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I. WHY

Diodes are a magical 1 semiconductor device that conduct
current in one direction. It’s one of the fundamental electronics
components, and it’s a good idea to understand how they work.

If you don’t understand diodes, then you won’t understand
transistors, neither bipolar, or field effect transistors.

A useful feature of the diode is the exponential relationship
between the forward current, and the voltage across the device.

To understand why a diode works it’s necessary to understand
the physics behind semiconductors.

This paper attempts to explain in the simplest possible terms
how a diode works 2

II. SILICON

Integrated circuits use single crystalline silicon. The silicon
crystal is grown with the Czochralski method which forms a
ingot that is cut into wafers. The wafer is a regular silicon
crystal, although, it is not perfect.

A silicon crystal unit cell, as seen in Figure 1 is a diamond
faced cubic with 8 atoms in the corners spaced at 0.543 nm, 6
at the center of the faces, and 4 atoms inside the unit cell at a
nearest neighbor distance of 0.235 nm.

1It doesn’t stop being magic just because you know how it works. Terry
Pratchett, The Wee Free Men

2Simplify as much as possible, but no more. Einstein

Figure 1: Silicon crystal unit cell

As you hopefully know, the energy levels of an electron around
a positive nucleus are quantized, and we call them orbitals
(or shells). For an atom far away from any others, these
orbitals, and energy levels are distinct. As we bring atoms
closer together, the orbitals start to interact, and in a crystal,
the distinct orbital energies split into bands of allowed energy
states. No two electrons, or any Fermion (spin of 1/2), can
occupy the same quantum state. We call the outermost “shared”
orbitial, or band, in a crystal the valence band. Hence covalent
bonds.

If we assume the crystal is perfect, then at 0 Kelvin all electrons
will be part of covalent bonds. Each silicon atom share 4
electrons with its neighbors. What we really mean when we
say “share 4 electrons” is that the wave-functions of the outer
orbitals interact, and we can no longer think of the orbitals
as belonging to either of the silicon nuclei. All the neighbors
atoms “share” electrons, and nowhere is there an vacant state,
or a hole, in the valence band.

If such a crystal were to exist, where there were no holes in
the valence band, and a net neutral charge, the crystal could
not conduct any drift current. Electrons would move around
continuously, swapping states, but there could be no net drift
of charge carriers.

In an atom, or a crystal, there are also higher energy states
where the carriers are “free” to move. We call these energy
levels, or bands of energy levels, conduction bands. In singular
form “conduction band”, refers to the lowest available energy
level where the electrons are free to move.

Due to imperfectness of the silicon crystal, and non-zero
temperature, there will be some electrons that achieve sufficient
energy to jump to the conduction band. The electrons in the
conduction band leave vacant states, or holes, in the valence
band.

Electrons can move both in the conduction band, as free
electrons, and in the valence band, as a positive particle, or
hole. Both bands can support drift and diffusion currents.

III. INTRINSIC CARRIER CONCENTRATION

The intrinsic carrier concentration of silicon, or the density of
free electrons and holes at a given temperature, is given by

ni =
√
NcNve

−Eg/(2kT ) (1)

where Eg is the bandgap energy of silicon (approx 1.12 eV), k
is Boltzmann’s constant, T is the temperature in Kelvin, Nc is

https://en.wikipedia.org/wiki/Czochralski_method
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the density of states in conduction band, and Nv is the density
of states in the valence band.

The density of states are

Nc = 2

[
2πkTm∗

n

h2

]3/2
Nv = 2

[
2πkTm∗

p

h2

]3/2
where h is Planck’s constant, m∗

n is the effective mass of
electrons, and m∗

p is the effective mass of holes.

Leave it to engineers to simplify equations beyond understand-
ing. Equation (1) is complicated, and the density of states
includes the effective mass of electrons and holes, which is a
parameter that depends on the curvature of the band structure.
To engineers, this is too complicated, and ni has been simplified
so it “works” in daily calculation.

Through engineering simplification, however, physics under-
standing is lost.

In [1] they claim the intrinsic carrier concentration is a constant,
although they do mention ni doubles every 11 degrees Kelvin.

