
ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 1

Analog SystemVerilog
Carsten Wulff, carsten@wulff.no

Status: 0.3

Design of integrated circuits is split in two, analog design, and
digital design.

Digital design is highly automated. The digital functions are
coded in SystemVerilog (yes, I know there are others, but don’t
use those), translated into a gate level netlist, and automatically
generated layout. Not everything is push-button automation,
but most is.

Analog design, however, is manual work. We draw schematic,
simulation with a mathematical model of the real world, draw
the analog layout needed for the foundries to make the circuit,
verify that we drew the schematic and layout the same, extract
parasitics, simulate again, and in the end get a GDSII file.

When we mix analog and digital designs, we have two choices,
analog on top, or digital on top.

In analog on top we take the digital IP, and do the top level
layout by hand in analog tools.

In digital on top we include the analog IPs in the SystemVerilog,
and allow the digital tools to do the layout. The digital layout
is still orchestrated by people.

Which strategy is chosen depends on the complexity of the
integrated circuit. For medium to low level of complexity,
analog on top is fine. For high complexity ICs, then digital on
top is the way to go.

Below is a description of the open source digital-on-top flow.
The analog is included into GDSII at the OpenRoad stage of
the flow.

The GDSII is not sufficient to integrate the analog IP. The
digital needs to know how the analog works, what capacitance
is on every digital input, the propagation delay for digital input
to digital outputs , the relation between digital outputs and
clock inputs, and the possible load on digital outputs.

The details on timing and capacitance is covered in a Liberty
file. The behavior, or function of the analog circuit must be
described in a SystemVerilog file.

But how do we describe an analog function in SystemVerilog?
SystemVerilog is simulated in an digital simulator.

Idea

Digital Design
SystemVerilog

Analog Design
Xschem

Digital Simulation
iverilog/vpp/verilator/gtkwave

RTL to GDSII
OpenLane

Tapeout

Analog Model
SystemVerilog

Analog Simulation
ngspice

Analog Layout
Magic

LVS
netgen

Parasitics
MagicGDSII

I. DIGITAL SIMULATION

Conceptually, the digital simulator is easy.

• The order of execution of events at the same time-step do
not matter

• The system is causal. Changes in the future do not affect
signals in the past or the now

In a digital simulator there will be an event queue, see below.
From start, set the current time step equals to the next time
step. Check if there are any events scheduled for the time
step. Assume that execution of events will add new time steps.
Check if there is another time step, and repeat.

Since the digital simulator only acts when something is
supposed to be done, they are inherently fast, and can handle
complex systems.

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 2

It’s a fun exercise to make a digital simulator. On my Ph.D
I wanted to model ADCs, and first I had a look at SystemC,
however, I disliked C++, so I made SystemDotNet

In SystemDotNet I implemented the event queue as a hash
table, so it ran a bit faster. See below.

1) Digital Simulators: There are both commercial an open
source tools for digital simulation. If you’ve never used a
digital simulator, then I’d recommend you start with iverilog.
I’ve made some examples at dicex.

Commercial

• Cadence Excelium
• Siemens Questa
• Synopsys VCS

Open Source - iverilog/vpp - Verilator - SystemDotNet
2) Counter: Below is an example of a counter in SystemVer-
ilog. The code can be found at counter_sv.

In the always_comb section we code what will become the
combinatorial logic. In the always_ff section we code what
will become our registers.

module counter(
output logic [WIDTH-1:0] out,
input logic clk,
input logic reset
);

parameter WIDTH = 8;

logic [WIDTH-1:0] count;
always_comb begin

count = out + 1;
end

always_ff @(posedge clk or posedge reset) begin
if (reset)

out <= 0;
else
out <= count;

end

endmodule // counter

In the context of a digital simulator, we can think through how
the event queue will look.

When the clk or reset changes from zero to 1, then schedule
an event where if the reset is 1, then out will be zero in the
next time step. If reset is 0, then out will be count in the
next time step.

In a time-step where out changes, then schedule
an event to setcounttoout‘ plus one. As such, each
positive edge of the clock at least 2 events must be scheduled
in the register transfer level (RTL) simulation.

