SR-Latch

Use boolean expressions to figure out how gates work.

Remember De-Morgan

𝐴𝐵 = 𝐴 + 𝐵
𝐴 + 𝐵 = 𝐴 · 𝐵

𝑄 = 𝑅𝑄 = 𝑅 +𝑄 = 𝑅 +𝑄

𝑄 = 𝑆𝑄 = 𝑆 +𝑄 = 𝑆 +𝑄










































































































SR QQ ND S Q
o o L L 1
01 01 I R Q
10 1 0 I

11 XX O

S E5 1

QR

Q

Q

𝑄 = 𝑅 +𝑄
,

𝑄 = 𝑆 +𝑄

S R Q ~Q

0 0 X X
0 1 0 1
1 0 1 0
1 1 Q ~Q
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25.7 D-Latch (16 transistors)

C D Q ~Q

0 X Q ~Q
1 0 0 1
1 1 1 0










































































































SR QQ S Q
o o L L
01 01 R Q
10 1 0

11 XX

S Q

QR

Q

Q

25.8 Other logic cells

What about
Y = AB

and
Y = A + B

?

Y = AB = AB

Y = A AND B = NOT( NOT( A AND B ) )

Y = A+B = A+B
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Y = A OR B = NOT( NOT( A OR B ) )

25.9 AOI22: and or invert

Y = NOT( A AND B OR C AND D)

Y = AB + CD

I 1

A B

C D

Y
A C

B b

Po A14313

5
it










































































































A

TE

É A E

A Y YE y
E E

E

A
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[.table-separator: #000000, stroke-width(1)] [.table: margin(8)]

25.10 Tristate inverter

E A Y

0 0 Z
0 1 Z
1 0 1
1 1 0










































































































A

TE

É A E

A Y YE y
E E

E

A

A

E

Y
E

[.table-separator: #000000, stroke-width(1)] [.table: margin(8)]

25.11 Mux

S Y

0 NOT(P1)
0 NOT(P1)
1 NOT(P0)
1 NOT(P0)
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D-Latch (12 transistors)
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yo XXX Bos x o3Alo

I

AN BENT X v3

always_combalways_ff always_ff

25.12 There are other types of logic

▶ True single phase clock (TSPC) logic
▶ Pass transistor logic
▶ Transmission gate logic
▶ Differential logic
▶ Dynamic logic

Consider other types of logic “rule breaking”, so you should know
why you need it.

(a)

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D8

DP1 P N

LOGIC[8]

28 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D7

DP1 P N

LOGIC[7]

27 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D6

DP1 P N

LOGIC[6]

26 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D5

DP1 P N

LOGIC[5]

25 · CUNIT

EI EO

CI CO

DP0 DP1 DN0 DN1

CK D4

DP1 P N

LOGIC[4]

24 · CUNIT

EI EO

CI CO

DP1 DN0

CK D3

DP1 P N

LOGIC[3]

23 · CUNIT

EI EO

CI CO

DP1 DN0

CK D2

DP1 P N

LOGIC[2]

22 · CUNIT

EI EO

CI CO

DP1 DN0

CK D1

DP1 P N

LOGIC[1]

21 · CUNIT

EI EO

CI CO

DP1 DN0

CK D0

DP1 P N

LOGIC[0]

20 · CUNIT

+
P

N
−

CK

VP

VN
Bootstrapped

NMOS switches

CK

CK

CK CMP

X1

X2

(b)

MN1 MN2

MN0

MP0

VDD

MN3

EO

MP1

MP2

MP3

VDD

A

P N

EI P

N

CK

(c)

MN4

MN5

MN6

MP4

VDD

P

EI

CK

DP0 DN0

VREF

MN7

MN8

MN9

MP5

VDD

N

EI

CK

DN1 DP1

VREF

(d)

MN10

B

MP6

VDD

MP7

VDD

CK
CI CO

Dynamic logic => A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR
ADC in 28-nm FDSOI for Bluetooth Low Energy Receivers

https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
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25.13 Speed

1971 1975 1983 1992 1996 2000 2006 2010 2018
Date

10 3

10 2

10 1

100

CP
U 

M
ax

 c
lo

ck
 [G

Hz
]

https://en.wikipedia.org/wiki/Microprocessor_chronology
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25.14 Flip-flops and speed









































































































yo XXX Bos x o3Alo

I

AN BENT X v3

always_combalways_ff always_ff

dicex/lib/SUN_TR_GF130N.spi:

.SUBCKT DFRNQNX1_CV D CK RN Q QN AVDD AVSS
XA0 AVDD AVSS TAPCELLB_CV
XA1 CK RN CKN AVDD AVSS NDX1_CV
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XA2 CKN CKB AVDD AVSS IVX1_CV
XA3 D CKN CKB A0 AVDD AVSS IVTRIX1_CV
XA4 A1 CKB CKN A0 AVDD AVSS IVTRIX1_CV
XA5 A0 A1 AVDD AVSS IVX1_CV
XA6 A1 CKB CKN QN AVDD AVSS IVTRIX1_CV
XA7 Q CKN CKB RN QN AVDD AVSS NDTRIX1_CV
XA8 QN Q AVDD AVSS IVX1_CV
.ENDS

Setup time: How long before clk does the data need to change

0

1
v(d)

0

1
v(ck)

0

1
v(q)

0.0 0.5 1.0 1.5 2.0 2.5
Time(dff_setup_8.csv) 1e 9

0

1
v(qn)

Hold time: How long after clk can the data change

0

1
v(d)

0

1
v(ck)

0

1
v(q)

0.0 0.5 1.0 1.5 2.0 2.5
Time(dff_hold_-40.csv) 1e 9

0

1

v(qn)

25.15 Timing analysis

Analyze arrival times of all nodes in a combinatorial circuit
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𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑗 = 𝑚𝑎𝑥 𝑗∈ 𝑓 𝑎𝑛𝑖𝑛(𝑖)𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑗+𝑡𝑝𝑑𝑖 ⇒ 𝑎 𝑗 = 𝑚𝑎𝑥 𝑗∈ 𝑓 𝑎𝑛𝑖𝑛(𝑖)𝑎 𝑗+𝑡𝑝𝑑𝑖

𝑠𝑙𝑎𝑐𝑘𝑖 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑖 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑗

Positive slack (over PVT‗)
⇒

Timing is OK Negative slack (over PVT†)

