
ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 1

Clocks and PLLs
Carsten Wulff, carsten@wulff.no

Keywords: Systems, Feedback, PLL, Integer Divider, SD, SD
PLL, Modulation, linear phase model

Status: 0.5

I. WHY CLOCKS?

Virtually all integrated circuits have some form of clock system.

For digital we need clocks to tell us when the data is correct.
For Radio’s we need clocks to generate the carrier wave. For
analog we need clocks for switched regulators, ADCs, accurate
delay’s or indeed, long delays.

The principle of a clock is simple. Make a 1-bit digital signal
that toggles with a period T and a frequency f = 1/T .

The implementation is not necessarily simple.

The key parameters of a clock are the frequency of the
fundamental, noise of the frequency spectrum, and stability
over process and enviromental conditions.

When I start a design process, I want to know why, how, what
(and sometimes who). If I understand the problem from first
principles it’s more likely that the design will be suitable.

But proving that something is suitable, or indeed optimal, is not
easy in the world of analog design. Analog design is similar to
physics. An hypothesis is almost impossible to prove “correct”,
but easier to prove wrong.

A. A customer story

Take an example.
1) Imagine a world:

“I have a customer that needs an accurate clock to
count seconds”. – Some manager that talked to a
customer, but don’t understand details.

As a designer, I might latch on to the word “accurate clock”,
and translate into “most accurate clock in the world”, then
I’d google atomic clocks, like Rubidium standard that I know
is based on the hyperfine transition of electrons between two
energy levels in rubidium-87.

I know from quantum mechanics that the hyperfine transition
between two energy levels will produce an precise frequency,
as the frequency of the photons transmitted is defined by
E = ℏω = hf .

I also know that quantum electro dynamics is the most precise
theory in physics, so we know what’s going on.

As long as the Rubidium crystal is clean (few energy states in
the vicinity of the hyperfine transition), the distance between
atoms stay constant, the temperature does not drift too much,

then the frequency will be precise. So I buy a rubidium
oscillator at a cost of $ 3k.

I design a an ASIC to count the clock ticks, package it plastic,
make a box, and give my manager.

Who will most likely say something like

“Are you insane? The customer want’s to put the
clock on a wristband, and make millions. We can’t
have a cost of $ 3k per device. You must make it
smaller an it must cost 10 cents to make”

Where I would respond.

“What you’re asking is physically impossible. We
can’t make the device that cheap, or that small.
Nobody can do that.”

And both my manager and I would be correct.
2) Imagine a better world: Most people in this world have no
idea how things work. Very few people are able to understand
the full stack. Everyone of us must simplify what we know
to some extent. As such, as a circuit designer, it’s your
responsibility to fully understand what is asked of you.

When someone says

” I have a customer that needs an accurate clock to
count seconds”

Your response should be “Why does the customer need an
accurate clock? How accurate? What is the customer going
to use the clock for?”. Unless you understand the details of
the problem, then your design will be sub-optimal. It might
be a great clock source, but it will be useless for solving the
problem.

B. Frequency

The frequency of the clock is the frequency of the fundamental.
If it’s a digital clock (1-bit) with 50 % duty-cycle, then we know
that a digital pulse train is an infinite sum of odd-harmnoics,
where the fundamental is given by the period of the train.

C. Noise

Clock noise have many names. Cycle-to-cycle jitter is how the
period changes with time. Jitter may also mean how the period
right now will change in the future, so a time-domain change
in the amount of cycle-to-cycle jitter. Phase noise is how the
period changes as a function of time scales. For example, a
clock might have fast period changes over short time spans,
but if we average over a year, the period is stable.

What type of noise you care about depends on the problem.
Digital will care about the cycle-to-cycle jitter affects on setup

https://en.wikipedia.org/wiki/Rubidium_standard
https://www2.mouser.com/ProductDetail/IQD/LFRBXO059244Bulk?qs=iw0hurA%2FaD0K8weKx%2Fu2ow%3D%3D
https://www2.mouser.com/ProductDetail/IQD/LFRBXO059244Bulk?qs=iw0hurA%2FaD0K8weKx%2Fu2ow%3D%3D


ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 2

and hold times. Radio’s will care about the frequency content
of the noise with an offset to the carrier wave.

