
ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN JUN 8 16:43:19 UTC 2025 FROM A53266D730C2B7FE4FD6BA90E9C2B3586E43F3E2 1

Switched-Capacitor Circuits
Carsten Wulff, carsten@wulff.no

Keywords: SC DAC, SC FUND, DT, Alias, Subsample, Z
Domain, FIR, IIR, SC MDAC, SC INT, Switch, Non-Overlap,
VBE SC, Nyquist

I. ACTIVE-RC

A general purpose Active-RC bi-quadratic (two-quadratic
equations) filter is shown below
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If you want to spend a bit of time, then try and calculate the
transfer function below.
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Active resistor capacitor filters are made with OTAs (high
output impedance) or OPAMP (low output impedance). Active
amplifiers will consume current, and in Active-RC the ampli-
fiers are always on, so there is no opportunity to reduce the
current consumption by duty-cycling (turning on and off).

Both resistors and capacitors vary on an integrated circuit, and
the 3-sigma variation can easily be 20 %.

The pole or zero frequency of an Active-RC filter is proportional
to the inverse of the product between R and C

ωp|z ∝ G

C
=

1

RC

As a result, the total variation of the pole or zero frequency is
can have a 3-sigma value of

σRC =
√
σ2
R + σ2

C =
√
0.022 + 0.022 = 0.028 = 28 %

On an IC we sometimes need to calibrate the R or C in
production to get an accurate RC time constant.

We cannot physically change an IC, every single one of the 100
million copies of an IC is from the same Mask set. That’s why
ICs are cheap. To make the Mask set is incredibility expensive
(think 5 million dollars), but a copy made from the Mask set
can cost one dollar or less. To calibrate we need additional
circuits.

Imagine we need a resistor of 1 kOhm. We could create that
by parallel connection of larger resistors, or series connection
of smaller resistors. Since we know the maximum variation is
0.02, then we need to be able to calibrate away +- 20 Ohms.
We could have a 980 kOhm resistor, and then add ten 4 Ohm
resistors in series that we can short with a transistor switch.

But is a resolution of 4 Ohms accurate enough? What if we need
a precision of 0.1%? Then we would need to tune the resistor
within +-1 Ohm, so we might need 80 0.5 Ohm resistors.

But how large is the on-resistance of the transistor switch?
Would that also affect our precision?

But is the calibration step linear with addition of the transistors?
If we have a non-linear calibration step, then we cannot use
gradient decent calibration algorithms, nor can we use binary
search.

Analog designers need to deal with an almost infinite series of
“But”.

The experienced designer will know when to stop, when is the
“But what if” not a problem anymore.

The most common error in analog integrated circuit design is
a “I did not imagine that my circuit could fail in this manner”
type of problem. Or, not following the line of “But”’s far
enough.

But if we follow all the “But”’s we will never tapeout!

Active-RC filters are great for linearity, but if we need accurate
time constant, there are better alternatives.
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II. GM-C
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H(s) =

[
s2 CX

CX+CB
+ s Gm5

CX+CB
+ Gm2Gm4

CA(CX+CB)

]
[
s2 + s Gm2

CX+CB
+ Gm1Gm2

CA(CX+CB)

]
The pole and zero frequency of a Gm-C filter is

ωp|z ∝ Gm

C

The transconductance accuracy depends on the circuit, and the
bias circuit, so we can’t give a general, applies for all circuits,
sigma number. Capacitors do have 3-sigma 20 % variation,
usually.

Same as Active-RC, Gm-C need calibration to get accurate
pole or zero frequency.

III. SWITCHED CAPACITOR

The first time you encounter Switched Capacitor (SC) circuits,
they do require some brain training. So let’s start simple.

Consider the circuit below. Assume that the two transistors are
ideal (no-charge injection, no resistance).
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For SC circuits, we need to consider the charge on the
capacitors, and how they change with time.