⇒

Timing is not OK

I
so

as so

97 60

98 100 30
99 130

93 40 20 40

Most paths will be fast enough

There will be some criticalpaths

that must be analysed and maybe

fixed

25.16 Timing analysis tools

Commercial Cadence Tempus

Synopsys PrimeTime

Free OpenTimer

‗ Often called clock gating
† Often called clock gating

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/tempus-timing-signoff-solution.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://github.com/OpenTimer/OpenTimer
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25.16.0.1 What is timing analysis

25.16.0.2 What do the tools need?

Input and output delay paths as a function of input transition time
and capacitive load, setup and hold time.

osu018_stdcells.lib

cell (INVX1) {
cell_footprint : inv;

area : 16;
cell_leakage_power : 0.0221741;

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html
https://www.csee.umbc.edu/courses/graduate/CMPE641/Fall08/cpatel2/slides/lect05_LIB.pdf
https://github.com/OpenTimer/OpenTimer/blob/master/example/simple/osu018_stdcells.lib
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pin(A) {
direction : input;
capacitance : 0.00932456;
rise_capacitance : 0.00932196;
fall_capacitance : 0.00932456;

}
pin(Y) {
direction : output;
capacitance : 0;
rise_capacitance : 0;
fall_capacitance : 0;
max_capacitance : 0.503808;
function : "(!A)";
timing() {

related_pin : "A";
timing_sense : negative_unate;
cell_fall(delay_template_5x5) {
index_1 ("0.005, 0.0125, 0.025, 0.075, 0.15");
index_2 ("0.06, 0.18, 0.42, 0.6, 1.2");
values ( \
"0.030906, 0.037434, 0.038584, 0.039088, 0.030318", \
"0.04464, 0.057551, 0.073142, 0.077841, 0.081003", \
"0.064368, 0.091076, 0.11557, 0.126352, 0.144944", \
"0.139135, 0.174422, 0.232659, 0.261317, 0.321043", \
"0.249412, 0.28434, 0.357694, 0.406534, 0.51187");

}

fall_transition(delay_template_5x5) {
index_1 ("0.005, 0.0125, 0.025, 0.075, 0.15");
index_2 ("0.06, 0.18, 0.42, 0.6, 1.2");
values ( \
"0.032269, 0.0648, 0.087, 0.1032, 0.1476", \
"0.036025, 0.0726, 0.1044, 0.1236, 0.183", \
"0.06, 0.0882, 0.1314, 0.1554, 0.2286", \
"0.1494, 0.1578, 0.2124, 0.2508, 0.3528", \
"0.288, 0.2892, 0.3192, 0.3576, 0.492");

}
cell_rise(delay_template_5x5) {

index_1 ("0.005, 0.0125, 0.025, 0.075, 0.15");
index_2 ("0.06, 0.18, 0.42, 0.6, 1.2");
values ( \
"0.037639, 0.056898, 0.083401, 0.104927, 0.156652", \
"0.05258, 0.083003, 0.119028, 0.141927, 0.207952", \
"0.07402, 0.112622, 0.162437, 0.191122, 0.271755", \
"0.15767, 0.201007, 0.284096, 0.331746, 0.452958", \
"0.285016, 0.326868, 0.415086, 0.481337, 0.653064");

}
rise_transition(delay_template_5x5) {
index_1 ("0.005, 0.0125, 0.025, 0.075, 0.15");
index_2 ("0.06, 0.18, 0.42, 0.6, 1.2");
values ( \
"0.031447, 0.059488, 0.0846, 0.0918, 0.138", \
"0.047167, 0.0786, 0.1044, 0.1224, 0.1734", \
"0.072, 0.096, 0.1398, 0.1578, 0.222", \
"0.1866, 0.1914, 0.2358, 0.2748, 0.3696", \
"0.3648, 0.3648, 0.384, 0.4146, 0.5388");

}
}
internal_power() {
related_pin : "A";
fall_power(energy_template_5x5) {

index_1 ("0.005, 0.0125, 0.025, 0.075, 0.15");
index_2 ("0.06, 0.18, 0.42, 0.6, 1.2");
values ( \
"0.009213, 0.004772, 0.00823, 0.018532, 0.054083", \
"0.009047, 0.005677, 0.005713, 0.015244, 0.049453", \
"0.008669, 0.006332, 0.002998, 0.01159, 0.04368", \
"0.007879, 0.007243, 0.001451, 0.004701, 0.030385", \
"0.007605, 0.007297, 0.003652, 0.000737, 0.020842");

}
rise_power(energy_template_5x5) {
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index_1 ("0.005, 0.0125, 0.025, 0.075, 0.15");
index_2 ("0.06, 0.18, 0.42, 0.6, 1.2");
values ( \
"0.023555, 0.029044, 0.041387, 0.051684, 0.087278", \
"0.023165, 0.028621, 0.039211, 0.048916, 0.083039", \
"0.023574, 0.02752, 0.036904, 0.045723, 0.077971", \
"0.024479, 0.025247, 0.032268, 0.039242, 0.066587", \
"0.024942, 0.025187, 0.029612, 0.034835, 0.057524");

}
}

}
}

25.17 Every gate must be simulated to provide
behavior over input transition and load
capacitance

25.18 All analog blocks must have associated
liberty file to describe behavior and
timing paths If you integrate analog into
digital top flow

25.19 Gate Delay

25.19.0.1 Delay definitions

Parameter Name Description

t_pdr max rising propagation
delay

input to rising output cross
50 %

t_pdf max falling propagation
delay

input to falling output cross
50 %

t_pd propagation delay t_pdf = (t_pdr + t_pdf)/2
t_r rise time 20 % to 80 %

Parameter Name Description

t_f fall time 80 % to 20 %
t_cdr min rising contamination

delay
input to rising output cross
50 %

t_cdf min falling contamination
delay

input to falling output cross
50 %

t_cd contamination delay t_cd = (t_cdr + t_cdf)/2

25.20 Delay estimation

How can we get a resonably accurate hand calculation model of
delay?