D. Stability

The variation over all corners and enviromental conditions is
usually given in a percentage, parts per million, or parts per
billion.

For a digital clock to run a Micro-Controller, maybe it’s
sufficient with 10% accuracy of the clock frequency. For a
Bluetooth radio we must have +-50 ppm, set by the standard.
For GPS we might need parts-per-billion.

E. Conclusion

Each “clock problem” will have different frequency, noise and
stability requirements. You must know the order of magnitude
of those before you can design a clock source. There is no
“one-solution fits all” clock generation IP.

II. A TYPICAL SYSTEM-ON-CHIP CLOCK SYSTEM

On the nRF52832 development kit you can see some compo-
nents that indicate what type of clock system must be inside
the IC.

In the figure below you can see the following items.

1. 32 MHz crystal
2. 32 KiHz crystal
3. PCB antenna
4. DC/DC inductor

A. 32 MHz crystal

Any Bluetooth radio will need a frequency reference. We
need to generate an accurate 2.402 MHz - 2.480 MHz carrier
frequency for the gaussian frequency shift keying (GFSK)
modulation. The Bluetooth Standard requires a +- 50 ppm
accurate timing reference, and carrier frequency offset accuracy.

I’m not sure it’s possible yet to make an IC that does not
have some form of frequency reference, like a crystal. The ICs
I’ve seen so far that have “crystal less radio” usually have a

resonator (crystal or bulk-accustic-wave or MEMS resonator)
on die.

The power consumption of a high frequency crystal will be
proportional to frequency. Assuming we have a digital output,
then the power of that digital output will be P = CV 2f , for
example P = 100 fF×1 V2×32 MHz = 3.2 µW is probably
close to a minimum power consumption of a 32 MHz clock.

B. 32 KiHz crystal

Reducing the frequency, we can get down to minimum power
consumption of P = 100 fF × 1 V2 × 32 KiHz = 3.2 nW for
a clock.

For a system that sleeps most of the time, and only wakes up
at regular ticks to do something, then a low-frequency crystal
might be worth the effort.

C. PCB antenna

Since we can see the PCB antenna, we know that the IC
includes a radio. From that fact we can deduce what must be
inside the SoC. If we read the Product Specification we can
understand more.

D. DC/DC inductor

Since we can see a large inductor, we can also make the
assumption that the IC contains a switched regulator. That
switched regulator, especially if it has a pulse-width-modulated
control loop, will need a clock.

From our assumptions we could make a guess what must be
inside the IC, something like the picture below.

There will be a crystal oscillator connected to the crystal. We’ll
learn about those later.

These crystal oscillators generate a fixed frequency, 32 MHz,
or 32 KiHz, but there might be other clocks needed inside the
IC.

To generate those clocks, there will be phase-locked loops
(PLL), frequency locked loops (FLL), or delay-locked loops
(DLL).

PLLs take a reference input, and can generate a higher
frequency, (or indeed lower frequency) output. A PLL is a
magical block. It’s one of the few analog IPs where we can
actually design for infinite gain in our feedback loop.

https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52832_ps.html


ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 3

 

Xo
32MHz

RADIO

PLL PLL Lo

MCU
XO

32768Hz

RC

Most of the digital blocks on an IC will be synchronous logic,
see figure below. A fundamental principle of sychnronous logic
is that the data at the flip-flops (DFF, rectangles with triangle
clock input, D, Q and Q) only need to be correct at certain
times.

The sequence of transitions in the combinatorial logic is of
no consequence, as long as the B inputs are correct when the
clock goes high next time.

The registers, or flip-flops, are your SystemVerilog “always_ff”
code. While the blue cloud is your “always_comb” code.

In a SoC we have to check, for all paths between a Y[N] and
B[M] that the path is fast enough for all transients to settle
before the clock strikes next time. How early the B data must
arrive in relation to the clock edge is the setup time of the
DFFs.