The charge on the capacitor at the end 1 of phase 2 is

Qϕ2$ = C1VGND = 0

while at the end of phase 1

Qϕ1$ = C1VI

The impedance, from Ohm’s law is

ZI = (VI − VGND)/II

And from SI units units we can see current is

II =
Q

dt
= Qfϕ

Charge cannot disappear, charge is conserved. As such, the
charge going out from the input must be equal to the difference
of charge at the end of phase 1 and phase 2.

ZI =
VI − VGND(

Qϕ1$ −Qϕ2$

)
fϕ

Inserting for the charges, we can see that the impedance is

ZI =
VI

(VIC − 0) fϕ
=

1

C1fϕ

A common confusion with SC circuits is to confuse the
impedance of a capacitor Z = 1/sC with the impedance
of a SC circuit Z = 1/fC. The impedance of a capacitor is
complex (varies with frequency and time), while the SC circuit
impedance is real (a resistance).

The main difference between the two is that the impedance
of a capacitor is continuous in time, while the SC circuit is a
discrete time circuit, and has a discrete time impedance.

The circuit below is drawn slightly differently, but the same
equation applies.

1I use the $ to mark the end of the period. It comes from Regular Expressions.

https://en.wikipedia.org/wiki/Ohm%27s_law
https://analogicus.com/aic2024/2023/10/26/A-refresher.html#there-are-standard-units-of-measurement
https://en.wikipedia.org/wiki/Charge_conservation
https://en.wikipedia.org/wiki/Regular_expression
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If we compute the impedance.

ZI =
VI − VO(

Qϕ1$ −Qϕ2$

)
fϕ

Qϕ1$ = C1(VI − VO)

Qϕ2$ = 0

ZI =
VI − VO

(C1(VI − VO)) fϕ
=

1

C1fϕ

Which should not be surprising, as all I’ve done is to rotate
the circuit and call VGND = V0.

Let’s try the circuit below.
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ZI =
VI − VO(

Qϕ1$ −Qϕ2$

)
fϕ

Qϕ1$ = C1VI)

Qϕ2$ = C1VO

Inserted into the impedance we get the same result.

ZI =
VI − VO

(C1VI − C1VO)) fϕ
=

1

C1fϕ

The first time I saw the circuit above it was not obvious to
me that the impedance still was Z = 1/Cf . It’s one of the
cases where mathematics is a useful tool. I could follow a
set of rules (charge conservation), and as long as I did the
mathematics right, then from the equations, I could see how it
worked.

A. An example SC circuit

An example use of an SC circuit is

A pipelined 5-Msample/s 9-bit analog-to-digital converter

Shown in the figure below. You should think of the switched
capacitor circuit as similar to a an amplifier with constant
gain. We can use two resistors and an opamp to create a gain.
Imagine we create a circuit without the switches, and with
a resistor of R from input to virtual ground, and 4R in the
feedback. Our Active-R would have a gain of A = 4.

The switches disconnect the OTA and capacitors for half the
time, but for the other half, at least for the latter parts of ϕ2

the gain is four.

The output is only correct for a finite, but periodic, time interval.
The circuit is discrete time. As long as all circuits afterwards
also have a discrete-time input, then it’s fine. An ADC can
sample the output from the amplifier at the right time, and
never notice that the output is shorted to a DC voltage in ϕ1

We charge the capacitor 4C to the differential input voltage in
ϕ1

https://ieeexplore.ieee.org/document/1052843
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Q1 = 4CVin

Then we turn off ϕ1, which opens all switches. The charge on
4C will still be Q1 (except for higher order effects like charge
injection from switches).

After a short time (non-overlap), we turn on ϕ2, closing some
of the switches. The OTA will start to force its two inputs to
be the same voltage, and we short the left side of 4C. After
some time we would have the same voltage on the left side
of 4C for the two capacitors, and another voltage on the right
side of the 4C capacitors. The two capacitors must now have
the same charge, so the difference in charge, or differential
charge must be zero.