In BSIM 4.8 [2] the intrinsic carrier concentration is

ni = 1.45e10
TNOM

300.15

√
T

300.15
exp21.5565981−

Eg
2kT

Comparing the three models in Figure 2, we see the shape
of BSIM and the full equation is almost the same, while the
“doubling every 11 degrees” is just wrong.
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Figure 2: Intrinsic carrier concentration versus temperature

At room temperature the intrinsic carrier consentration is
approximately ni = 1× 1016 carriers/m3.

That may sound like a big number, however, if we calculate
the electrons per um3 it’s ni = 1×1016

(1×106)3 carriers/µm3 < 1, so
there are really not that many free carriers in intrinsic silicon.

From Figure 2 we can see that ni changes greatly as a function
of temperature, but the understanding “why” is not easy to

get from “doubling every 11 degrees”. To understand the
temperature behavior of diodes, we must understand Eq (1).

So where does Eq (1) come from? I find it unsatisfying if I
don’t understand where things come from. I like to understand
why there is an exponential, or effective mass, or Planck’s
constant. If you’re like me, then read the next section. If you
don’t care, and just want to memorize the equations, or indeed
the number of intrinsic carrier concentration number at room
temperature, then skip the next section.

IV. IT’S ALL QUANTUM

There are two components needed to determine how many
electrons are in the conduction band. The density of available
states, and the probability of an electron to be in that quantum
state.

For the density of states we must turn to quantum mechanics.
The probability amplitude of a particle can be described as

ψ = Aei(kr−ωt)

where k is the wave number, and ω is the angular frequency,
and r is a spatial vector.

In one dimension we could write ψ(x, t) = Aei(kx−ωt)

In classical physics we described the Energy of the system as

1

2m
p2 + V = E

where p = mv, m is the mass, v is the velocity and V is the
potential.

In the quantum realm we must use the Schrodinger equation
to compute the time evolution of the Energy, in one space
dimension

− ℏ2

2m

∂2

∂2x
ψ(x, t) + V (x)ψ(x, t) = iℏ

∂

∂t
ψ(x, t)

where m is the mass, V is the potential, ℏ = h/2π.

We could rewrite the equation above as

Ĥψ(x, t) = iℏ
∂

∂t
ψ(x, t) = Êψ(x, t)

where Ĥ is sometimes called the Hamiltonian and is an opera-
tor, or something that act on the wave-function. In Feynman’s
Lectures on Physics Feynman called the Hamiltonian the
Energy Matrix of a system. I like that better. The Ê is the
energy operator, something that operates on the wave-function
to give the Energy.

We could re-arrange

[Ĥ − Ê]ψ(r, t) = 0

https://www.feynmanlectures.caltech.edu
https://www.feynmanlectures.caltech.edu
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This is an equation with at least 5 unknowns, the space vector
in three dimensions, time, and the energy matrix Ĥ .

The dimensions of the energy matrix depends on the system.
The energy matrix further up is for one free electron. For an
atom, the energy matrix will have more dimensions to describe
the possible quantum states.

I consider all energy matricies as infinite dimensions, but most
state transitions are so unlikely that they can be safely ignored.

I was watching Quantum computing in the 21st Century and
David Jamison mentioned that the largest system we could
today compute would be a system with about 30 electrons.

We know exactly how the equations of quantum mechanics
appear to be, and they’ve proven extremely successful, we
must make simplifications before we can predict how electrons
behave in complicated systems like the silicon lattice with
approximately 0.7 trillion electrons per cube micro meter. You
can check the calculation

[
1 µm

0.543 nm

]3
×8 atoms per unit cell×14 electrons per atom

A. Density of states

To compute “how many Energy states are there per unit volume
in the conduction band”, or the “density of states”, we start
with the three dimensional Schrodinger equation for a free
electron

− ℏ2

2m
∇2ψ = Eψ

I’m not going to repeat the computation here, but rather
paraphrase the steps. You can find the full derivation in Solid
State Electronic Devices.

The derivation starts by computing the density of states in the
k-space, or momentum space,

N(dk) =
2

(2π)p
dk

Where p is the number of dimensions (in our case 3).