We also must check for all paths that the B[M] are held for
long enough after the clock strikes such that our flip-flop does
not change state. The hold time is the distance from the clock
edge to where the data is allowed to change. Negative hold
times are common in DFFs, so the data can start to change
before the clock edge.

In an IC with millions of flip-flops there can be billions of
paths. The setup and hold time for every single one must be
checked. One could imagine a simulation of all the paths on a
netlist with parasitics (capacitors and resistors from layout) to
check the delays, but there are so many combinations that the
simulation time becomes unpractical.

Static Timing Analysis (STA) is a light-weight way to check
all the paths. For the STA we make a model of the delay in
each cell (captured in a liberty file), the setup/hold times of all
flip-flops, wire propagation delays, clock frequency (or period),
and the variation in the clock frequency. The process, voltage,
temperature variation must also be checked for all components,
so the number of liberty files can quickly grow large.

For an analog designer the constraints from digital will tell us
what’s the maximum frequency we can have at any point in
time, and what is the maximum cycle-to-cycle variation in the
period.












































































































D Q

Lo

yo XXX Bos x o3Alo

I

AID BED XD

            Enable 
Logic

Clk in

Clk out

Clk out

III. PLL

PLL, or it’s cousins FLL and DLL are really cool. A PLL is
based on the familiar concept of feedback, shown in the figure
below. As long as we make H(s) infinite we can force the
output to be an exact copy of the input.

VI VX H s V0

VI Vo Ux Vo VxH s

VI Vo YE
Vo I

N

fin yes
to

A. Integer PLL

For a frequency loop the figure looks a bit different. If we
want a higher output frequency we can divide the frequency
by a number (N) and compare with our reference (for example
the 32 MHz reference from the crystal oscillator).

We then take the error, apply a transfer function H(s) with
high gain, and control our oscillator frequency.

If the down-divided output frequency is too high, we force the
oscillator to a lower frequency. If the down-divided output
frequency is too low we force the oscillator to a higher
frequency.

If we design the H(s) correctly, then we have fo = N × fin



ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 4

VI VX H s V0

VI Vo Ux Vo VxH s

VI Vo YE
Vo I

N

fin yes
to

Sometimes you want a finer frequency resolution, in that case
you’d add a divider on the reference and get fo = N × fin

M ..

fin M Hcs
to

ED N

fin yes
to

B. Fractional PLL

Trouble is that dividing down the input frequency will reduce
your loop bandwidth, as the low-pass filter needs to be about
1/10’th of the reference frequency. As such, the PLL will
respond slower to a frequency change.

We can also use a fractional divider, where we swap between
two, or more, integeres in a sigma-delta fashion in the divider.

fin M Hcs
to

ED N

fin yes
to

C. Modulation in PLLs

From your signal processing, or communication courses, you
may recognize the equation below.

Am(t)× cos (2πfcarriert+ ϕm(t))

The Am is the amplitude modulation, while the ϕm is the
phase modulation. Bluetooth Low Energy is constant envelope,
so the Am is a constant. The phase modulation is applied to
the carrier, but how is it done?

One option is shown below. We could modulate our frequency
reference directly. That could maybe be a sigma-delta divider
on the reference, or directly modulating the oscillator.

ED N

fin yes
to

Amos N

fin to
His N

Most modern radios, however, will have a two-point modulation.
The modulation signal is applied to the VCO (or DCO), and
the opposite signal is applied to the feedback divider. As such,
the modulation is not seen by the loop.

food

ED N

fin yes
to

fmod

IV. PLL EXAMPLE

I’ve made an example PLL that you can download and play
with. I make no claims that it’s a good PLL. Actually, I know
it’s a bad PLL. The ring-oscillator frequency varies to fast with
the voltage control. But it does give you a starting point.