Physics tell us that charge is conserved, so our differential
charge Q1 cannot vanish into thin air. The difference in
electrons that made Q1 must be somewhere in our circuit.

Assume the designer of the circuit has done a proper job, then
the Q1 charge will be found on the feedback capacitors.

We now have a Q1 charge on smaller capacitors, so the
differential output voltage must be

Q1 = 4CVin = Q2 = CVout

The gain is

A =
Vout

Vin
= 4

Why would we go to all this trouble to get a gain of 4?

In general, we can sum up with the following equation.

ωp|z ∝ C1

C2

We can use these “switched capacitor resistors” to get pole or
zero frequency or gain proportional to a the relative size of
capacitors, which is a fantastic feature. Assume we make two
identical capacitors in our layout. We won’t know the absolute
size of the capacitors on the integrated circuit, whether the C1

is 100 fF or 80 fF, but we can be certain that if C1 = 80 fF,
then C2 = 80 fF to a precision of around 0.1 %.

With switched capacitor amplifiers we can set an accurate gain,
and we can set an accurate pole and zero frequency (as long
as we have an accurate clock and a high DC gain OTA).

The switched capacitor circuits do have a drawback. They are
discrete time circuits. As such, we must treat them with caution,
and they will always need some analog filter before to avoid a
phenomena we call aliasing.

IV. DISCRETE-TIME SIGNALS

An random, Gaussian, continuous time, continuous value, signal
has infinite information. The frequency can be anywhere from
zero to infinity, the value have infinite levels, and the time
division is infinitely small. We cannot store such a signal. We
have to quantize.

If we quantize time to T = 1 ns, such that we only record the
value of the signal every 1 ns, what happens to all the other
information? The stuff that changes at 0.5 ns or 0.1 ns, or 1
ns.

We can always guess, but it helps to know, as in absolutely
know, what happens. That’s where mathematics come in. With
mathematics we can prove things, and know we’re correct.

A. The mathematics

Define
xc

as a continuous time, continuous value signal

Define

ℓ(t) =

{
1 if t ≥ 0

0 if t < 0

Define

xsn(t) =
xc(nT )

τ
[ℓ(t− nT )− ℓ(t− nT − τ)]

where xsn(t) is a function of the continuous time signal at the
time interval nT .

Define

xs(t) =

∞∑
n=−∞

xsn(t)

where xs(t) is the sampled, continuous time, signal.

Think of a sampled version of an analog signal as an infinite
sum of pulse trains where the area under the pulse train is
equal to the analog signal.

Why do this?

With a exact definition of a sampled signal in the time-domain
it’s sometimes possible to find the Laplace transform, and see
how the frequency spectrum looks.

If

xs(t) =

∞∑
n=−∞

xsn(t)

Then

Xsn(s) =
1

τ

1− e−sτ

s
xc(nT )e

−snT

And

Xs(s) =
1

τ

1− e−sτ

s

∞∑
n=−∞

xc(nT )e
−snT
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Thus

lim
τ→0

→ Xs(s) =

∞∑
n=−∞

xc(nT )e
−snT

Or

Xs(jω) =
1

T

∞∑
k=−∞

Xc

(
jω − jk2π

T

)

The spectrum of a sampled signal is an infinite sum of
frequency shifted spectra

or equivalently

When you sample a signal, then there will be copies of the
input spectrum at every

nfs

However, if you do an FFT of a sampled signal, then all those
infinite spectra will fold down between

0 → fs1/2

or
−fs1/2 → fs1/2

for a complex FFT

B. Python discrete time example

If your signal processing skills are a bit thin, now might be
a good time to read up on FFT, Laplace transform and But
what is the Fourier Transform?

In python we can create a demo and see what happens when we
“sample” an “continuous time” signal. Hopefully it’s obvious
that it’s impossible to emulate a “continuous time” signal on a
digital computer. After all, it’s digital (ones and zeros), and it
has a clock!