The band structure E(k) is used to convert to the density
of states to a function of energy N(E). The simplest band
structure, and an approxmiation of the lowest conduction band
is

E(k) =
ℏ2k2

2m∗

where m∗ is the effective mass of the particle. It is within
this effective mass that we “hide” the complexity of the actual
three-dimensional crystal structure of silicon.

The effective mass when we compute the density of states is

m∗ =
ℏ2
d2E
dk2

as such, the effective mass depends on the localized band
structure of the silicon unit cell, and depends on direction
of movement, strain of the silicon lattice, and probably other
things.

In 3D, once we use the above equations, one can compute that
the density of states per unit energy is

N(E)dE =
2

π2

m∗

ℏ2
3/2

E1/2dE

In order to find the number of electrons, we need the probability
of an electron being in a quantum state, which is given by the
Fermi-Dirac distribution

f(E) =
1

e(E−EF )/kT + 1
(2)

where E is the energy of the electron, EF is the Fermi level
or checmical potential, k is Boltzmann’s constant, and T is
the temperature in Kelvin.

Fun fact, the Fermi level difference between two points is what
you measure with a voltmeter.

If the E − EF > kT , then we can start to ignore the +1 and
the probability reduces to

f(E) =
1

e(E−EF )/kT
= e(EF−E)/kT

A few observiation on the Fermi-Dirac distribution. If the
Energy of a state is at the Fermi level, then f(E) = 1

2 , or a
50 % probability of being occupied.

In a metal, the Fermi level lies within a band, as the conduction
band and valence band overlap. As a result, there are a bunch
of free electrons that can move around. Metal does not have
the same type of covalent bonds as silicon, but electrons are
shared between a large part of the metal structure. I would also
assume that the location of the Fermi level within the band
structure explains the difference in conductivity of metals, as
it would determined how many electrons are free to move.

In an insulator, the Fermi level lies in the bandgap between
valence band and conduction band, and usually, the bandgap
is large, so there is a low probability of finding electrons in
the conduction band.

In a semiconductor we also have a bandgap, but much lower
energy than an insulator. If we have thermal equilibrium, no
external forces, and we have an un-doped (intrinsic) silicon
semiconductor, then the fermi level EF lies half way between
the conduction band edge EC and the valence band edge EV .

The bandgap is defined as the EC − EV = Eg, and we can
use that to get EF −EC = EC −Eg/2−EC = −Eg/2. This

https://youtu.be/zxml8UQSwC0
https://www.amazon.com/Solid-State-Electronic-Devices-7th/dp/0133356035
https://www.amazon.com/Solid-State-Electronic-Devices-7th/dp/0133356035
https://en.wikipedia.org/wiki/Fermi–Dirac_statistics
https://en.wikipedia.org/wiki/Fermi_level
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is why the bandgap of silicon keeps showing up in our diode
equations.

The number of electrons per delta energy will then be given
by

NedE = N(E)f(E)dE

, which can be integrated to get

ne = 2

(
2πm∗kT

h2

)3/2

e(EF−EC)/kT

For intrinsic silicon at thermal equlibrium, we could write

n0 = 2

(
2πm∗kT

h2

)3/2

e−Eg/(2kT ) (3)

As we can see, Equation (3) has the same coefficients and
form as the computation in Equation (1). The difference is that
we also have to account for holes. At thermal equilibrium and
intrinsic silicon n2i = n0p0

B. How to think about electrons (and holes)

I’ve come to the realization that to imagine electrons as balls
moving around in the silicon crystal is a bad mental image.

For example, for a metal-oxide-semiconductor field effect
transistor (MOSFET) it is not the case that the electrons that
form the inversion layer under strong inversion come from
somewhere else. They are already at the silicon surface, but
they are bound in covalent bonds (there are literaly trillions of
bound electrons in a typical transistor).

What happens is that the applied voltage at the gate shifts
the energy bands close to the surface (or bends the bands in
relation to the Fermi level), and the density of carriers in the
conduction band in that location changes, according to the type
of derivations above.