A PLL can consist of a oscillator (SUN_PLL_ROSC) that
generates our output frequency. A divider (SUN_PLL_DIVN)
that generates a feedback frequency that we can compare to the
reference. A Phase and Frequency Detector (SUN_PLL_PFD)
and a charge-pump (SUN_PLL_CP) that model the +, or the
comparison function in our previous picture. And a loop filter
(SUN_PLL_LPF and SUN_PLL_BUF) that is our H(s).

/Users/wulff/pro/aicex/ip/sun_pll_sky130nm/design/SUN_PLL_SKY130NM/SUN_PLL.sch

CK_REF x 32 PLL (max 512 MHz)

AVDD

AVSS

PWRUP_1V8

CK_REF
CK

C
P

_
U

P
_
N

C
P

_
D

O
W

N

V
D

D
_
R

O
S

C

IBPSR_1U

V
L
P

F

C
K

_
F

B

V
L
P

F
Z

KICK

P
W

R
U

P
_
1
V

8
_
N

Updated

Library/Cell

Designer

Modified

Copyright

wulff

2024-02-29  14:25:41

Carsten Wulff Software

SUN_PLL

Carsten Wulff

SUN_PLL_ROSC

xa5

A
V

D
D

CK

VDD_ROSC

P
W

R
U

P
_

1
V

8

A
V

S
S

SUN_PLL_DIVN

xaa6

A
V

D
D

CK_FB
CK

P
W

R
U

P
_

1
V

8

A
V

S
S

1

32

SUN_PLL_BIAS

xbb1

IB
P

S
R

_
1

U

PWRUP_1V8_N

A
V

S
S

BIAS

SUN_PLL_BUF

xa4

A
V

D
D

VFB
VI

VO

V
B

N

A
V

S
S

SUN_PLL_LPF

xd0

VLPFZ

A
V

S
S

V
L

P
F

SUN_PLL_CP

xa1

A
V

D
D

CP_UP_N

LPFCP_DOWN

V
B

N

A
V

S
S

Kcp = Ibp/2pi

LPFZ

P
W

R
U

P
_

1
V

8

K
IC

K

SUN_PLL_PFD

xa0

A
V

D
D

CP_UP_NCK_REF

CP_DOWNCK_FB

A
V

S
S

SUN_PLL_KICK

xaa3

AVDD KICK

KICK_NPWRUP_1V8

AVSS PWRUP_1V8_N

Read any book on PLLs, talk to any PLL designer and they
will all tell you the same thing. PLLs require calculation. You
must setup a linear model of the feedback loop, and calculate

https://github.com/wulffern/sun_pll_sky130nm


ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 5

the loop transfer function to check the stability, and the loop
gain. This is the way! (to quote Mandalorian).

But how can we make a linear model of a non-linear system?
The voltages inside a PLL must be non-linear, they are clocks.
A PLL is not linear in time-domain!

I have no idea who first thought of the idea, but it turns out,
that one can model a PLL as a linear system if one consider
the phase of the voltages inside the PLL, especially when the
PLL is locked (phase of the output and reference is mostly
aligned). Where the phase is defined as

ϕ(t) = 2π

∫ t

0

f(t)dt

As long as the bandwidth of the H(s) is about 1
10 of the

reference frequency, then the linear model below holds (at
least is good enough).

The phase of our input is ϕin(s), the phase of the output is
ϕ(s), the divided phase is ϕdiv(s) and the phase error is ϕd(s).

The Kpd is the gain of our phase-frequency detector and charge-
pump. The KlpHlp(s) is our loop filter H(s). The Kosc/s is
our oscillator transfer function. And the 1/N is our feedback
divider.

Girls OÉpd
Kuhns Kosel

0 s

Oldies
YN

Ode 0in kedKoeller Kosel

Old It kpdkgtk.sk din

IE ILG

A. Loop gain

The loop transfer function can then be analyzed and we get.

ϕd

ϕin
=

1

1 + L(s)

L(s) =
KoscKpdKlpHlp(s)

Ns

Here is the magic of PLLs. Notice what happens when s =
jω = j0, or at zero frequency. If we assume that Hlp(s)
is a low pass filter, then Hlp(0) = constant. The loop gain,
however, will have a L(0) ∝ 1

0 which approaces infinity at 0.