For example:

Assume `clk, reset, out = 0`

Assume event with `clk = 1`

0: Set `out = count` in next event (1)

1: Set `count = out + 1` using
logic (may consume multiple events)

X: no further events

When we synthesis the code below into a netlist it’s a bit harder
to see how the events will be scheduled, but we can notice
that clk and reset are still inputs, and for example the clock is
connected to d-flip-flops. The image below is the synthesized
netlist

It should feel intuitive that a gate-level netlist will take longer
to simulate than an RTL, there are more events.

https://sourceforge.net/projects/systemdotnet/
https://github.com/wulffern/dicex/tree/main/project/verilog
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://www.synopsys.com/verification/simulation/vcs.html
https://github.com/steveicarus/iverilog
https://www.veripool.org/verilator/
https://sourceforge.net/projects/systemdotnet/
https://github.com/wulffern/dicex/tree/main/sim/verilog/counter_sv
https://github.com/wulffern/dicex/blob/main/sim/verilog/counter_sv/counter_netlist.v

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 3

II. TRANSIENT ANALOG SIMULATION

Analog simulation is different. There is no quantized time step.
How fast “things” happen in the circuit is entirely determined
by the time constants, change in voltage, and change in current
in the system.

It is possible to have a fixed time-step in analog simulation,
for example, we say that nothing is faster than 1 fs, so we pick
that as our time step. If we wanted to simulate 1 s, however,
that’s at least 1e15 events, and with 1 event per microsecond
on a computer it’s still a simulation time of 31 years. Not a
viable solution for all analog circuits.

Analog circuits are also non-linear, properties of resistors,
capacitors, inductors, diodes may depend on the voltage or
current across, or in, the device. Solving for all the non-linear
differential equations is tricky.

An analog simulation engine must parse spice netlist, and setup
partial/ordinary differential equations for node matrix

The nodal matrix could look like the matrix below, i are the
currents, v the voltages, and G the conductances between
nodes.

G11 G12 · · · G1N

G21 G22 · · · G2N

...
...

. . .
...

GN1 GN2 · · · GNN

v1
v2
...
vN

 =

i1
i2
...
iN

The simulator, and devices model the non-linear current/voltage
behavior between all nodes

as such, the G’s may be non-linear functions, and include the
v’s and i’s.

Transient analysis use numerical methods to compute time
evolution

The time step is adjusted automatically, often by proprietary
algorithms, to trade accuracy and simulation speed.

The numerical methods can be forward/backward Euler, or the
others listed below.

• Euler

• Runge-Kutta
• Crank-Nicolson
• Gear

If you wish to learn more, I would recommend starting with
the original paper on analog transient analysis.

SPICE (Simulation Program with Integrated Circuit Emphasis)
published in 1973 by Nagel and Pederson

The original paper has spawned a multitude of commercial,
free and open source simulators, some are listed below.

If you have money, then buy Cadence Spectre. If you have no
money, then start with ngspice.

Commercial - Cadence Spectre - Siemens Eldo - Synopsys
HSPICE

Free - Aimspice - Analog Devices LTspice - xyce

Open Source - ngspice

III. MIXED SIGNAL SIMULATION

It is possible to co-simulate both analog and digital functions.
An illustration is shown below.

The system will have two simulators, one analog, with transient
simulation and differential equation solver, and a digital, with
event queue.

Between the two simulators there would be analog-to-digital,
and digital-to-analog converters.

To orchestrate the time between simulators there must be a
global event and time-step control. Most often, the digital
simulator will end up waiting for the analog simulator.

The challenge with mixed-mode simulation is that if the digital
circuit becomes to large, and the digital simulation must wait
for analog solver, then the simulation would take too long.

Most of the time, it’s stupid to try and simulate complex
system-on-chip with mixed-signal , full detail, simulation.

For IPs, like an ADC, co-simulation works well, and is the
best way to verify the digital and analog.

