
ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 1

Sky130nm tutorial
Carsten Wulff, carsten@wulff.no

Status: 1.0

I. TOOLS

I would strongly recommend that you install all tools locally
on your system.

For the analog toolchain we need some tools, and a process
design kit (PDK).

• Skywater 130nm PDK. I use open_pdks to install the
PDK

• Magic VLSI for layout
• ngspice for simulation
• netgen for LVS
• xschem
• python > 3.10

The tools are not that big, but the PDK is huge, so you need
to have about 50 GB disk space available.

A. Setup WSL (Applicable for Windows users)

Install a Linux distribution such as Ubuntu 24.04 LTS by
running the following command in PowerShell on Windows
and follow the instructions.
wsl --install -d Ubuntu-24.04

When you have installed the Linux distribution and signed into
it, install make
sudo apt install make

B. Setup public key towards github

Do
ssh-keygen -t rsa

And press “enter” on most things, or if you’re paranoid, add a
passphrase

Then
cat ~/.ssh/id_rsa.pub

And add the public key to your github account. Settings - SSH
and GPG keys

C. Provide git with author identity

There are interactions with git that require an author identity.
You are supposed to use one of these interactions a lot during
the project, namely, git commit. What you need to provide
is an email address and a name. If you would like to keep
your real email address private/secret, read what it says on
GitHub at your user settings page under emails. Use the below
commands to provide the author identity information to git.
git config --global user.email "you@example.com"
git config --global user.name "Your Name"

D. Get AICEX and setup your shell

You don’t have to put aicex in $HOME/pro, but if you don’t
know where to put it, chose that directory.
cd
mkdir pro
cd pro
git clone --recursive https://github.com/wulffern/aicex.git

You need to add the following to your ~/.bashrc (note that
~ refers to your home directory $HOME/.bashrc also works,
or $HOME/.bash_profile on some newer macs)
export PDK_ROOT=/opt/pdk/share/pdk
export LD_LIBRARY_PATH=/opt/eda/lib
export PATH=/opt/eda/bin:$HOME/.local/bin:$PATH

E. On systems with python3 > 3.12

On newer systems it’s not trivial to install python packages
because python is externally managed. As such, we need to
install a python environment.
#- Find a package similar to name below
sudo apt-get update
sudo apt install python3.12-venv
sudo mkdir /opt
sudo mkdir /opt/eda
sudo mkdir /opt/eda/python3
sudo chown -R $USER:$USER /opt/eda/python3/
python3 -m venv /opt/eda/python3

Modify the ~/.bashrc to include the python environment
export PATH=/opt/eda/bin:/opt/eda/python3/bin:$HOME/.local/bin:$PATH

F. Install Tools

Make sure you load the settings before you proceed
source ~/.bashrc

Hopefully the commands below work, if not, then try again,
or try to understand what fails. There is no point in continuing
if one command fails.
cd aicex/tests/
make requirements
make tt

On a mac, you probably need to add bison to the path
export PATH="/opt/homebrew/opt/bison/bin:$PATH"

I’ve split the install of each of the tools. It’s possible to run
the commented out lines instead, but they often fail
#make eda_compile
#sudo make eda_install
make magic_compile magic_install
make netgen_compile netgen_install
make xschem_compile xschem_install
make iverilog_compile iverilog_install
make ngspice_compile # Sometimes fails
make ngspice_compile ngspice_install

On Mac, do
brew install yosys verilator

https://github.com/google/skywater-pdk
https://github.com/RTimothyEdwards/open_pdks
https://github.com/RTimothyEdwards/magic
https://git.code.sf.net/p/ngspice/ngspice
https://github.com/RTimothyEdwards/netgen.git
https://github.com/StefanSchippers/xschem
https://github.com/settings/emails

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 2

On Linux, do
make yosys_compile yosys_install

On all, do
python3 -m ensurepip --default-pip

python3 -m pip install matplotlib numpy click svgwrite \
pyyaml pandas tabulate wheel setuptools tikzplotlib

source install_open_pdk.sh

G. Install cicconf

cIcConf is used for configuration. How the IPs are connected,
and what version of IPs to get.
cd
cd pro/aicex/ip/cicconf
git checkout main
git pull
python3 -m pip install -e .
cd ../

Update IPs
cicconf clone --https
cd ../..