That means, we have an infinite DC gain in the loop transfer
function. It is the only case I know of in an analog design
where we can actually have infinite gain. Infinite gain translate
can translate to infinite precision.

If the reference was a Rubidium oscillator we could generate
any frequency with the same precision as the frequency of the
Rubidium oscillator. Magic.

For the linear model, we need to figure out the factors, like
Kvco, which must be determined by simulation.

B. Controlled oscillator

The gain of the oscillator is the change in output frequency as
a function of the change of the control node. For a voltage-
controlled oscillator (VCO) we could sweep the control voltage,
and check the frequency. The derivative of the f(V) would be
proportional to the Kvco.

The control node does not need to be a voltage. Anything that
changes the frequency of the oscillator can be used as a control
node. There exist PLLs with voltage control, current control,
capacitance control, and digital control.

For the SUN_PLL_ROSC it is the VDD of the ring-oscillator
(VDD_ROSC) that is our control node.

Kosc = 2π
df

dVcntl

/Users/wulff/pro/aicex/ip/sun_pll_sky130nm/work/../design/SUN_PLL_SKY130NM/SUN_PLL.sch

16 MHz x 32 = 512 MHz PLL

AVDD

AVSS

PWRUP_1V8

CK_REF
CK

C
P

_
U

P
_
N

C
P

_
D

O
W

N

V
D

D
_
R

O
S

C

IBPSR_1U

V
L
P

F

C
K

_
F

B

V
L
P

F
Z

KICK

P
W

R
U

P
_
1
V

8
_
N

Updated

Library/Cell

Designer

Modified

Copyright

wulff

2023-01-22  22:00:43

Carsten Wulff Software

SUN_PLL

Carsten Wulff

SUN_PLL_ROSC

xaa5
A

V
D

D

CK

VDD_ROSC

P
W

R
U

P
_
1
V

8

A
V

S
S

SUN_PLL_DIVN

xaa6

A
V

D
D

CK_FB
CK

P
W

R
U

P
_
1
V

8

A
V

S
S

1

32

SUN_PLL_BIAS

xbb1

IB
P

S
R

_
1
U

PWRUP_1V8_N

A
V

S
S

BIAS

SUN_PLL_BUF

xaa4

A
V

D
D

VFB
VI

VO

V
B

N

A
V

S
S

SUN_PLL_LPF

xbb0

VLPFZ

A
V

S
S

V
L
P

F

SUN_PLL_CP

xaa1

A
V

D
D

CP_UP_N

LPFCP_DOWN

V
B

N

A
V

S
S

Kcp = Ibp/2pi

LPFZ

P
W

R
U

P
_
1
V

8

K
IC

K

SUN_PLL_PFD

xaa0

A
V

D
D

CP_UP_NCK_REF

CP_DOWNCK_FB

A
V

S
S

SUN_PLL_KICK

xaa3

AVDD KICK

KICK_NPWRUP_1V8

AVSS PWRUP_1V8_N

1) SUN_PLL_SKY130NM/sim/ROSC/: I simulate the ring
oscillator in ngspice with a transient simulation and get the
oscillator frequency as a function of voltage.

tran.spi
let start_v = 1.1
let stop_v = 1.7
let delta_v = 0.1
let v_act = start_v

* loop
while v_act le stop_v
alter VROSC v_act
tran 1p 40n
meas tran vrosc avg v(VDD_ROSC)
meas tran tpd trig v(CK) val='0.8' rise=10 targ v(CK) val='0.8' rise=11
let v_act = v_act + delta_v
end

I use tran.py to extract the time-domain signal from ngspice
into a CSV file.

Then I use a python script to extract the Kosc

https://github.com/wulffern/sun_pll_sky130nm/tree/main/sim/ROSC


ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 6

kvco.py
df = pd.read_csv(f)
freq = 1/df["tpd"]
kvco = np.mean(freq.diff()/df["vrosc"].diff())

Below I’ve made a plot of the oscillation frequency over
corners.