𝐶 ≈ 1 fF/𝜇m
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𝑅 ≈ 1 kΩ𝜇m

25.20.0.1 Inverter with inverter load

𝐶 ≈ 1 fF/𝜇m

,
𝑅 ≈ 1 kΩ𝜇m

𝑡𝑝𝑑 = 𝑅 × 6𝐶 = 6𝑅𝐶

𝑡𝑝𝑑 = 6 × 1 × 103 × 1 × 10−15 s

𝑡𝑝𝑑 = 6 × 10−12 = 6 ps

25.21 Elmore Delay

𝑡𝑝𝑑 ≈
∑

nodes
𝑅nodes−𝑡𝑜−𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑖

= 𝑅1𝐶1 + (𝑅1 + 𝑅2)𝐶2 + ... + (𝑅1 + 𝑅2 + ... + 𝑅𝑁 )𝐶𝑁

Good enough for hand calculation

25.22 Delay components

Parasitic delay (p)

p = 9 or 12 RC

Independent of load capacitance

Effort delay (f)

f = 5h RC

Proportional to load capacitance

Let’s use process independent unit

𝑑 =
𝑑𝑟𝑒𝑎𝑙
𝜏

,
𝜏 = 3𝑅𝐶
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Parasitic delay
⇒ 𝑝 = 12𝑅𝐶/3𝑅𝐶 = 4

Effort delay

⇒ 𝑓 = 5ℎ𝑅𝐶/3𝑅𝐶 =
5
3
ℎ

Delay

⇒ 𝑑 = 𝑓 + 𝑝 =
5
3
ℎ + 4

Logical effort (g) is the ratio of the input capacitance of a gate to
the input capacitance of an inverter delivering the same output
current

Parasitic delay
⇒ 𝑝 = 4

Logic effort

⇒ 𝑔 =
5
3

Electrical effort
⇒ ℎ = 1

Effort
⇒ 𝑓 = 𝑔ℎ

Delay

⇒ 𝑑 = 𝑓 + 𝑝 = 𝑔ℎ + 𝑝 = 5
2
3

Real delay

⇒ 𝑑 = 5
2
3
× 3 ps = 17 ps

Term Stage Expression Path Expression

number of stages 1 N

logical effort g G =
∏

(gi)

electrical effort h = Cin

Cout
H =

Cout(path)

Cin(path)

branching effort b =
Conpath+Coffpath

Conpath
B =

∏
bi

effort f = gh F = GBH

effort delay f DF =
∑

fi

parsitic delay p P =
∑

pi

delay d = f + p D =
∑

di = DF + P
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25.23 Modern IC timing analysis requires
computers with advanced programs‡

25.24 Best number of stages

25.25 Which has shortest delay?

I

64

1 4 16

64

H It 64

G IT si TIC T

B 1

F GBH 64

Path effort delay

De E Fi

a f 64 D 64 1

b DE 4 4 t 4 12
P I t t t I 3

Term Stage Expression Path Expression

number of stages 1 N

logical effort g G =
∏

(gi)

electrical effort h = Cin

Cout
H =

Cout(path)

Cin(path)

branching effort b =
Conpath+Coffpath

Conpath
B =

∏
bi

effort f = gh F = GBH

effort delay f DF =
∑

fi

parsitic delay p P =
∑

pi

delay d = f + p D =
∑

di = DF + P

𝐻 = 𝐶𝑐𝑜𝑢𝑡/𝐶𝑖𝑛 = 64

𝐺 =
∏

𝑔𝑖 =
∏

1 = 1

‡ Often called power gating
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𝐵 = 1

𝐹 = 𝐺𝐵𝐻 = 64

One stage
𝑓 = 64 ⇒ 𝐷 = 64 + 1 = 65

Three stage with
𝑓 = 4

𝐷𝐹 = 12, 𝑝 = 3 ⇒ 𝐷 = 12 + 3 = 15

For close to optimal delay, use

𝑓 = 4

(Used to be
𝑓 = 𝑒

)

25.26 Trends
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25.27 Attack vector

module counter(
output logic [WIDTH-1:0] out,
input logic clk,
input logic reset
);

parameter WIDTH = 8;

logic [WIDTH-1:0] count;
always_comb begin

count = out + 1;
end

always_ff @(posedge clk or posedge reset) begin
if (reset)
out <= 0;

else
out <= count;

end

endmodule // counter
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.SUBCKT counter out_7 out_6 out_5 out_4 out_3 out_2 out_1 out_0 clk reset AVDD AVSS

* SPICE netlist generated by Yosys 0_9 (git sha1 1979e0b1, gcc 10_3_0-1ubuntu1~20_10 -fPIC -Os)

X0 out_2 1 AVDD AVSS IVX1_CV

X1 out_3 2 AVDD AVSS IVX1_CV

X2 out_4 3 AVDD AVSS IVX1_CV

X3 out_5 4 AVDD AVSS IVX1_CV

X4 out_6 5 AVDD AVSS IVX1_CV

X5 out_0 6 AVDD AVSS IVX1_CV

X6 out_1 7 AVDD AVSS IVX1_CV

X7 6 7 8 AVDD AVSS NRX1_CV

X8 out_0 out_1 9 AVDD AVSS NDX1_CV

X9 1 9 10 AVDD AVSS NRX1_CV

X10 10 11 AVDD AVSS IVX1_CV

X11 2 11 12 AVDD AVSS NRX1_CV

X12 out_3 10 13 AVDD AVSS NDX1_CV

X13 out_3 10 14 AVDD AVSS NRX1_CV

X14 12 14 15 AVDD AVSS NRX1_CV

X15 3 13 16 AVDD AVSS NRX1_CV

X16 16 17 AVDD AVSS IVX1_CV

X17 out_4 12 18 AVDD AVSS NRX1_CV

X18 16 18 19 AVDD AVSS NRX1_CV

X19 4 17 20 AVDD AVSS NRX1_CV

X20 out_5 16 21 AVDD AVSS NDX1_CV

X21 out_5 16 22 AVDD AVSS NRX1_CV

X22 20 22 23 AVDD AVSS NRX1_CV

X23 5 21 24 AVDD AVSS NRX1_CV

X24 out_6 20 25 AVDD AVSS NRX1_CV

X25 24 25 26 AVDD AVSS NRX1_CV

X26 out_7 24 27 AVDD AVSS NRX1_CV

X27 out_7 24 28 AVDD AVSS NDX1_CV

X28 28 29 AVDD AVSS IVX1_CV

X29 27 29 30 AVDD AVSS NRX1_CV

X30 out_0 out_1 31 AVDD AVSS NRX1_CV

X31 8 31 32 AVDD AVSS NRX1_CV

X32 out_2 8 33 AVDD AVSS NRX1_CV

X33 10 33 34 AVDD AVSS NRX1_CV

X34 35 clk AVSS reset out_0 35 AVDD AVSS DFSRQNX1_CV

X35 32 clk AVSS reset out_1 36 AVDD AVSS DFSRQNX1_CV

X36 34 clk AVSS reset out_2 37 AVDD AVSS DFSRQNX1_CV

X37 15 clk AVSS reset out_3 38 AVDD AVSS DFSRQNX1_CV
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X38 19 clk AVSS reset out_4 39 AVDD AVSS DFSRQNX1_CV