We can, however, emulate to any precision we want.

The code below has four main sections. First is the time vector.
I use Numpy, which has a bunch of useful features for creating
ranges, and arrays.

Secondly, I create continuous time signal. The time vector can
be used in numpy functions, like np.sin(), and I combine
three sinusoid plus some noise. The sampling vector is a
repeating pattern of 11001100, so our sample rate should be
1/2’th of the input sample rate. FFT’s can be unwieldy beasts.
I like to use coherent sampling, however, with multiple signals
and samplerates I did not bother to figure out whether it was
possible.

The alternative to coherent sampling is to apply a window
function before the FFT, that’s the reason for the Hanning
window below.

dt.py
#- Create a time vector
N = 2**13
t = np.linspace(0,N,N)

#- Create the "continuous time" signal with multiple

#- "sinusoidal signals and some noise
f1 = 233/N
fd = 1/N*119
x_s = np.sin(2*np.pi*f1*t) + 1/1024*np.random.randn(N) + \

0.5*np.sin(2*np.pi*(f1-fd)*t) + 0.5*np.sin(2*np.pi*(f1+fd)*t)

#- Create the sampling vector, and the sampled signal
t_s_unit = [1,1,0,0,0,0,0,0]
t_s = np.tile(t_s_unit,int(N/len(t_s_unit)))
x_sn = x_s*t_s

#- Convert to frequency domain with a hanning window to avoid FFT bin
#- energy spread
Hann = True
if(Hann):

w = np.hanning(N+1)
else:

w = np.ones(N+1)
X_s = np.fft.fftshift(np.fft.fft(np.multiply(w[0:N],x_s)))
X_sn = np.fft.fftshift(np.fft.fft(np.multiply(w[0:N],x_sn)))

Try to play with the code, and see if you can understand what
it does.

Below are the plots. On the left side is the “continuous value,
continuous time” emulation, on the right side “discrete time,
continuous value”.

The top plots are the time domain, while the bottom plots is
frequency domain.

The FFT is complex, so that’s why there are six sinusoids
bottom left. The “0 Hz” would be at x-axis index 4096 (213/2).

The spectral copies can be seen bottom right. How many
spectral copies, and the distance between them will depend
on the sample rate (length of t_s_unit). Try to play around
with the code and see what happens.
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C. Aliasing, bandwidth and sample rate theory

I want you to internalize that the spectral copies are real. They
are not some “mathematical construct” that we don’t have to
deal with.

They are what happens when we sample a signal into discrete
time. Imagine a signal with a band of interest as shown below
in Green. We sample at fs. The pink and red unwanted signals
do not disappear after sampling, even though they are above
the Nyquist frequency (fs/2). They fold around fs/2, and in

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Laplace_transform
https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=spUNpyF58BY
https://numpy.org
https://en.wikipedia.org/wiki/Talk%3ACoherent_sampling
https://github.com/wulffern/aic2024/blob/main/ex/dt.py
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may appear in-band. That’s why it’s important to band limit
analog signals before they are sampled.

As such x t should be band limitedbefore

sampling

BeforeSaulius
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With an anti-alias filter (yellow) we ensure that the unwanted
components are low enough before sampling. As a result, our
wanted signal (green) is undisturbed.

As such x t should be band limitedbefore

sampling
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Assume that we we’re interested in the red signal. We could
still use a sample rate of fs. If we bandpass-filtered all but the
red signal the red signal would fold on sampling, as shown in
the figure below.

Remember that the Nyquist-Shannon states that a sufficient
no-loss condition is to sample signals with a sample rate of
twice the bandwidth of the signal.