H. Install cicsim

cIcSim is used for simulation orchestration.
cd aicex/ip/cicsim
python3 -m pip install -e .
cd ../..

I. Setup your ngspice settings

Edit ~/.spiceinit and add
set ngbehavior=hsa ; set compatibility for PDK libs
set ng_nomodcheck ; don't check the model parameters
set num_threads=8 ; CPU hardware threads available
set skywaterpdk
option noinit ; don't print operating point data
option klu
optran 0 0 0 100p 2n 0 ; don't use dc operating point,
option opts

II. CHECK THAT MAGIC AND XSCHEM WORKS

To check that magic and xschem works
cd ~/pro/aicex/ip/sun_sar9b_sky130nm/work
magic ../design/SUN_SAR9B_SKY130NM/SUNSAR_SAR9B_CV.mag &
xschem -b ../design/SUN_SAR9B_SKY130NM/SUNSAR_SAR9B_CV.sch &

III. DESIGN TUTORIAL

A. Create the IP

I’ve made some scripts to automatically generate the IP.

To see what files are generated, see
tech_sky130A/cicconf/ip_template.yaml

cd aicex/ip
cicconf newip ex

B. The file structure

It matters how you name files, and store files. I would be
surprised if you had a good method already, as such, I won’t
allow you to make your own folder structure and names for
things. I also control the filenames and folder structure because
there are many scripts to make your life easier (yes, really)
that rely on an exact structure. Don’t mess with it.

1) Github workflows: On github it’s possible use something
called workflows to run things every time you push a new
version. It’s really nice, since it can then check that your
design is valid.

The grading of the milestones is determined by passing github
workflows.

We will also check that you have not cheated, and modified
the workflows just to get them passing.

The workflows are defined below.
.github

workflows
docs.yaml # Generate a github page
drc.yaml # Run Design Rule Checks
gds.yaml # Generate a GDS file from layout
lvs.yaml # Run Layout Versus Schematic

and Layout Parasitic Extraction
sim.yaml # Run a simulation

2) Configuration files: Each IP has a few files that define the
setup, you’ll need to modify at least the README.md and the
info.yaml.
.gitignore # files that are ignored by git
README.md # Frontpage documentation
config.yaml # What libraries are used. Used by cicconf
info.yaml # Setup names, authors etc
media # Where you should store images for documentation
tech -> ../tech_sky130A # The technology library

3) Design files: A “cell” in the open source EDA world should
consists of the following files

• Schematic (.sch)
• Layout (.mag)
• Documenation (.md)

The files must have the same name, and must be stored in
design/<LIB>/ as shown below.

Note there are also two symbolic links to other libraries.
These two libraries contain standard cells and standard analog
transistors (ATR) that you should be using.
design
JNW_EX_SKY130A
JNW_EX.sch
JNW_ATR_SKY130A -> ../../jnw_atr_sky130a/design/JNW_ATR_SKY130A
JNW_TR_SKY130A -> ../../jnw_tr_sky130a/design/JNW_TR_SKY130A

For example, if the cell name was JNW_EX, then you would
have

• design/JNW_EX_SKY130A/JNW_EX.sch:
Schematic (xschem)

• design/JNW_EX_SKY130A/JNW_EX.sym:
Schematic (xschem)

• design/JNW_EX_SKY130A/JNW_EX.mag: Layout
(Magic)

• design/JNW_EX_SKY130A/JNW_EX.md : Mark-
down documentation (any text editor)

All these files are text files, so you can edit them in a text
editor, but mostly you shouldn’t (except for the Markdown)
4) Simulations: All simulations shall be stored in sim. Once
you have a Schematic ready for simulation, then
cd sim
make cell CELL=JNW_EX

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 3

This will make a simulation folder for you. Repeat for all your
cells.
sim
Makefile
cicsim.yaml -> ../tech/cicsim/cicsim.yaml

5) The work: All commands (except for simulation), shall be
run in the work folder.