X39 23 clk AVSS reset out_5 40 AVDD AVSS DFSRQNX1_CV

X40 26 clk AVSS reset out_6 41 AVDD AVSS DFSRQNX1_CV

X41 30 clk AVSS reset out_7 42 AVDD AVSS DFSRQNX1_CV

V0 count_0 35 DC 0

V1 43 out_2 DC 0

V2 44 out_3 DC 0

V3 count_3 15 DC 0

V4 45 out_4 DC 0

V5 count_4 19 DC 0

V6 46 out_5 DC 0

V7 count_5 23 DC 0

V8 47 out_6 DC 0

V9 count_6 26 DC 0

V10 48 out_7 DC 0

V11 count_7 30 DC 0

V12 49 out_0 DC 0

V13 50 out_1 DC 0

V14 count_1 32 DC 0

V15 count_2 34 DC 0

.ENDS

time

tran1: * gate voltage sweep

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0

ns

−0.0

50.0

100.0

150.0

200.0

250.0

300.0

V dor

dicex/sim/verilog/counter_sv/counter_attack_tb.cir

VDDA AVDD_ATTACK 0 dc 0.5 pulse(1.5 0.6 tcd trf trf tapw taper)



25.27 Attack vector 427

time

tran1: * gate voltage sweep

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0

ns

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V xdut.count_0avdd_attack

time

tran1: * gate voltage sweep

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0

ns

−50.0

0.0

50.0

100.0

150.0

200.0

250.0

300.0

V dordo
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25.28 Pick two










































































































            

Speed

Power

Area (cost)

25.29 Power

25.30 What is power?

Instantanious power:

𝑃(𝑡) = 𝐼(𝑡)𝑉(𝑡)

Energy : ∫ 𝑇

0
𝑃(𝑡)𝑑𝑡

[J]
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Average power:
1
𝑇

∫ 𝑇

0
𝑃(𝑡)𝑑𝑡

[W or J/s]

25.31 Power dissipated in a resistor

Ohm’s Law
𝑉𝑅 = 𝐼𝑅𝑅

𝑃𝑅 = 𝑉𝑅𝐼𝑅 = 𝐼2𝑅𝑅 =
𝑉2
𝑅

𝑅

25.32 Charging a capacitor to VDD

Capacitor differential equation

𝐼𝐶 = 𝐶
𝑑𝑉

𝑑𝑡

𝐸𝐶 =

∫ ∞

0
𝐼𝐶𝑉𝐶𝑑𝑡 =

∫ ∞

0
𝐶
𝑑𝑉

𝑑𝑡
𝑉𝐶𝑑𝑡 =

∫ 𝑉𝐶

0
𝐶𝑉𝑑𝑉 = 𝐶

[
𝑉2

2

]𝑉𝐷𝐷
0

𝐸𝐶 =
1
2
𝐶𝑉2

𝐷𝐷

25.33 Energy to charge a capacitor to a voltage
VDD

𝐸𝐶 =
1
2
𝐶𝑉2

𝐷𝐷

𝐼𝑉𝐷𝐷 = 𝐼𝐶 = 𝐶
𝑑𝑉

𝑑𝑡

𝐸𝑉𝐷𝐷 =

∫ ∞

0
𝐼𝑉𝐷𝐷𝑉𝐷𝐷𝑑𝑡 =

∫ ∞

0
𝐶
𝑑𝑉

𝑑𝑡
𝑉𝐷𝐷𝑑𝑡 = 𝐶𝑉𝐷𝐷

∫ 𝑉𝐷𝐷

0
𝑑𝑉 = 𝐶𝑉2

𝐷𝐷

Only half the energy is stored on the capacitor, the rest is dissipated
in the PMOS
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25.34 Discharging a capacitor to 0

𝐸𝐶 =
1
2
𝐶𝑉2

𝐷𝐷

Voltage is pulled to ground, and the power is dissipated in the
NMOS

25.35 Power consumption of digital circuits

𝐸𝑉𝐷𝐷 = 𝐶𝑉2
𝐷𝐷

In a clock distribution network (chain of inverters), every output is
charged once per clock cycle

𝑃𝑉𝐷𝐷 = 𝐶𝑉2
𝐷𝐷 𝑓

25.36 Sources of power dissipation in CMOS
logic

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐

Dynamic power dissipation

Charging and discharging load capacitances

short-circut current, when PMOS and NMOS conduct at the same
time

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 + 𝑃𝑠ℎ𝑜𝑟𝑡𝑐𝑖𝑟𝑐𝑢𝑖𝑡

Static power dissipation

Subthreshold leakage in OFF transistors

Gate leakage (tunneling current) through gate dielectric

Source/drain reverse bias PN junction leakage

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 =
(
𝐼𝑠𝑢𝑏 + 𝐼𝑔𝑎𝑡𝑒 + 𝐼𝑝𝑛

)
𝑉𝐷𝐷
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25.37 Switching Power in logic gates