Nyquist-Shannon has been extended for sparse signals, com-
pressed sensing, and non-uniform sampling to demonstrate
that it’s sufficient for the average sample rate to be twice
the bandwidth. One 2009 paper Blind Multiband Signal
Reconstruction: Compressed Sensing for Analog Signal is
a good place to start to delve into the latest on signal
reconstruction.

BeforeSampling
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D. Z-transform

Someone got the idea that writing

Xs(s) =

∞∑
n=−∞

xc(nT )e
−snT

was cumbersome, and wanted to find something better.

Xs(z) =

∞∑
n=−∞

xc[n]z
−n

For discrete time signal processing we use Z-transform

If you’re unfamiliar with the Z-transform, read the book or
search https://en.wikipedia.org/wiki/Z-transform

The nice thing with the Z-transform is that the exponent of
the z tell’s you how much delayed the sample xc[n] is. A
block that delays a signal by 1 sample could be described as
xc[n]z

−1, and an accumulator

y[n] = y[n− 1] + x[n]

in the Z domain would be

Y (z) = z−1Y (z) +X(z)

With a Z-domain transfer function of

Y (z)

X(z)
=

1

1− z−1

E. Pole-Zero plots

If you’re not comfortable with pole/zero plots, have a look at

What does the Laplace Transform really tell us

Think about the pole/zero plot as a surface your looking down
onto. At a = 0 we have the steady state fourier transform. The
“x” shows the complex frequency where the fourier transform
goes to infinity.

https://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
https://ieeexplore.ieee.org/document/4749297
https://ieeexplore.ieee.org/document/4749297
https://en.wikipedia.org/wiki/Z-transform
https://www.youtube.com/watch?v=n2y7n6jw5d0
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Any real circuit will have complex conjugate, or real,
poles/zeros. A combination of two real circuits where one
path is shifted 90 degrees in phase can have non-conjugate
complex poles/zeros.

If the “x” is a < 0, then any perturbation will eventually die
out. If the “x” is on the a = 0 line, then we have a oscillator
that will ring forever. If the “x” is a > 0 then the oscillation
amplitude will grow without bounds, although, only in Matlab.
In any physical circuit an oscillation cannot grow without
bounds forever.

Growing without bounds is the same as “being unstable”.
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g
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F. Z-domain

Spectra repeat every

2π

As such, it does not make sense to talk about a plane with a
a and a jω. Rather we use the complex number z = a+ jb.

As long as the poles (“x”) are within the unit circle, oscillations
will die out. If the poles are on the unit-circle, then we have
an oscillator. Outside the unit circle the oscillation will grow
without bounds, or in other words, be unstable.

We can translate between Laplace-domain and Z-domain with
the Bi-linear transform

s =
z − 1

z + 1

Warning: First-order approximation https://en.wikipedia.org/w
iki/Bilinear_transform

jw s atjw

a
X

poles 440
0 Leros ifs O

Discrete time

every atb
Zsa

spectra

g
jw

Z plane

x
x

g

G. First order filter

Assume a first order filter given by the discrete time equation.

y[n+ 1] = bx[n] + ay[n] ⇒ Y z = bX + aY

The “n” index and the “z” exponent can be chosen freely,
which sometimes can help the algebra.

y[n] = bx[n− 1] + ay[n− 1] ⇒ Y = bXz−1 + aY z−1

The transfer function can be computed as

H(z) =
b

z − a

From the discrete time equation we can see that the impulse will
never die out. We’re adding the previous output to the current
input. That means the circuit has infinite memory. Accordingly,
filters of this type are known as. Infinite-impulse response (IIR)

h[n] =

{
k if n < 1

an−1b+ ank if n ≥ 1

Head’s up: Fig 13.12 in AIC is wrong

From the impulse response it can be seen that if a > 1, then
the filter is unstable. Same if b > 1. As long as |a+ jb| < 1
the filter should be stable.

https://en.wikipedia.org/wiki/Bilinear_transform
https://en.wikipedia.org/wiki/Bilinear_transform
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The first order filter can be implemented in python, and it’s
really not hard. See below. The xsn vector is from the previous
python example.