1.1 1.2 1.3 1.4 1.5 1.6
VDD_ROSC [V]

400

600

800

1000

1200

Fr
eq

ue
nc

y 
[M

Hz
]

tran_LayGtVtKttTt
tran_LayGtVtKssTt
tran_LayGtVtKffTt
tran_LayGtVtKttTh
tran_LayGtVtKssTh
tran_LayGtVtKffTh
tran_LayGtVtKttTl
tran_LayGtVtKssTl
tran_LayGtVtKffTl

C. Phase detector and charge pump

The gain of the phase-detector and charge pump is the current
we feed into the loop filter over a period. I don’t remember
why, check in the book for a detailed description.

The two blocks compare our reference clock to our feedback
clock, and produce an error signal.

Kpd =
Icp
2π

/Users/wulff/pro/aicex/ip/sun_pll_sky130nm/work/../design/SUN_PLL_SKY130NM/SUN_PLL.sch

16 MHz x 32 = 512 MHz PLL

AVDD

AVSS

PWRUP_1V8

CK_REF
CK

C
P

_
U

P
_
N

C
P

_
D

O
W

N

V
D

D
_

R
O

S
C

IBPSR_1U

V
L
P

F

C
K

_
F

B

V
L
P

F
Z

KICK

P
W

R
U

P
_
1
V

8
_
N

Updated

Library/Cell

Designer

Modified

Copyright

wulff

2023-01-22  22:00:43

Carsten Wulff Software

SUN_PLL

Carsten Wulff

SUN_PLL_ROSC

xaa5

A
V

D
D

CK

VDD_ROSC

P
W

R
U

P
_
1
V

8

A
V

S
S

SUN_PLL_DIVN

xaa6

A
V

D
D

CK_FB
CK

P
W

R
U

P
_
1
V

8

A
V

S
S

1

32

SUN_PLL_BIAS

xbb1

IB
P

S
R

_
1
U

PWRUP_1V8_N

A
V

S
S

BIAS

SUN_PLL_BUF

xaa4

A
V

D
D

VFB
VI

VO

V
B

N

A
V

S
S

SUN_PLL_LPF

xbb0

VLPFZ

A
V

S
S

V
L
P

F

SUN_PLL_CP

xaa1

A
V

D
D

CP_UP_N

LPFCP_DOWN

V
B

N

A
V

S
S

Kcp = Ibp/2pi

LPFZ

P
W

R
U

P
_
1
V

8

K
IC

K

SUN_PLL_PFD

xaa0

A
V

D
D

CP_UP_NCK_REF

CP_DOWNCK_FB

A
V

S
S

SUN_PLL_KICK

xaa3

AVDD KICK

KICK_NPWRUP_1V8

AVSS PWRUP_1V8_N

D. Loop filter

In the book you’ll find a first order loop filter, and a second
order loop filter. Engineers are creative, so you’ll likely find
other loop filters in the literature.

I would start with the “known to work” loop filters before you
explore on your own.

If you’re really interested in PLLs, you should buy Design of
CMOS Phase-Locked Loops by Behzad Razavi.

The loop filter has a unity gain buffer. My oscillator draws
current, while the VPLF node is high impedant, so I can’t
draw current from the loop filter without changing the filter
transfer function.

KlpHlp(s) = Klp

(
1

s
+

1

ωz

)

KlpHlp(s) =
1

s(C1 + C2)

1 + sRC1

1 + sR C1C2

C1+C2

/Users/wulff/pro/aicex/ip/sun_pll_sky130nm/work/../design/SUN_PLL_SKY130NM/SUN_PLL.sch