In the work/ folder there are startup files for Xschem
(xschemrc) and Magic (.magicrc). They tell the tools where to
find the process design kit, symbols, etc. At some point you
probably need to learn those also, but I’d wait until you feel a
bit more comfortable.
work
.magicrc
Makefile
mos.24bit.dstyle -> ../tech/magic/mos.24bit.dstyle
mos.24bit.std.cmap -> ../tech/magic/mos.24bit.std.cmap
xschemrc

C. Github setup

Create a repository on github. The name of the repository that
you make on GitHub has to be the same as what is written
after <your username> in the last command below. In this
example, that is jnw_ex_sky130a.
cd jnw_ex_sky130a
git remote add origin \
git@github.com:<your username>/jnw_ex_sky130a.git

D. Start working

1) Edit README.md: Open README.md in your favorite
text editor and make necessary changes.
2) Familiarize yourself with the Makefile and make: I write
all commands I do into a Makefile. There is nothing special
with a Makefile, it’s just what I choose to use 20 years ago.
I’m not sure I’d choose something different now.
cd work
make

Take a look inside the file called Makefile.

E. Draw Schematic

The block we’ll make is a current mirror with a 1 to 4 scaling.

A schematic is how we describe the connectivity, and the types
of devices in an analog circuit. The open source schematic
editor we will use is XSchem.

Open the schematic:
xschem -b ../design/JNW_EX_SKY130A/JNW_EX.sch &

1) Add Ports: Add IBPS_5U and IBNS_20U ports, the P and
N in the name signifies what transistor the current comes from.
So IBPS must go into a diode connected NMOS, and N will be
our output, and go into a diode connected PMOS somewhere
else.
2) Add transistors: Use ‘I’ or ‘Shift+i’ (note
the letter case) to open the library man-
ager. Click the jnw_ex_sky130A/design
path, then JNW_ATR_SKY130A and select
JNWATR_NCH_4C5F0.sym

The naming convention for these transistors is <number of
contacts on drain/source>C<times minimum
gate length>F, so the number before the C is the width,
and the number before/after the F is the length. The absolute
size does not matter for now. Just think “4C5F0 is a 4 contact
wide long transistor”, while a “4C1F2 is a 4 contact wide,
short transistor”.

Select the transistor and press ‘c’ to copy it, while dragging,
press ‘shift-f’ to flip the transistor so our current mirror looks
nice. ‘shift-r’ rotates the transistor, but we don’t want that now.

Press ESC to deselect everything

Select the input transistor, and change the name to ‘xi’

Select the output transistor, and change the name to ‘xo[3:0]’.
Using bus notation on the name will create 4 transistors

Select ports, and use ‘m’ to move the ports close to the
transistors.

Press ‘w’ to route wires.

Use ‘shift-z’ and z, to zoom in and out

Use ‘f’ to zoom full screen

Remember to save the schematic

3) Netlist schematic: Check that the netlist looks OK

In work/

make xsch CELL=JNW_EX
cat xsch/JNW_EX.spice

F. Typical corner SPICE simulation

I’ve made cicsim that I use to run simulations (ngspice) and
extract results
1) Setup simulation environment: Navigate to the
jnw_ex_sky130a/sim/ directory.

Make a new simulation folder

cicsim simcell JNW_EX_SKY130A JNW_EX \
../tech/cicsim/cell_spice/template.yaml

I would recommend you have a look at simcell_template.yaml
file to understand what happens.

https://github.com
https://github.com/wulffern/cicsim

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 4

2) Familiarize yourself with the simulation folder: I’ve added
quite a few options to cicsim, and it might be confusing. For
reference, these are what the files are used for
File Description
Makefile Simulation commands
cicsim.yaml Setup for cicsim
summary.yaml Generate a README with simulation results
tran.meas Measurement to be done after simulation
tran.py Optional python script to run for each simulation
tran.spi Transient testbench
tran.yaml What measurements to summarize