There are smarter, and faster ways to do IIR filters (and FIR)
in python, see scipy.signal.iirfilter

From the plot below we can see the sampled time domain and
spectra on the left, and the filtered time domain and spectra
on the right.

iir.py
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#- IIR filter
b = 0.3
a = 0.25
z = a + 1j*b
z_abs = np.abs(z)
print("|z| = " + str(z_abs))
y = np.zeros(N)
y[0] = a
for i in range(1,N):

y[i] = b*x_sn[i-1] + y[i-1]

The IIR filter we implemented above is a low-pass filter, and
the filter partially rejects the copied spectra, as expected.

H. Finite-impulse response(FIR)

FIR filters are unconditionally stable, since the impulse
response will always die out. FIR filters are a linear sum
of delayed inputs.

In my humble opinion, there is nothing wrong with an IIR.
Yes, the could become unstable, however, they can be designed
safely. I’m not sure there is a theological feud on IIR vs FIR,
I suspect there could be. Talk to someone that knows digital
filters better than me.

But be wary of rules like “IIR are always better than FIR”
or visa versa. Especially if statements are written in books.
Remember that the book was probably written a decade ago,
and based on papers two decades old, which were based on
three decades old state of the art. Our abilities to use computers
for design has improved a bit the last three decades.
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V. SWITCHED-CAPACITOR

Below is an example of a switched-capacitor circuit during
phase 1. Think of the two phases as two different configurations
of a circuit, each with a specific purpose.
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This is the SC circuit during the sampling phase. Imagine that
we somehow have stored a voltage V1 = ℓ on capacitor C1

(the switches for that sampling or storing are not shown). The
charge on C1 is

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html
https://github.com/wulffern/aic2024/blob/main/ex/iir.py
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Q1ϕ1$ = C1V1

The C2 capacitor is shorted, as such, V2 = 0, which must
mean that the charge on C2 given by

Q2ϕ1$ = 0

The voltage at the negative input of the OTA must be 0 V, as
the positive input is 0 V, and we assume the circuit has settled
all transients.

Imagine we (very carefully) open the circuit around C2 and
close the circuit from the negative side of C1 to the OTA
negative input, as shown below.
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It’s the OTA that ensures that the negative input is the same as
the positive input, but the OTA cannot be infinitely fast. At the
same time, the voltage across C1 cannot change instantaneously.
Neither can the voltage across C2. As such, the voltage at the
negative input must immediately go to −V1 (ignoring any
parasitic capacitance at the negative input).

The OTA does not like it’s inputs to be different, so it will
start to charge C2 to increase the voltage at the negative input
to the OTA. When the negative input reaches 0 V the OTA is
happy again. At that point the charge on C1 is

Q1ϕ2$ = 0

A key point is, that even the voltages now have changed, there
is zero volt across C1, and thus there cannot be any charge
across C1 the charge that was there cannot have disappeared.
The negative input of the OTA is a high impedance node, and
cannot supply charge. The charge must have gone somewhere,
but where?

In process of changing the voltage at the negative input of the
OTA we’ve changed the voltage across C2. The voltage change
must exactly match the charge that was across C1, as such

Q2ϕ2$ = Q1ϕ1$ = C1V1 = C2V2

thus

V2

V1
=

C1

C2

A. Switched capacitor gain circuit

Redrawing the previous circuit, and adding a few more switches
we can create a switched capacitor gain circuit.

There is now a switch to sample the input voltage across C1

during phase 1 and reset C2. During phase 2 we configure the
circuit to leverage the OTA to do the charge transfer from C1

to C2.
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errorThe discrete time output from the circuit will be as shown
below. It’s only at the end of the second phase that the output
signal is valid. As a result, it’s common to use the sampling
phase of the next circuit close to the end of phase 2.