16 MHz x 32 = 512 MHz PLL

AVDD

AVSS

PWRUP_1V8

CK_REF
CK

C
P

_
U

P
_

N
C

P
_

D
O

W
N

V
D

D
_

R
O

S
C

IBPSR_1U

V
L

P
F

C
K

_
F

B

V
L

P
F

Z
KICK

P
W

R
U

P
_

1
V

8
_

N

Updated

Library/Cell

Designer

Modified

Copyright

wulff

2023-01-22  22:00:43

Carsten Wulff Software

SUN_PLL

Carsten Wulff

SUN_PLL_ROSC

xaa5

A
V

D
D

CK

VDD_ROSC

P
W

R
U

P
_

1
V

8

A
V

S
S

SUN_PLL_DIVN

xaa6

A
V

D
D

CK_FB
CK

P
W

R
U

P
_

1
V

8

A
V

S
S

1

32

SUN_PLL_BIAS

xbb1

IB
P

S
R

_
1

U

PWRUP_1V8_N

A
V

S
S

BIAS

SUN_PLL_BUF

xaa4

A
V

D
D

VFB
VI

VO

V
B

N

A
V

S
S

SUN_PLL_LPF

xbb0

VLPFZ

A
V

S
S

V
L

P
F

SUN_PLL_CP

xaa1

A
V

D
D

CP_UP_N

LPFCP_DOWN

V
B

N

A
V

S
S

Kcp = Ibp/2pi

LPFZ

P
W

R
U

P
_

1
V

8

K
IC

K

SUN_PLL_PFD

xaa0

A
V

D
D

CP_UP_NCK_REF

CP_DOWNCK_FB

A
V

S
S

SUN_PLL_KICK

xaa3

AVDD KICK

KICK_NPWRUP_1V8

AVSS PWRUP_1V8_N

E. Divider

The divider is modelled as

Kdiv =
1

N

/Users/wulff/pro/aicex/ip/sun_pll_sky130nm/work/../design/SUN_PLL_SKY130NM/SUN_PLL.sch

16 MHz x 32 = 512 MHz PLL

AVDD

AVSS

PWRUP_1V8

CK_REF
CK

C
P

_
U

P
_
N

C
P

_
D

O
W

N

V
D

D
_
R

O
S

C

IBPSR_1U

V
L
P

F

C
K

_
F

B

V
L
P

F
Z

KICK

P
W

R
U

P
_
1
V

8
_
N

Updated

Library/Cell

Designer

Modified

Copyright

wulff

2023-01-22  22:00:43

Carsten Wulff Software

SUN_PLL

Carsten Wulff

SUN_PLL_ROSC

xaa5

A
V

D
D

CK

VDD_ROSC

P
W

R
U

P
_

1
V

8

A
V

S
S

SUN_PLL_DIVN

xaa6

A
V

D
D

CK_FB
CK

P
W

R
U

P
_

1
V

8

A
V

S
S

1

32

SUN_PLL_BIAS

xbb1

IB
P

S
R

_
1

U

PWRUP_1V8_N

A
V

S
S

BIAS

SUN_PLL_BUF

xaa4

A
V

D
D

VFB
VI

VO

V
B

N

A
V

S
S

SUN_PLL_LPF

xbb0

VLPFZ

A
V

S
S

V
L

P
F

SUN_PLL_CP

xaa1

A
V

D
D

CP_UP_N

LPFCP_DOWN

V
B

N

A
V

S
S

Kcp = Ibp/2pi

LPFZ

P
W

R
U

P
_

1
V

8

K
IC

K

SUN_PLL_PFD

xaa0

A
V

D
D

CP_UP_NCK_REF

CP_DOWNCK_FB

A
V

S
S

SUN_PLL_KICK

xaa3

AVDD KICK

KICK_NPWRUP_1V8

AVSS PWRUP_1V8_N

F. Loop transfer function

With the loop transfer function we can start to model what
happens in the linear loop. What is the phase response, and
what is the gain response.

L(s) =
KoscKpdKlpHlp(s)

Ns

https://www.amazon.com/Design-CMOS-Phase-Locked-Loops-Architecture/dp/1108494544
https://www.amazon.com/Design-CMOS-Phase-Locked-Loops-Architecture/dp/1108494544


ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 7

1) Python model: I’ve made a python model of the loop, you
can find it at sun_pll_sky130nm/jupyter/pll

In the jupyter notbook below you can find some more
information on the phase/frequency detector, and charge pump.

sun_pll_sky130nm/jupyter/pfd

Below is a plot of the loop gain, and the transfer function from
input phase to divider phase.