Only output node transitions from low to high consume power
from

𝑉𝐷𝐷

Define
𝑃𝑖

to be the probability that a node is 1

Define
𝑃𝑖 = 1 − 𝑃𝑖

to be the probability that a node is 0

Define activity factor (
𝛼𝑖

) as the probability of switching a node from 0 to 1

If the probabilty is uncorrelated from cycle to cycle

𝛼𝑖 = 𝑃𝑖𝑃𝑖

25.38 Switching probability

Random data
𝑃 = 0.5

,
𝛼 = 0.25

Clocks
𝛼 = 1

Gate PY

AND2 PAPB

OR2 1 − P̄AP̄B

NAND2 1 − PAPB

NOR2 P̄AP̄B

XOR2 PAP̄B + P̄APB
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Gate PY

AND2 PAPB

OR2 1 − P̄AP̄B

NAND2 1 − PAPB

NOR2 P̄AP̄B

XOR2 PAP̄B + P̄APB

I
Y

C z
b

Atte F AI E ABCD

DI 5 E

DE 5 E

PA Pr PC PD 0,5 P

Py
Pt l P P I t
Pz l P P I I

Is
Py t t to

a toll El it

Assume
𝑃 = 𝑃𝐴 = 𝑃𝐵 = 𝑃𝐶 = 𝑃𝐷 =

1
2

𝑃𝑋 = 𝑃𝑍 = 1 − 𝑃𝑃 = 1 − 1
4
=

3
4

𝑃𝑋 = 𝑃𝑌 =
1
4

𝑃𝑌 =
1
4
× 1

4
=

1
16

𝛼 =
1
16

(
1 − 1

16

)
=

15
16

1
16

=
15
256
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Gate PY

AND2 PAPB

OR2 1 − P̄AP̄B

NAND2 1 − PAPB

NOR2 P̄AP̄B

XOR2 PAP̄B + P̄APB

I
Y

C z
b

Atte F AI E ABCD

DI 5 E

DE 5 E

PA Pr PC PD 0,5 P

Py
Pt l P P I t
Pz l P P I I

Is
Py t t to

a toll El it

AB + CD

Use De Morgan first
𝐴 + 𝐵 = 𝐴 · 𝐵

AB + CD = ABCD = 𝐴𝐵𝐶𝐷

⇒ 𝑃𝑌 = 𝑃𝐴𝑃𝐵𝑃𝐶𝑃𝐷 =

(
1
2

)4

=
1
16

𝑃𝑡𝑜𝑡 = 𝛼𝐶𝑉2
𝐷𝐷 𝑓

25.39 Strategies to reduce dynamic power

1. Stop clock
2. Stop activity
3. Reduce clock frequency
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4. Turn off VDD
5. Reduce VDD
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25.39.1 Stop clock §
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            Enable 
Logic

Clk in

Clk out

Clk out

25.39.2 Stop activity












































































































D Q

Lo

yo XXX Bos x o3Alo

I

AID BED XD

            Enable 
Logic

Clk in

Clk out

Clk out

§ Often called clock gating



25.39 Strategies to reduce dynamic power 435

25.39.3 Reduce frequency














































































































YO MET BO X o3Alo

tykes

as

Ef Gig

Clk out

 

ClkB

 

ClkA

              

ClkB
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ClkA

25.39.4 Turn off power supply ¶
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25.39.4.1 Reduce power supply
















































































I 1 1 1 1 1

rook

it

                

Slow logic Level 
shifter
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VDDH

VDDL

¶ Often called power gating
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25.39.4.2 Energy-Delay Product

𝐸𝐷𝑃 = 𝑘
𝐶2𝑉3

𝐷𝐷

(𝑉𝐷𝐷 −𝑉𝑡)1 to 2

Differentiating with respect to

𝑉𝐷𝐷

and setting the result to
0

it’s possible to work out that

𝑉𝐷𝐷−𝑜𝑝𝑡 =
3

3 − 1 to 2
𝑉𝑡 ∈ [1.5, 3]𝑉𝑡

25.40 Wires

25.41 Wire geometry

Pitch = w + s

Aspect ratio (AR) = t/w

These days
𝐴𝑅 ≈ 2

25.42 Metal stack

Often 5 - 10 layers of metal

Metal Material Thickness Purpose

Metal 1 Copper Thin in gate routing
Metal 3 - 5 Copper Thicker Between gates

routing
RDL Aluminium Ultra tick Can tolerate high

forces during wire
bonding.
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25.43 Metal routing rules on IC

Odd numbers metals
⇒

Horizontal routing (as far as possible)

Even numbers metals
⇒

Vertical routing (as far as possible)

25.44 Modeling Interconnect

Resistance narrow size impedes flow

Capacitance through under the leaky pipes

Inductance paddle wheel intertia opposes changes in flow rate

25.45 Lumped model

Use 1-segment
𝜋

-model for Elmore delay
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C/2 R C/2
---/\/\/\---
| |
--- ---
--- ---
| |
--- ---
- -

25.46 Wire resistance

resistivity ⇒ 𝜌 [Ωm]

𝑅 =
𝜌

𝑡

𝑙

𝑤
= 𝑅□

𝑙

𝑤

𝑅□ = sheet resistance [Ω/□]

To find resistance, count the number of squares

𝑅 = 𝑅□ × # of squares

25.47 Most wires: Copper

𝑅𝑠ℎ𝑒𝑒𝑡−𝑚1 ≈ 1.7𝜇Ω𝑐𝑚
200𝑛𝑚

≈ 0.1Ω/□

𝑅𝑠ℎ𝑒𝑒𝑡−𝑚9 ≈ 1.7𝜇Ω𝑐𝑚
3𝜇𝑚

≈ 0.006Ω/□

Pitfalls

Cu atoms diffuse into silicon and can cause damage

Must be surrounded by a diffusion barrier

Difficult high current densities (mA/

𝜇

m) and high temperature (125 C)



25.48 Contacts 439

25.48 Contacts

Contacts and vias can have 2-20

Ω

Must use many contacts/vias for high current wires

25.49 Wire Capacitance

Dense wires has about
0.2 fF/𝜇m

25.50 FSM

25.51 Mealy machine

An FSM where outputs depend on current state and inputs

Mealy machine

An FSM where outputs depend on current 
state and inputs

Carsten Wulff 2021 4
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25.52 Moore machine

An FSM where outputs depend on current state

Moore machine

An FSM where outputs depend on current 
state

Carsten Wulff 2021 5

Carefulwith
output comb
for analogsystem

in y glitches

fates
out

so I t

CLK

25.53 Mealy versus Moore

Parameter Mealy Moore

Outputs depend on input and
current state

output depend on current
state

States Same, or fewer states than
Moore

Inputs React faster to inputs Next clock cycle
Outputs Can be asynchronous Synchronous
States Generally requires fewer

states for synthesis
More states than Mealy

Counter A counter is not a mealy
machine

A counter is a Moore
machine

Design Can be tricky to design Easy

25.53.1 dicex/sim/counter_sv/counter.v

module counter(
output logic [WIDTH-1:0] out,
input logic clk,
input logic reset
);

parameter WIDTH = 8;
logic [WIDTH-1:0] count;

always_comb begin
count = out + 1;

end

always_ff @(posedge clk or posedge reset) begin
if (reset)
out <= 0;

else
out <= count;

end

endmodule // counter
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25.54 Battery charger FSM

25.54.1 Li-Ion batteries

Most Li-Ion batteries can tolerate 1 C during fast charge

For Biltema 18650 cells:

1 C = 2950 mA

0.1 C = 295 mA

Most Li-Ion need to be charged to a termination voltage of 4.2 V
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Too high termination voltage, or too high charging current can
cause growth of lithium dendrites, that short + and -. Will end
in flames. Always check manufacturer datasheet for charging
curves and voltages