For charge to be conserved the clocks for the switch phases
must never be high at the same time.
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The discrete time, Z-domain and transfer function is shown
below. The transfer function tells us that the circuit is equivalent
to a gain, and a delay of one clock cycle. The cool thing about
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switch capacitor circuits is that the precision of the gain is set by
the relative size between two capacitors. In most technologies
that relative sizing can be better than 0.1 %.

Gain circuits like the one above find use in most Pipelined
ADCs, and are common, with some modifications, in Sigma-
Delta ADCs.

Vo[n+ 1] =
C1

C2
Vi[n]

Voz =
C1

C2
Vi

Vo

Vi
= H(z) =

C1

C2
z−1

B. Switched capacitor integrator

Removing one switch we can change the function of the
switched capacitor gain circuit. If we don’t reset C2 then
we accumulate the input charge every cycle.
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The output now will grow without bounds, so integrators are
most often used in filter circuits, or sigma-delta ADCs where
there is feedback to control the voltage swing at the output of
the OTA.
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Make sure you read and understand the equations below, it’s
good to realize that discrete time equations, Z-domain and
transfer functions in the Z-domain are actually easy.

Vo[n] = Vo[n− 1] +
C1

C2
Vi[n− 1]

Vo − z−1Vo =
C1

C2
z−1Vi

Maybe one confusing thing is that multiple transfer functions
can mean the same thing, as below.

H(z) =
C1

C2

z−1

1− z−1
=

C1

C2

1

z − 1

C. Noise

Capacitors don’t make noise, but switched-capacitor circuits
do have noise. The noise comes from the thermal, flicker, burst
noise in the switches and OTA’s. Both phases of the switched
capacitor circuit contribute noise. As such, the output noise of
a SC circuit is usually

V 2
n >

2kT

C

I find that sometimes it’s useful with a repeat of mathematics,
and since we’re talking about noise.

The mean, or average of a signal is defined as

Mean

x(t) = lim
T→∞

1

T

∫ +T/2

−T/2

x(t)dt

Define

https://en.wikipedia.org/wiki/Mean
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Mean Square

x2(t) = lim
T→∞

1

T

∫ +T/2

−T/2

x2(t)dt

How much a signal varies can be estimated from the Variance

σ2 = x2(t)− x(t)
2

where

σ

is the standard deviation. If mean is removed, or is zero, then

σ2 = x2(t)

Assume two random processes,

x1(t)

and

x2(t)

with mean of zero (or removed).

xtot(t) = x1(t) + x2(t)

x2
tot(t) = x2

1(t) + x2
2(t) + 2x1(t)x2(t)

Variance (assuming mean of zero)

σ2
tot = lim

T→∞

1

T

∫ +T/2

−T/2

x2
tot(t)dt

σ2
tot = σ2

1 + σ2
2 + lim

T→∞

1

T

∫ +T/2

−T/2

2x1(t)x2(t)dt

Assuming uncorrelated processes (covariance is zero), then

σ2
tot = σ2

1 + σ2
2

In other words, if two noises are uncorrelated, then we can sum
the variances. If the noise sources are correlated, for example,
noise comes from the same transistor, but takes two different
paths through the circuit, then we cannot sum the variances.
We must also add the co-variance.

D. Sub-circuits for SC-circuits

Switched-capacitor circuits are so common that it’s good
to delve a bit deeper, and understand the variants of the
components that make up SC circuits.

1) OTA: At the heart of the SC circuit we usually find an OTA.
Maybe a current mirror, folded cascode, recycling cascode,
or my favorite: a fully differential current mirror OTA with
cascoded, gain boosted, output stage using a parallel common
mode feedback.

Not all SC circuits use OTAs, there are also comparator based
SC circuits.

Below is a fully-differential two-stage OTA that will work with
most SC circuits. The notation “24F1F25” means “the width
is 24 F” and “length is 1.25 F”, where “F” is the minimum
gate length in that technology.