Once the electrons are in the conduction band, then they follow
the same equations as diffusion of a gas, Fick’s law of diffusion.
Any charge density concentration difference will give rise to a
diffusion current given by

Jdiffusion = −qDn
∂ρ

∂x
(4)

where J is the current density, q is the charge, ρ is the charge
density, and D is a diffusion coefficient that through the
Einstein relation can be expressed as D = µkT , where mobility
µ = vd/F is the ratio of drift velocity vd to an applied force
F .

To make matters more complicated, an inversion layer of
a MOSFET is not in three dimensions, but rather a two
dimensional electron gas, as the density of states is confined
close to the silicon surface. As such, we should not expect the
mobility of bulk silicon to be the same as the mobility of a
MOSFET transistor.

V. DOPING

We can change the property of silicon by introducing other
elements, something we’ve called doping. Phosphor has one
more electron than silicon, Boron has one less electron.
Injecting these elements into the silicon crystal lattice changes
the number of free electron/holes.

These days, we usually dope with ion implantation, while in
the olden days, most doping was done by diffusion. You’d
paint something containing Boron on the silicon, and then heat
it in a furnace to “diffuse” the Boron atoms into the silicon.

If we have an element with more electrons we call it a donor,
and the donor concentration ND.

The main effect of doping is that it changes the location of
the Fermi level at thermal equilibirum. For donors, the Fermi
level will shift closer to the conduction band, and increase the
probabilty of free electrons, as determined by Equation (2).

Since the crystal now has an abundance of free electrons, which
have negative charge, we call it n-type.

If the element has less electrons we call it an acceptor, and
the acceptor concentration NA. Since the crystal now has an
abundance of free holes, we call it p-type.

The doped material does not have a net charge, however, as
it’s the same number of electrons and protons, so even though
we dope silicon, it does remain neutral.

The doping concentrations are larger than the intrinsic carrier
concentration, from maybe 1021 to 1027 carriers/m3. To
separate between these concentrations we use p−, p, p+ or
n−, n, n+.

The number of electrons and holes in a n-type material is

nn = ND , pn =
n2i
ND

and in a p-type material

pp = NA , np =
n2i
NA

In a p-type crystal there is a majority of holes, and a minority of
electrons. Thus we name holes majority carriers, and electrons
minority carriers. For n-type it’s opposite.

VI. PN JUNCTIONS

Imagine an n-type material, and a p-type material, both are
neutral in charge, because they have the same number of
electrons and protons. Within both materials there are free
electrons, and free holes which move around constantly.

Now imagine we bring the two materials together, and we call
where they meet the junction. Some of the electrons in the
n-type will wander across the junction to the p-type material,
and visa versa. On the opposite side of the junction they might
find an opposite charge, and might get locked in place. They
will become stuck.

https://en.wikipedia.org/wiki/Fick%27s_laws_of_diffusion
https://en.wikipedia.org/wiki/Diffusion_current
https://en.wikipedia.org/wiki/Diffusion_current
https://en.wikipedia.org/wiki/Two-dimensional_electron_gas
https://en.wikipedia.org/wiki/Two-dimensional_electron_gas
https://en.wikipedia.org/wiki/Doping_(semiconductor)
https://en.wikipedia.org/wiki/Ion_implantation
https://ieeexplore.ieee.org/document/1050758
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After a while, the diffusion of charges across the junction
creates a depletion region with immobile charges. Where as
the two materials used to be neutrally charged, there will now
be a build up of negative charge on the p-side, and positive
charge on the n-side.

A. Built-in voltage

The charge difference will create a field, and a built-in voltage
will develop across the depletion region.

The density of free electrons in the conduction band is

n =

∫ ∞

EC

N(E)f(E)dE

, where N(E) is the density of states, and f(E) is a probability
of a electron being in that state (Equation (2)).

We could write the density of electrons on the n-side as

nn = eEFn/kT

∫ ∞

EC

Nn(E)e−E/kT dE

since the Fermi level is independent of the energy state of the
electrons (I think).

The density of electrons on the p-side could be written as

np = eEFp/kT

∫ ∞

EC

Np(E)e−E/kT dE

If we assume that the density of states, Nn(E) and Np(E) are
the same, and the temperature is the same, then

nn
np

=
eEFn/kT

eEFp/kT
= e(EFn−EFp )/kT

The difference in Fermi levels is the built-in voltage multiplied
by the unit charge.