But if we can’t run mixed simulation, how do we verify analog
with digital?

https://aquaulb.github.io/book_solving_pde_mooc/solving_pde_mooc/notebooks/02_TimeIntegration/02_01_EulerMethod.html
https://aquaulb.github.io/book_solving_pde_mooc/solving_pde_mooc/notebooks/02_TimeIntegration/02_02_RungeKutta.html
https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method
https://ieeexplore.ieee.org/document/1083221
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/ERL-m-382.pdf
https://www.cadence.com/ko_KR/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-simulation-platform.html
https://eda.sw.siemens.com/en-US/ic/eldo/
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
https://www.synopsys.com/implementation-and-signoff/ams-simulation/primesim-hspice.html
http://aimspice.com
https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
https://xyce.sandia.gov
http://ngspice.sourceforge.net

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 4

Digital Analog
Simulator Simulator

Event Timester Control

IV. ANALOG SYSTEMVERILOG EXAMPLE

A. TinyTapeout TT06_SAR

8-bit successive approximation register analog-to-digital-converter

Power decoupling

Signal interface
uio_out[0] : When the output DFFs sample SAR output. If it does not come, then clock is too fast
uo_out[7:0] : Digital output. Two's complement
ui_in[0] : Enable ADC. Useful to measure current consumption

clk : Clock, ~ 4 MHz

Output capture
SAR core

VPWR

VGND

ui_in[7:0]

uo_out[7:0]

uio_in[7:0]

uio_out[7:0]

uio_oe[7:0]

ua[7:0]

ena

clk

rst_n
D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

EN

CK_SAMPLE_BSSW

CK_SAMPLE

ui_in[0]

clk

uo_out[7]

uo_out[6]

uo_out[5]

uo_out[4]

uo_out[3]

uo_out[2]

uo_out[1]

uo_out[0]

DONE

VPWR

VGND

D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

DONE

EN

CK_SAMPLE_BSSW

CK_SAMPLE

VPWR

VPWR

VGND

ua[1]

ua[0]

SARN

SARP

TIE_L

TIE_L

TIE_L1

TIE_L2

VPWR

DONE

uio_out[7:1]

uio_oe[7:1]

uio_oe[0] uio_out[0]

VGND

VGND

VGND

VGND

ui_in[0]

SAR_IP

SAR_IN

SARN

SARP

DONE

D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

EN

CK_SAMPLE

CK_SAMPLE_BSSW

VREF

AVDD

AVSS

SUNSAR_SAR8B_CV

x1

Updated

Library/Cell

Designer

Modified

Copyright

wulff

2024-04-12 15:40:24

Carsten Wulff Software

tt_um_TT06_SAR_wulffern

Carsten Wulff

CKS

ENABLE

CK_SAMPLE

CK_SAMPLE_BSSW

EN

D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

DO<7>

DO<6>

DO<5>

DO<4>

DO<3>

DO<2>

DO<1>

DO<0>

DONE

AVDD

AVSS

TIE_L

SUNSAR_CAPT8B_CV

x2

R
1
[7
:1
]

1

*
0
.3

/
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7

R
2
[7
:1
]

1

*
0
.3

/
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7R
3

1

*
0
.3

/
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7

R
4

1

*
0
.3

/
0
.3

re
s
_
g
e
n
e
ri
c
_
m
4

R
=
0
.0
4
7

c0

c1 MF=1

C2[8:0]

18 / 18

cap_mim_m3_1

C=6.617e-13

YA

A
V
D
D

A
V
S
S

SUNTR_BFX1_CV

x3x4

SUNTR_TIEH_CV

Y

A
V
D
D

A
V
S
S

x5

SUNTR_TAPCELLB_CV

A
V
D
D

A
V
S
S

D1

diode_pw2nd_05v5

diode

d0

d1

area=2.025e11
pj=1.8e6

D2

diode_pw2nd_05v5

diode

d0

d1

area=2.025e11
pj=1.8e6

D3

diode_pw2nd_05v5

diode

d0

d1

area=2.025e11
pj=1.8e6

B. SAR operation

The key idea is to model the analog behavior to sufficient
detail such that we can verify the digital code. I think it’s best
to have a look at a concrete example.