25.54.2 Battery charger - Inputs

Voltage above
𝑉𝑇𝑅𝐼𝐶𝐾𝐿𝐸

Voltage close to
𝑉𝑇𝐸𝑅𝑀

If voltage close to
𝑉𝑇𝐸𝑅𝑀

and current is close to
𝐼𝑇𝐸𝑅𝑀

, then charging complete

If charging complete, and voltage has dropped (

𝑉𝑅𝐸𝐶𝐻𝐴𝑅𝐺𝐸

), then start again

25.54.3 Battery charger - States

Trickle charge (0.1 C)

Fast charge (1 C)

Constant voltage

Charging complete
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Trickle charge

vtrkl = 0

Fast charge

vtrkl = 1

vterm = 0

Const. Voltagevterm = 1

iterm = 0

Complete

iterm = 1

vrchrg = 1

vrchrg = 0

25.54.3.1 One way to draw FSMs - Graphviz

digraph finite_state_machine {

rankdir=LR;

size="8,5"

node [shape = doublecircle, label="Trickle charger", fontsize=12] trkl;

node [shape = circle, label="Fast charge", fontsize=12] fast;

node [shape = circle, label="Const. Voltage", fontsize=12] vconst;

node [shape = circle, label="Done", fontsize=12] done;

trkl -> trkl [label="vtrkl = 0"];

trkl -> fast [label="vtrkl = 1"];

fast -> fast [label="vterm = 0"];

fast -> vconst [label="vterm = 1"];

vconst-> vconst [label="iterm = 0"];

vconst-> done [label="iterm = 1"];

done-> done [label="vrchrg = 0"];

done-> trkl [label="vrchrg = 1"];

}

dot -Tpdf bcharger.dot -o bcharger.pdf
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Trickle charge

vtrkl = 0

Fast charge

vtrkl = 1

vterm = 0

Const. Voltagevterm = 1

iterm = 0

Complete

iterm = 1

vrchrg = 1

vrchrg = 0

module bcharger( output logic trkl,
output logic fast,
output logic vconst,
output logic done,
input logic vtrkl,
input logic vterm,
input logic iterm,
input logic vrchrg,
input logic clk,
input logic reset

);

parameter TRLK = 0, FAST = 1, VCONST = 2, DONE=3;
logic [1:0] state;
logic [1:0] next_state;

//- Figure out the next state
always_comb begin

case (state)
TRLK: next_state = vtrkl ? FAST : TRLK;
FAST: next_state = vterm ? VCONST : FAST;
VCONST: next_state = iterm ? DONE : VCONST;
DONE: next_state = vrchrg ? TRLK :DONE;
default: next_state = TRLK;

endcase // case (state)
end

//- Control output signals
always_ff @(posedge clk or posedge reset) begin

if(reset) begin
state <= TRLK;
trkl <= 1;
fast <= 0;
vconst <= 0;
done <= 0;

end
else begin

state <= next_state;
case (state)

TRLK: begin
trkl <= 1;
fast <= 0;
vconst <= 0;
done <= 0;

end
FAST: begin

trkl <= 0;
fast <= 1;
vconst <= 0;
done <= 0;

end
VCONST: begin

trkl <= 0;
fast <= 0;
vconst <= 1;
done <= 0;

end
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DONE: begin
trkl <= 0;
fast <= 0;
vconst <= 0;
done <= 1;

end
endcase // case (state)

end // else: !if(reset)
end

endmodule

25.54.3.2 Synthesize FSM with yosys

dicex/sim/verilog/bcharger_sv/bcharger.ys

# read design
read_verilog -sv bcharger.sv;
hierarchy -top bcharger;

# the high-level stuff
fsm; opt; memory; opt;

# mapping to internal cell library
techmap; opt;
synth;
opt_clean;

# mapping flip-flops
dfflibmap -liberty ../../../lib/SUN_TR_GF130N.lib

# mapping logic
abc -liberty ../../../lib/SUN_TR_GF130N.lib

# write synth netlist
write_verilog bcharger_netlist.v
read_verilog ../../../lib/SUN_TR_GF130N_empty.v
write_spice -big_endian -neg AVSS -pos AVDD -top bcharger bcharger_netlist.sp

# write dot so we can make image
show -format dot -prefix bcharger_synth -colors 1 -width -stretch
clean
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26.1 Mixed Signal Simulation in ngspice

Status: 0.3

26.2 Digital simulation

▶ The order of execution of events at the same time-step do
not matter

▶ The system is causal. Changes in the future do not affect
signals in the past or the now

There are both commercial an open source tools for digital simula-
tion. If you’ve never used a digital simulator, then I’d recommend
you start with iverilog. I’ve made some examples at dicex.

Commercial

▶ Cadence Excelium
▶ Siemens Questa
▶ Synopsys VCS

Open Source

▶ iverilog/vpp
▶ Verilator
▶ SystemDotNet

Below is an example of a counter in SystemVerilog. The code can
be found at counter_sv.

In the always_comb section we code what will become the combi-
natorial logic. In the always_ff section we code what will become
our registers.

module dig(
input wire clk,
input wire reset,
output logic [4:0] b
);

logic rst = 0;

always_ff @(posedge clk) begin
if(reset)
rst <= 1;

else
rst <= 0;

end

always_ff @(posedge clk) begin

https://github.com/wulffern/dicex/tree/main/project/verilog
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://www.synopsys.com/verification/simulation/vcs.html
https://github.com/steveicarus/iverilog
https://www.veripool.org/verilator/
https://sourceforge.net/projects/systemdotnet/
https://github.com/wulffern/dicex/tree/main/sim/verilog/counter_sv
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if(rst)
b <= 0;

else
b <= b + 1;

end // dig

endmodule

26.3 Transient analog simulation

Analog simulation is different. There is no quantized time step.
How fast “things” happen in the circuit is entirely determined by
the time constants, change in voltage, and change in current in the
system.

It is possible to have a fixed time-step in analog simulation, for
example, we say that nothing is faster than 1 fs, so we pick that
as our time step. If we wanted to simulate 1 s, however, that’s at
least 1e15 events, and with 1 event per microsecond on a computer
it’s still a simulation time of 31 years. Not a viable solution for all
analog circuits.

Analog circuits are also non-linear, properties of resistors, capac-
itors, inductors, diodes may depend on the voltage or current
across, or in, the device. Solving for all the non-linear differential
equations is tricky.

An analog simulation engine must parse spice netlist, and setup
partial/ordinary differential equations for node matrix

The nodal matrix could look like the matrix below, 𝑖 are the currents,
𝑣 the voltages, and 𝐺 the conductances between nodes.

©­­­­«
𝐺11 𝐺12 · · · 𝐺1𝑁
𝐺21 𝐺22 · · · 𝐺2𝑁
...