EFn
− EFp

= qΦ

and by substituting for the minority carrier concentration on
the p-side we get

NAND

n2i
= eqΦ0/kT

or rearranged to

Φ0 =
kT

q
ln

(
NAND

n2i

)

B. Current

The derivation of current is a bit involved, but let’s try.

The hole concentration on the p-side and n-side could be written
as

pp
pn

= e−qΦ0/kT

The negative sign is because the built in voltage is positive on
the n-type side

Asssume that −xp0 is the start of the junction on the p-side,
and xn0 is the start of the junction on the n-side.

Assume that we lift the p-side by a voltage qV

Then the hole concentration would change to

p(−xp0)
p(xn0)

= eq(V−Φ0)/kT

while on the n-side the hole concentration would be

p(xn0)

pn
= eqV/kT

So the excess hole concentration on the n-side due to an
increase of V would be

∆pn = p(xn0)− pn = pn

(
eqV/kT − 1

)
The diffusion current density, given by Equation (4) states

J(xn) = −qDp
∂ρ

∂x

Thus we need to know the charge density as a function of x.
I’m not sure why, but apparently it’s

∂ρ(xn) = ∆pne
−xn/Lp

where Lp is a diffusion length. I think the equation above, the
exponential decay as a function of length, is related to the
probabilty of electron/hole recombination, and how the rate of
recombination must be related to the exceess hole concentration,
as such related to Exponential decay.

Anyhow, we can now compute the current density, and need
only compute it for xn = 0, so you can show it’s

J(0) = q
Dp

Lp
pn

(
eqV/kT − 1

)
which start’s to look like the normal diode equation. The pn is
the minority concentration of holes on the n-side, which we’ve
before estimated as pn =

n2
i

ND

https://en.wikipedia.org/wiki/Exponential_decay
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We’ve only computed for holes, but there will be electron
transport from the p-side to the n-side also.

We also need to multiply by the area of the diode to get current
from current density. The full equation thus becomes

I = qAn2i

(
1

NA

Dn

Ln
+

1

ND

Dp

Lp

)[
eqV/kT − 1

]
where A is the area of the diode, Dn,Dp is the diffusion
coefficient of electrons and holes and Ln,Lp is the diffusion
length of electrons and holes.

Which we usually write as

ID = IS(e
VD
VT − 1), where VT = kT/q

C. Forward voltage temperature dependence

We can rearrange ID equation to get

VD = VT ln

(
ID
IS

)
and at first glance, it appears like VD has a positive temperature
coefficient. That is, however, wrong.

First rewrite

VD = VT ln ID − VT ln IS

ln IS = 2 lnni + lnAq

(
Dn

LnNA
+

Dp

LpND

)
Assume that diffusion coefficient 3, and diffusion lengths are
independent of temperature.

That leaves ni that varies with temperature.

ni =
√
BcBvT

3/2e
−Eg
2kT

where

Bc = 2

[
2πkm∗

n

h2

]3/2
Bv = 2

[
2πkm∗

p

h2

]3/2

2 lnni = 2 ln
√
BcBv + 3 lnT − VG

VT

with VG = EG/q and inserting back into equation for VD

VD =
kT

q
(ℓ− 3 lnT ) + VG

3From the Einstein relation D = µkT it does appear that the diffusion
coefficient increases with temperature, however, the mobility decreases with
temperature. I’m unsure of whether the mobility decreases with the same rate
though.

Where ℓ is temperature independent, and given by

ℓ = ln ID − ln

(
Aq

Dn

LnNA
+

Dp

LpND

)
− 2 ln

√
BcBv

From equations above we can see that at 0 K, we expect the
diode voltage to be equal to the bandgap of silicon. Diodes
don’t work at 0 K though.

Although it’s not trivial to see that the diode voltage has a
negative temperature coefficient, if you do compute it as in
vd.py, then you’ll see it decreases.

The slope of the diode voltage can be seen to depend on the
area, the current, doping, diffusion constant, diffusion length
and the effective masses.