The default setup should run, so
cd JNW_EX
make typical

3) Modify default testbench (tran.spi): Delete the VDD source

Add a current source of 5uA, and a voltage source of 1V to
IBNS_20U
IBP 0 IBPS_5U dc 5u
V0 IBNS_20U 0 dc 1

Save the current in V0 by adding i(V0) to the save statement
in the testbench

Save the voltage by adding v(IBPS_5U) to the save statement
.save i(V0) v(IBPS_5U)

4) Modify measurements (tran.meas): Add measurement
of the current and VGS. It must be added between the
“MEAS_START” and “MEAS_END” lines.
let ibn = -i(v0)
meas tran ibns_20u find ibn at=5n
meas tran vgs_m1 find v(ibps_5u) at=5n

Run simulation
make typical

and check that the output looks okish.

Try to run the simulation again
make typical

If everything works, then the simulation now should not be
run. Every time cicsim runs (provided the sha: True option
is set in cicsim.yaml) cicsim will compute a SHA hash of
all files (stored in output_tran/.sha) that is referenced in the
tran.spi. Next time cicsim is run, it checks the hash’s and
does not re-run if there is no need (no files changed).

Sometimes you want to force running, and you can do that by
make typical OPT="--no-sha"

Often, it’s the measurement that I get wrong, so instead of
rerunning simulation every time I’ve added a “–no-run” option
to cicsim. For example
make typical OPT="--no-run"

will skip the simulation, and rerun only the measurement. This
is why you should split the testbench and the measurement.
Simulations can run for days, but measurement takes seconds.
5) Modify result specification (tran.yaml): Add the result
specifications, for example
ibn:
src:

- ibns_20u
name: Output current
min: -20%

typ: 20
max: 20%
scale: 1e6
digits: 3
unit: uA

vgs:
src:

- vgs_m1
name: Gate-Source voltage
typ: 0.6
min: 0.3
max: 0.7
scale: 1
digits: 3
unit: V

Re-run the measurement and result generation
make typical OPT="--no-run"

Open result/tran_Sch_typical.html
6) Check waveforms: You can either use ngspice, or you can
use cicsim, or you can use something I don’t know about

Open the raw file with
cicsim wave output_tran/tran_SchGtKttTtVt.raw

Load the results, and try to look at the plots. There might not
be that much interesting happening

G. All corners SPICE simulations

Analog circuits must be simulated for all physical conditions,
we call them corners. We must check high and low temperature,
high and low voltage, all process corners, and device-to-device
mismatch.

For the current mirror we don’t need to vary voltage, since we
don’t have a VDD.
1) Remove Vh and Vl corners (Makefile): Open Makefile in
your favorite text editor.

Change all instances of “Vt,Vl,Vh” and “Vl,Vh” to Vt
2) Run all corners: To simulate all corners do
make typical etc mc

where etc is extreme test condition and mc is monte-carlo.

Wait for simulations to complete.
3) Get creative with python: Open tran.py in your favorite
editor, try to read and understand it.

The name parameter is the corner currently running, for
example tran_SchGtAmcttTtVt.

The measured outputs from ngspice will be added to
tran_SchGtAmcttTtVt.yaml

Delete the “return” line.

Add the following lines (they automatically plot the current
and gate voltage)
import cicsim as cs
fname = name +".png"
print(f"Saving {fname}")
cs.rawplot(name + ".raw","time","v(ibps_5u),i(v0)" \
,ptype="",fname=fname)

Re-run measurements to check the python code
make typical etc mc OPT="--no-run"

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 5

You’ll see that cicsim writes all the png’s. Check with ls -l
output_tran/*.png.

You’ll also notice it will slow down the simulation, so maybe
remove the lines from tran.py again ;-)
4) Generate simulation summary: Run
make summary

Install pandoc if you don’t have it

Run
pandoc -s -t slidy README.md -o README.html

to generate a HTML slideshow that you can open in browser.
Open the HTML file.
5) Viewing results without GUI browser: If your on a system
without a browser, or indeed a GUI, then it’s possible to view
the results in the terminal.