As bias circuit to make the voltages the below will work

2) Switches: If your gut reaction is “switches, that’s easy”, then
you’re very wrong. Switches can be incredibly complicated.
All switches will be made of transistors, but usually we don’t
have enough headroom to use a single NMOS or PMOS. We
may need a transmission gate

https://en.wikipedia.org/wiki/Variance
https://github.com/wulffern/cnr_ota_sky130nm/tree/main
https://github.com/wulffern/cnr_ota_sky130nm/tree/main
https://github.com/wulffern/cnr_ota_sky130nm/tree/main
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://link.springer.com/article/10.1007/s10470-010-9576-3
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The challenge with transmission gates is that when the voltage
at the input is in the middle between VDD and ground then
both PMOS and NMOS, although they are on , they might
not be that on. Especially in nano-scale CMOS with a 0.8 V
supply and 0.5 V threshold voltage. The resistance mid-rail
might be too large.

For switched-capacitor circuits we must settle the voltages to
the required accuracy. In general

t > − log(error)τ

For example, for a 10-bit ADC we need t > − log(1/1024)τ =
6.9τ . This means we need to wait at least 6.9 time constants
for the voltage to settle to 10-bit accuracy in the switched
capacitor circuit.

Assume the capacitors are large due to noise, then the switches
must be low resistance for a reasonable time constant. Larger
switches have smaller resistance, however, they also have more
charge in the inversion layer, which leads to charge injection
when the switches are turned of. Accordingly, larger switches
are not always the solution.

Sometimes it may be sufficient to switch the bulks, as shown
on the left below. But more often that one would like, we have
to implement bootstrapped switches as shown on the right.
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The switch I used in my JSSC SAR is a fully differential
boostrapped switch with cross coupled dummy transistors. The
JSSC SAR I’ve also ported to GF130NM, as shown below.
The switch is at the bottom.

wulffern/sun_sar9b_sky130nm

looks like the one below.
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3) Non-overlapping clocks: The non-overlap generator is
standard. Use the one shown below. Make sure you simulate
that the non-overlap is sufficient in all corners.
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https://ieeexplore.ieee.org/document/7906479
https://github.com/wulffern/sun_sar9b_sky130nm
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E. Example

In the circuit below there is an example of a switched capacitor
circuit used to increase the ∆VD across the resistor. We can
accurately set the gain, and thus the equation for the differential
output will be

VO(z) = 10
kT

q
ln(N)z−1
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VI. WANT TO LEARN MORE?

Blind Multiband Signal Reconstruction: Compressed Sensing
for Analog Signal

Comparator-based switched-capacitor pipelined analog-to-
digital converter with comparator preset, and comparator delay
compensation

A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC in 28-nm
FDSOI for Bluetooth Low Energy Receivers

A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor
Switching Procedure

Low Voltage, Low Power, Inverter-Based Switched-Capacitor
Delta-Sigma Modulator

Ring Amplifiers for Switched Capacitor Circuits

A Switched-Capacitor RF Power Amplifier

Design of Active N-Path Filters
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of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,
he worked on open-loop sigma-

delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various
roles, from analog designer, to Wireless Group Manager,

to currently Principle IC Scientist. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of high-
efficiency analog-to-digital converters and low-power wireless
transceivers. He is the developer of Custom IC Compiler, a
general purpose integrated circuit compiler.

https://ieeexplore.ieee.org/document/4749297
https://ieeexplore.ieee.org/document/4749297
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://link.springer.com/article/10.1007/s10470-010-9576-3
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/5437496
https://ieeexplore.ieee.org/document/5437496
https://ieeexplore.ieee.org/document/4768910
https://ieeexplore.ieee.org/document/4768910
https://ieeexplore.ieee.org/document/6373760
https://ieeexplore.ieee.org/document/6009207
https://ieeexplore.ieee.org/document/6650076
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