• Analog input is sampled when clock goes low (sarp/sarn)
• uio_out[0] goes high when bit-cycling is done
• Digital output (ro) changes when uio_out[0] goes high

//tt06-sar/src/project.v
module tt_um_TT06_SAR_wulffern (

input wire VGND,
input wire VPWR,
input wire [7:0] ui_in,
output wire [7:0] uo_out,
input wire [7:0] uio_in,
output wire [7:0] uio_out,
output wire [7:0] uio_oe,

`ifdef ANA_TYPE_REAL
input real ua_0,
input real ua_1,

`else
// analog pins
inout wire [7:0] ua,

`endif
input wire ena,
input wire clk,
input wire rst_n
);

//tt06-sar/src/tb_ana.v
`ifdef ANA_TYPE_REAL

real ua_0 = 0;
real ua_1 = 0;

`else
tri [7:0] ua;
logic uain = 0;
assign ua = uain;

`endif

`ifdef ANA_TYPE_REAL
always #100 begin

ua_0 = $sin(2*3.14*1/7750*$time);
ua_1 = -$sin(2*3.14*1/7750*$time);

end
`endif

//tt06-sar/src/tb_ana.v
tt_um_TT06_SAR_wulffern dut (

.VGND(VGND),

.VPWR(VPWR),

.ui_in(ui_in),

.uo_out(uo_out),

.uio_in(uio_in),

.uio_out(uio_out),

.uio_oe(uio_oe),
`ifdef ANA_TYPE_REAL

.ua_0(ua_0),

.ua_1(ua_1),
`else

.ua(ua),
`endif

.ena(ena),

.clk(clk),

.rst_n(rst_n)
);

#tt06-sar/src/Makefile
runa:

iverilog -g2012 -o my_design -c tb_ana.fl -DANA_TYPE_REAL
vvp -n my_design

rund:
iverilog -g2012 -o my_design -c tb_ana.fl
vvp -n my_design

//tt06-sar/src/project.v
//Main SAR loop
always_ff @(posedge clk or negedge clk) begin

if(~ui_in[0]) begin
state <= OFF;
tmp = 0;

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 5

dout = 0;
end
else begin

if(OFF) begin

end
else if(clk == 1) begin

state = SAMPLE;
end
else if(clk == 0) begin

state = CONVERT;
`ifdef ANA_TYPE_REAL

smpl = ua_0 - ua_1;
tmp = smpl;

for(int i=7;i>=0;i--) begin
if(tmp >= 0) begin

tmp = tmp - lsb*2**(i-1);
if(i==7)

dout[i] <= 0;
else

dout[i] <= 1;
end

else begin
tmp = tmp + lsb*2**(i-1);
if(i==7)

dout[i] = 1;
else

dout[i] = 0;
end

end
`else

if(tmp == 0) begin
dout[7] <= 1;
tmp <= 1;

end
else begin

dout[7] <= 0;
tmp = 0;

end
`endif

end
state = next_state;

end // else: !if(~ui_in[0])
end // always_ff @ (posedge clk)

//tt06-sar/src/project.v
always @(posedge done) begin

state = DONE;
sampled_dout = dout;

end

always @(state) begin
if(state == OFF)

#2 done = 0;
else if(state == SAMPLE)

#1.6 done = 0;
else if(state == CONVERT)

#115 done = 1;
end

V. WANT TO LEARN MORE?

For more information on real-number modeling I would
recommend The Evolution of Real Number Modeling

Carsten Wulff received the M.Sc.
and Ph.D. degrees in electrical
engineering from the Department
of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,
he worked on open-loop sigma-

delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various

https://youtu.be/gNpPslQZT-Y

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 6

roles, from analog designer, to Wireless Group Manager,
to currently Principle IC Scientist. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of high-
efficiency analog-to-digital converters and low-power wireless
transceivers. He is the developer of Custom IC Compiler, a
general purpose integrated circuit compiler.

	Digital simulation
	Digital Simulators
	Counter

	Transient analog simulation
	Mixed signal simulation
	Analog SystemVerilog Example
	TinyTapeout TT06_SAR
	SAR operation

	Want to learn more?