Check if lynx is installed, if it’s not installed, then

On linux
sudo apt-get install lynx

On Mac
brew install lynx

Then
lynx README.html

6) Think about the results: From the corner and mismatch
simulation, we can observe a few things.

• The typical value is not 20 uA. This is likely because we
have a M2 VDS of 1 V, which is not the same as the
VDS of M1. As such, the current will not be the same.

• The statistics from 30 corners show that when we add or
subtract 3 standard deviation from the mean, the resulting
current is outside our specification of +- 20 %. I’ll leave
it up to you to fix it.

H. Draw Layout

A foundry (the factory that makes integrated circuits) needs
to know how we want them to create our circuit. So we need
to provide them with a “layout”, the recipe, or instruction, for
how to make the circuit. Although the layout contains the same
components as the schematic, the layout contains the physical
locations, and how to actually instruct the foundry on how to
make the transistors we want.

Open Magic VLSI
cd work
magic ../design/JNW_EX_SKY130A/JNW_EX.mag

Now brace yourself, Magic VLSI was created in the 1980’s.
For it’s time it was extremely modern, however, today it seems
dated. However, it is free, so we use it.
1) Magic VLSI: Try google for most questions, and there are
youtube videos that give an intro.

• Magic Tutorial 1
• Magic Tutorial 2
• Magic Tutorial 3

• Magic command reference
• Magic Documentation

Default magic start with the BOX tool. Mouse left-click to
select bottom corner, left-click to select top corner.

Press “space” to select another tool (WIRING, NETLIST,
PICK).

Type “macro help” in the command window to see all shortcuts
Hotkey Function
v View all
shift-z zoom out
z zoom in
x look inside box (expand)
shift-x don’t look inside box (unexpand)
u undo
d delete
s select
Shift-Up Move cell up
Shift-Down Move cell down
Shift-Left Move cell left
Shift-Right Move cell right

2) Add transistors: Open Cell -> Place Instance. Navigate to
the right transistor.

Place it. Hover over the transistor and select it with ‘s’. Now
comes a bit of tedious thing. Select again, and copy. It’s possible
to align the transistors on-top of eachother, but it’s a bit finicky.

Place all transistors on top of each other.

3) Add Ground: In the command window, type
see no *
see viali
see locali
see m1
see via1
see m2

Change to the ‘wire tool’ with spacebar. Press the top transistor
‘S’ and draw all the way down to connect all of the transistors’
source terminals.

Change grid to 0.5 um.

Select a 0.5 um box below the transistors and paint the rectangle
with locali (middle click on locali)

https://pandoc.org
https://www.youtube.com/watch?v=ORw5OaY33A4&t=9s
https://www.youtube.com/watch?v=NUahmUtY814
https://www.youtube.com/watch?v=OKWM1D0_fPI
http://opencircuitdesign.com/magic/commandref/commands.html
https://analogicus.com/magic/

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 6

Connect guard rings to ground. Use the ‘wire tool’

Connect the sources to ground. Use the ‘wire tool’. Use ‘shift-
right click’ to change layer down

4) Route Gates: Press “space” to enter wire mode. Left click
to start a wire, and right click to end the wire.

The drain of M1 transistor needs a connection from gate to
drain. We do that for the middle transistor.

Start the route, press ‘shift-left click’ to go up one layer, route
over to drain, and ‘shift-right click’ to go down.

5) Drain of M2: Use the wire tool to draw connections for
the drains.

To add vias you can do “shift-left click” to move up a metal,
and “shift-right click” to go down.

6) Add labels: Select a box on a metal, and use “Edit->Text”
to add labels for the ports. Select the port button.

I. Layout verification

The DRC can be seen directly in Magic VLSI as you draw.

To check layout versus schematic navigate to work/ and do

make cdl lvs

If you’ve routed correctly, then the LVS should be correct.

J. Extract layout parasitics

With the layout complete, we can extract parasitic capacitance.

make lpe

Check the generated netlist

cat lpe/JNW_EX_lpe.spi

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 7

K. Simulate with layout parasitics

Navigate to sim/JNW_EX. We now want to simulate the layout.