We can see that the loop gain at low frequency is large, and
proportional to 1/s. As such, the phase of the divided down
feedback clock is the same as our reference.

The closed loop transfer function ϕdiv/ϕin shows us that the
divided phase at low frequency is the same as the input phase.
Since the phase is the same, and the frequency must be the
same, then we know that the output clock will be N times
reference frequency.

103 104 105 106 107 108

Frequency [Hz]

50

0

50

100

M
ag

ni
tu

de
 [d

B]

Lg
div/ in

103 104 105 106 107 108

Frequency [Hz]

150

100

50

0

Ph
as

e 
[D

eg
re

es
]

Phase margin = 55.0

Lg
div/ in

The top testbench for the PLL is tran.spi.

I power up the PLL and wait for the output clock to settle. I
use freq.py to plot the frequency as a function of time. The
orange curve is the average frequency. We can see that the
output frequency settles to 256 MHz.

2 4 6 8 10 12 14
Time [us]

0

100

200

300

400

500

Fr
eq

ue
nc

y 
[M

Hz
]

tran_LayGtVtKttTt.raw
mid,end:  259.270,256.04 MHz 

You can find the schematics, layout, testbenches, python script
etc at SUN_PLL_SKY130NM

Below are a couple layout images of the finished PLL

V. WANT TO LEARN MORE?

Back in 2020 there was a Master student at NTNU on PLL. I
would recommend looking at that thesis to learn more, and to
get inspired Ultra Low Power Frequency Synthesizer.

A Low Noise Sub-Sampling PLL in Which Divider Noise is
Eliminated and PD/CP Noise is Not Multiplied by N2

All-digital PLL and transmitter for mobile phones

A 2.9–4.0-GHz Fractional-N Digital PLL With Bang-Bang
Phase Detector and 560-fsrms Integrated Jitter at 4.5-mW
Power

https://github.com/wulffern/sun_pll_sky130nm/blob/main/jupyter/pll.ipynb
https://github.com/wulffern/sun_pll_sky130nm/blob/main/jupyter/pfd.ipynb
https://github.com/wulffern/sun_pll_sky130nm/blob/main/sim/SUN_PLL/tran.spi
https://github.com/wulffern/sun_pll_sky130nm/blob/main/sim/SUN_PLL/freq.py
https://github.com/wulffern/sun_pll_sky130nm
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2778127
https://ieeexplore.ieee.org/document/5342373
https://ieeexplore.ieee.org/document/5342373
https://ieeexplore.ieee.org/document/1546223
https://ieeexplore.ieee.org/document/6006551
https://ieeexplore.ieee.org/document/6006551
https://ieeexplore.ieee.org/document/6006551


ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 22 14:17:11 UTC 2025 FROM 37BF2CD8FF6CD72AE7B7D46A6FFD4A790FA71425 8

Carsten Wulff received the M.Sc.
and Ph.D. degrees in electrical
engineering from the Department
of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,
he worked on open-loop sigma-

delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various
roles, from analog designer, to Wireless Group Manager,
to currently Principle IC Scientist. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of high-
efficiency analog-to-digital converters and low-power wireless
transceivers. He is the developer of Custom IC Compiler, a
general purpose integrated circuit compiler.


	Why clocks?
	A customer story
	Imagine a world
	Imagine a better world

	Frequency
	Noise
	Stability
	Conclusion

	A typical System-On-Chip clock system
	32 MHz crystal
	32 KiHz crystal
	PCB antenna
	DC/DC inductor

	PLL
	Integer PLL
	Fractional PLL
	Modulation in PLLs

	PLL Example
	Loop gain
	Controlled oscillator
	SUN_PLL_SKY130NM/sim/ROSC/

	Phase detector and charge pump
	Loop filter
	Divider
	Loop transfer function
	Python model


	Want to learn more?