...
. . .

...

𝐺𝑁1 𝐺𝑁2 · · · 𝐺𝑁𝑁

ª®®®®¬
©­­­­«
𝑣1
𝑣2
...

𝑣𝑁

ª®®®®¬
=

©­­­­«
𝑖1
𝑖2
...

𝑖𝑁

ª®®®®¬
The simulator, and devices model the non-linear current/voltage
behavior between all nodes

as such, the 𝐺’s may be non-linear functions, and include the 𝑣’s
and 𝑖’s.

Transient analysis use numerical methods to compute time evolu-
tion

The time step is adjusted automatically, often by proprietary algo-
rithms, to trade accuracy and simulation speed.

The numerical methods can be forward/backward Euler, or the
others listed below.

▶ Euler

https://aquaulb.github.io/book_solving_pde_mooc/solving_pde_mooc/notebooks/02_TimeIntegration/02_01_EulerMethod.html
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▶ Runge-Kutta
▶ Crank-Nicolson
▶ Gear

If you wish to learn more, I would recommend starting with the
original paper on analog transient analysis.

SPICE (Simulation Program with Integrated Circuit Emphasis)
published in 1973 by Nagel and Pederson

The original paper has spawned a multitude of commercial, free
and open source simulators, some are listed below.

If you have money, then buy Cadence Spectre. If you have no
money, then start with ngspice.

Commercial - Cadence Spectre - Siemens Eldo - Synopsys
HSPICE

Free - Aimspice - Analog Devices LTspice - xyce

Open Source - ngspice

 

Digital Analog
Simulator Simulator

Event Timester Control

26.4 Demo

Tutorial at http://analogicus.com/jnw_sv_sky130a/

Repository at https://github.com/wulffern/jnw_sv_sky130a

Assumes knowledge of Tutorial

https://aquaulb.github.io/book_solving_pde_mooc/solving_pde_mooc/notebooks/02_TimeIntegration/02_02_RungeKutta.html
https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://ieeexplore.ieee.org/document/1083221
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/ERL-m-382.pdf
https://www.cadence.com/ko_KR/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-simulation-platform.html
https://eda.sw.siemens.com/en-US/ic/eldo/
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
http://aimspice.com
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://xyce.sandia.gov
http://ngspice.sourceforge.net
http://analogicus.com/jnw_sv_sky130a/
https://github.com/wulffern/jnw_sv_sky130a
https://analogicus.com/aic2025/2025/01/01/Sky130nm-tutorial.html
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26.5 The circuit

In design/JNW_SV_SKY130A/JNWSW_CM.sch you’ll find a current
mirror, and a 5-bit current DAC.

What we want from the digital is to control the binary value of the
current DAC.

26.6 The digital code

The digital code is shown below. The clk controls the stepping,
while the reset sets the output b=0. When reset is off, then the b
increments.

module dig(
input wire clk,
input wire reset,
output logic [4:0] b
);

logic rst = 0;

always_ff @(posedge clk) begin
if(reset)
rst <= 1;

else
rst <= 0;

end

always_ff @(posedge clk) begin
if(rst)
b <= 0;

else
b <= b + 1;

end // dig
endmodule
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26.7 Compile RTL

The first thing we need to do is to translate the verilog into a
compiled object that can be used in ngspice.

cd sim/JNWSW_CM
ngspice vlnggen ../../rtl/dig.v

26.8 Import object into SPICE file

I’m lazy. So I don’t want to do the same thing multiple times. As
such, I’ve written a small script to help me instanciate the verilog

perl ../../tech/script/gensvinst ../../rtl/dig.v dig

The script generates an svninst.spi file. The first section imports
the digital compiled library

adut [clk
+ reset
+ ]
+ [b.4
+ b.3
+ b.2
+ b.1
+ b.0
+ ] null dut
.model dut d_cosim
+ simulation="../dig.so" delay=10p

Turns out that ngspice needs the digital inputs and outputs to
be connected to something to calculate them (I think), so connect
some resistors

* Inputs
Rsvi0 clk 0 1G
Rsvi1 reset 0 1G

* Outputs
Rsvi2 b.4 0 1G
Rsvi3 b.3 0 1G
Rsvi4 b.2 0 1G
Rsvi5 b.1 0 1G
Rsvi6 b.0 0 1G

For the busses I find it easier to read the value as a real, so translate
the buses from digital b[4:0] to a real value dec_b

E_STATE_b dec_b 0 value={( 0
+ + 16*v(b.4)/AVDD
+ + 8*v(b.3)/AVDD
+ + 4*v(b.2)/AVDD
+ + 2*v(b.1)/AVDD
+ + 1*v(b.0)/AVDD
+)/1000}
.save v(dec_b)
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26.9 Import in testbench

An example testbench can be seen below (sim/JNWSW_-
CM/tran.spi)

...

.include ../xdut.spi

.include ../svinst.spi

* Translate names
VB0 b.0 b<0> dc 0
VB1 b.1 b<1> dc 0
VB2 b.2 b<2> dc 0
VB3 b.3 b<3> dc 0
VB4 b.4 b<4> dc 0

...

26.10 Override default digital output voltage

We can override the output dac from digital to analog to ensure
that the digital signals have the right levels

*- Override the default digital output bridge.
pre_set auto_bridge_d_out =

+ ( ".model auto_dac dac_bridge(out_low =te 0.0 out_high = 1.8)"
+ "auto_bridge%d [ %s ] [ %s ] auto_dac" )

26.11 Running

You can run the whole thing with

cd sim/JNWSW_CM/
make typical
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Attention Is All You Need

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

Neural Nets 3blue1brown

𝑎𝑙+1 = 𝜎(𝑊𝑙𝑎𝑙 + 𝑏𝑙)

A NN consists of addition, multiplication, and a non-linear func-
tion

https://arxiv.org/abs/1706.03762
https://www.3blue1brown.com/topics/neural-networks
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y = 𝜎

©­­­­«

𝑤11 𝑤12 . . . 𝑤1𝑛
𝑤21 𝑤22 . . . 𝑤2𝑛
...

...
. . .

...

𝑤𝑚1 𝑤𝑚2 . . . 𝑤𝑚𝑛



𝑥1
𝑥2
...

𝑥𝑛

 +

𝑏1
𝑏2
...