The default tran.spi should already have support for that.

Open the Makefile, and change

VIEW=Sch

to

VIEW=Lay

1) Typical simuation: Run

make typical

2) Corners: Navigate to sim/JNW_EX. Run all corners again

make all

3) Simulation summary: Open summary.yaml and add the
layout files.

- name: Lay_typ
src: results/tran_Lay_typical
method: typical

- name: Lay_etc
src: results/tran_Lay_etc
method: minmax

- name: Lay_3std
src: results/tran_Lay_mc
method: 3std

Run summary again

make summary
pandoc -s -t slidy README.md -o README.html

Open the README.html and have a look a the results. The
layout should be close to the schematic simulation.

L. Make documentation

Make a file (or it may exists)
design/JNW_EX_SKY130A/JNW_EX.md and add
some docs.

M. Edit info.yaml

Finally, let’s setup the info.yaml so that all the github
workflows run correctly.

Mine will look like this.

You need to setup the url (probably something like <your
username>.github.io) to what is correct for you.

I’ve added the doc section such that the workflows will generate
the docs.

The sim is to run a typical simulation.

library: JNW_EX_SKY130A
cell: JNW_EX
author: Carsten Wulff
github: wulffern
tagline: The answer is 42
email: carsten@wulff.no
url: analogicus.github.io
doc:
libraries:
JNW_EX_SKY130A:

- JNW_EX
sim:
JNW_EX: make typical

N. Setup github pages

Go to your GitHub repository (repo). Press Settings. Press
Pages. Choose source under Build and Deployment -> GitHub
Actions

Wait for the workflows to build. And check your github pages.
Mine is https://analogicus.github.io/jnw_ex0_sky130a/.

O. Frequency asked questions

Q: My GDS/LVS/DRC action fails, even though it works
locally.

Sometimes the reference to the transistors in the magic file
might be wrong. Open the .mag file in a text editor and check.
The correct way is
use JNWATR_NCH_4C5F0 JNWATR_NCH_4C5F0_0 ../JNW_ATR_SKY130A

It’s the last ../JNW_ATR_SKY130A that sometimes is miss-
ing.

Carsten Wulff received the M.Sc.
and Ph.D. degrees in electrical
engineering from the Department
of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,
he worked on open-loop sigma-

delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various
roles, from analog designer, to Wireless Group Manager,
to currently Principle IC Scientist. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of high-
efficiency analog-to-digital converters and low-power wireless
transceivers. He is the developer of Custom IC Compiler, a
general purpose integrated circuit compiler.

https://analogicus.github.io/jnw_ex0_sky130a/

	Tools
	Setup WSL (Applicable for Windows users)
	Setup public key towards github
	Provide git with author identity
	Get AICEX and setup your shell
	On systems with python3 > 3.12
	Install Tools
	Install cicconf
	Install cicsim
	Setup your ngspice settings

	Check that magic and xschem works
	Design tutorial
	Create the IP
	The file structure
	Github workflows
	Configuration files
	Design files
	Simulations
	The work

	Github setup
	Start working
	Edit README.md
	Familiarize yourself with the Makefile and make

	Draw Schematic
	Add Ports
	Add transistors
	Netlist schematic

	Typical corner SPICE simulation
	Setup simulation environment
	Familiarize yourself with the simulation folder
	Modify default testbench (tran.spi)
	Modify measurements (tran.meas)
	Modify result specification (tran.yaml)
	Check waveforms

	All corners SPICE simulations
	Remove Vh and Vl corners (Makefile)
	Run all corners
	Get creative with python
	Generate simulation summary
	Viewing results without GUI browser
	Think about the results

	Draw Layout
	Magic VLSI
	Add transistors
	Add Ground
	Route Gates
	Drain of M2
	Add labels

	Layout verification
	Extract layout parasitics
	Simulate with layout parasitics
	Typical simuation
	Corners
	Simulation summary

	Make documentation
	Edit info.yaml
	Setup github pages
	Frequency asked questions