Figure 3 shows the VD and the deviation of VD from a
straight line. The non-linear component of VD is only a few
mV. If we could combine VD with a voltage that increased
with temperature, then we could get a stable voltage across
temperature to within a few mV.
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Figure 3: Diode forward voltage as a function of temperature

D. Current proportional to temperature

Assume we have a circuit like Figure 4.

Here we have two diodes, biased at different current densities.
The voltage on the left diode VD1 is equal to the sum of the
voltage on the right diode VD2 and voltage across the resistor
R1. The current in the two diodes are the same due to the
current mirror. A such, we have that

ISe
qVD1
kT = NISe

qVD2
kT

Taking logarithm of both sides, and rearranging, we see that

VD1 − VD2 =
kT

q
lnN

https://github.com/wulffern/memos/blob/main/2021-07-08_diodes/vd.py
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Or that the difference between two diode voltages biased at
different current densities is proportional to absolute tempera-
ture.

In the circuit above, this ∆VD is across the resistor R1, as such,
the ID = ∆VD/R1. We have a current that is proportional to
temperature.

If we copied the current, and sent it into a series combination
of a resistor R2 and a diode, we could scale the R2 value to
give us the exactly right slope to compensate for the negative
slope of the VD voltage.

The voltage across the resistor and diode would be constant
over temperature, with the small exception of the non-linear
component of VD.

R

T N

Figure 4: Circuit to generate a current proportional to kT

VII. EQUATIONS AREN’T REAL

Nature does not care about equations. It just is.

We know, at the fundamental level, nature appears to obey
the mathematics on quantum mechanics, however, due to the
complexity of nature, it’s not possible today (which is not the
same as impossible), to compute exactly how the current in
a diode works. We can get close, by measuring a diode we
know well, and hope that the next time we make the same
diode, the behavior will be the same.

As such, I want to warn you about the “lies” or “simplifications”
we tell you. Take the diode equation above, some parts, like
the intrinsic carrier concentration ni has roots directly from
quantum mechanics, with few simplifications, which means
it’s likely solid truth, at least for a single unit cell.

But there is no reason nature should make all unit cells the
same, and infact, we know they are not the same, we put in
dopants. As we scale down to a few nano-meter transistors the
simplification that “all unit cells of silicon are the same, and

extend to infinity” is no longer true, and must be taken into
account in how we describe reality.

Other parts, like the exact value of the bandgap Eg, the
diffusion constant Dp or diffusion length Lp are macroscopic
phenomena, we can’t expect them to be 100 % true. The values
would be based on measurement, but not always exact, and
maybe, if you rotate your diode 90 degrees on the integrated
circuit, the values could be different.

You should realize that the consequence of our imperfection is
that the equations in electronics should always be taken with
a grain of salt.

Nature does not care about your equations. Nature will easily
have the superposition of trillions of electrons, and they don’t
have to agree with your equations.

But most of the time, the behavior is similar.

References

[1] T. C. Carusone, D. Johns, and K. Martin, Analog inte-
grated circuit design. Wiley, 2011 [Online]. Available:
https://books.google.no/books?id=1OIJZzLvVhcC

[2] Berkeley, “Berkeley short-channel IGFET model.” [On-
line]. Available: http://bsim.berkeley.edu/models/bsim4/

Carsten Wulff received the M.Sc.
and Ph.D. degrees in electrical
engineering from the Department
of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,
he worked on open-loop sigma-

delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various
roles, from analog designer, to Wireless Group Manager,
to currently Principle IC Scientist. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of high-
efficiency analog-to-digital converters and low-power wireless
transceivers. He is the developer of Custom IC Compiler, a
general purpose integrated circuit compiler.

https://books.google.no/books?id=1OIJZzLvVhcC
http://bsim.berkeley.edu/models/bsim4/

	Why
	Silicon
	Intrinsic carrier concentration
	It's all quantum
	Density of states
	How to think about electrons (and holes)

	Doping
	PN junctions
	Built-in voltage
	Current
	Forward voltage temperature dependence
	Current proportional to temperature

	Equations aren't real
	References