𝑏𝑚


ª®®®®¬

OA(𝑥,𝑦,𝑘) = 𝑓

(
𝑅−1∑
𝑖=0

𝑆−1∑
𝑗=0

𝐶−1∑
𝑐=0

IA(𝑥+𝑖 ,𝑦+𝑗 ,𝑐) ×𝑊(𝑖 , 𝑗 ,𝑐,𝑘)

)

Assume N neurons

▶ N multiplications per neuron
▶ N + 1 additions per neuron
▶ 1 sigmoid per neuron

For efficient inference, additions and multiplications should be
low power!
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27.0.1 Kirchoff’s voltage law

The directed sum of the potential differences around
any closed loop is zero

𝑉1 +𝑉2 +𝑉3 +𝑉4 = 0
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27.0.2 Kirchoff’s current law

The algebraic sum of currents in a network of conduc-
tors meeting at a point is zero

𝑖1 + 𝑖2 + 𝑖3 + 𝑖4 = 0
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27.0.3 Charge concervation

See Charge concervation on Wikipedia

Qy V4Ci 2 03

Q VIC qucY V3
03036

a a a a

𝑄4 = 𝑄1 +𝑄2 +𝑄3

𝑉4 =
𝐶1𝑉1 + 𝐶2𝑉2 + 𝐶3𝑉3

𝐶1 + 𝐶2 + 𝐶3

https://en.wikipedia.org/wiki/Charge_conservation
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27.1 Multiplication

27.1.1 Digital capacitance

𝑉4 =
𝐶1𝑉1 + 𝐶2𝑉2 + 𝐶3𝑉3

𝐶1 + 𝐶2 + 𝐶3

𝑉𝑂 =
𝐶1
𝐶𝑇𝑂𝑇

𝑉1 + · · · + 𝐶𝑁

𝐶𝑇𝑂𝑇
𝑉𝑁

Make capacitors digitally controlled, then

𝑤1 =
𝐶1
𝐶𝑇𝑂𝑇

Might have a slight problem with variable gain as a function of
total capacitance

27.1.2 Mixing

𝐼𝑀1 = 𝐺𝑚𝑉𝐺𝑆

𝐼𝑜 = 𝐼𝑀1𝑡𝑖𝑛𝑝𝑢𝑡
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27.1.3 Translinear principle

27.1.3.1 MOSFET in sub-threshold

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
vgate

10 9

10 8

10 7

10 6

10 5

10 4

10 3

i(vcur)

𝐼 = 𝐼𝐷0
𝑊

𝐿
𝑒(𝑉𝐺𝑆−𝑉𝑡ℎ)/𝑛𝑈𝑇 ,𝑈𝑇 =

𝑘𝑇

𝑞

𝐼 = ℓ 𝑒𝑉𝐺𝑆/𝑛𝑈𝑇 , ℓ = 𝐼𝐷0
𝑊

𝐿
𝑒−𝑉𝑡ℎ/𝑛𝑈𝑇

𝑉𝐺𝑆 = 𝑛𝑈𝑇 ln
(
𝐼

ℓ

)

Il Iz Is It

𝑉1 +𝑉2 = 𝑉3 +𝑉4

𝑛𝑈𝑇

[
ln

(
𝐼1
ℓ1

)
+ ln

(
𝐼2
ℓ2

)]
= 𝑛𝑈𝑇

[
ln

(
𝐼3
ℓ3

)
+ ln

(
𝐼4
ℓ4

)]
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ln
(
𝐼1𝐼2
ℓ1ℓ2

)
= ln

(
𝐼3𝐼4
ℓ3ℓ4

)
𝐼1𝐼2
ℓ1ℓ2

=
𝐼3𝐼4
ℓ3ℓ4

𝐼1𝐼2 = 𝐼3𝐼4 , if ℓ1ℓ2 = ℓ3ℓ4

𝐼1𝐼2 = 𝐼3𝐼4

𝐼1 = 𝐼𝑎 ,𝐼2 = 𝐼𝑏 + 𝑖𝑏 ,𝐼3 = 𝐼𝑏 ,𝐼4 = 𝐼𝑎 + 𝑖𝑎

𝐼𝑎(𝐼𝑏 + 𝑖𝑏) = 𝐼𝑏(𝐼𝑎 + 𝑖𝑎)

𝐼𝑎 𝐼𝑏 + 𝐼𝑎 𝑖𝑏 = 𝐼𝑏 𝐼𝑎 + 𝐼𝑏 𝑖𝑎

𝑖𝑏 =
𝐼𝑏
𝐼𝑎
𝑖𝑎

ℓ1ℓ2 = ℓ3ℓ4

ℓ1 = 𝐼𝐷0
𝑊

𝐿
𝑒−𝑉𝑡ℎ/𝑛𝑈𝑇

ℓ2 = 𝐼𝐷0
𝑊

𝐿
𝑒−(𝑉𝑡ℎ±𝜎𝑡ℎ)/𝑛𝑈𝑇 = ℓ1𝑒

±𝜎𝑡ℎ/𝑛𝑈𝑇

𝜎𝑡ℎ =
𝑎𝑣𝑡√
𝑊𝐿

ℓ2
ℓ1

= 𝑒
± 𝑎𝑣𝑡√

𝑊𝐿
/𝑛𝑈𝑇

27.1.3.2 Demo

JNW_SV_SKY130A

https://github.com/wulffern/jnw_sv_sky130a
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27.2 Want to learn more?

An Always-On 3.8 u J/86 % CIFAR-10 Mixed-Signal Binary CNN
Processor With All Memory on Chip in 28-nm CMOS

CAP-RAM: A Charge-Domain In-Memory Computing 6T-SRAM
for Accurate and Precision-Programmable CNN Inference

ARCHON: A 332.7TOPS/W 5b Variation-Tolerant Analog CNN
Processor Featuring Analog Neuronal Computation Unit and
Analog Memory

IMPACT: A 1-to-4b 813-TOPS/W 22-nm FD-SOI Compute-
in-Memory CNN Accelerator Featuring a 4.2-POPS/W
146-TOPS/mm2 CIM-SRAM With Multi-Bit Analog Batch-
Normalization

https://ieeexplore.ieee.org/document/8480105
https://ieeexplore.ieee.org/document/8480105
https://ieeexplore.ieee.org/document/9441013
https://ieeexplore.ieee.org/document/9441013
https://ieeexplore.ieee.org/document/9731654
https://ieeexplore.ieee.org/document/9731654
https://ieeexplore.ieee.org/document/9731654
https://ieeexplore.ieee.org/document/10129929
https://ieeexplore.ieee.org/document/10129929
https://ieeexplore.ieee.org/document/10129929
https://ieeexplore.ieee.org/document/10129929
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