
ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN OCT 26 19:27:53 UTC 2025 FROM 2962FCFCFB137AF81ED8002F04BD8893DFF45B5A 1

Sky130nm tutorial
Carsten Wulff, carsten@wulff.no

Status: 0.5

If the commands don’t work, then you have not installed the
tools. Check The Tools chapter first.

A. Create the IP

I’ve made some scripts to automatically generate the IP.

To see what files are generated, see
tech_sky130A/cicconf/lelo.yaml

cd aicex/ip
cicconf newip ex --project lelo --technology sky130A --ip tech_sky130A/cicconf/lelo.yaml

B. The file structure

It matters how you name files, and store files. I would be
surprised if you had a good method already, as such, I won’t
allow you to make your own folder structure and names for
things. I also control the filenames and folder structure because
there are many scripts to make your life easier (yes, really)
that rely on an exact structure. Don’t mess with it.
1) Github workflows: On github it’s possible use something
called workflows to run things every time you push a new
version. It’s really nice, since it can then check that your
design is valid.

The workflows are defined below.
.github

workflows
docs.yaml # Generate a github page
drc.yaml # Run Design Rule Checks
gds.yaml # Generate a GDS file from layout
lvs.yaml # Run Layout Versus Schematic

and Layout Parasitic Extraction

2) Configuration files: Each IP has a few files that define the
setup, you’ll need to modify at least the README.md and the
info.yaml.
.gitignore # files that are ignored by git
README.md # Frontpage documentation
config.yaml # What libraries are used. Used by cicconf
info.yaml # Setup names, authors etc
media # Where you should store images for documentation
tech -> ../tech_sky130A # The technology library

3) Design files: A “cell” in the open source EDA world should
consists of the following files

• Schematic (.sch)
• Layout (.mag)
• Documenation (.md)

The files must have the same name, and must be stored in
design/<LIB>/ as shown below.

Note there are also two symbolic links to other libraries.
These two libraries contain standard cells and standard analog
transistors (ATR) that you should be using.

design
LELO_EX_SKY130A
LELO_EX.sch
JNW_ATR_SKY130A -> ../../jnw_atr_sky130a/design/JNW_ATR_SKY130A
JWN_TR_SKY130A -> ../../jnw_tr_sky130a/design/JNW_TR_SKY130A

For example, if the cell name was LELO_EX, then you would
have

• design/LELO_EX_SKY130A/LELO_EX.sch:
Schematic (xschem)

• design/LELO_EX_SKY130A/LELO_EX.sym: Sym-
bol (xschem)

• design/LELO_EX_SKY130A/LELO_EX.mag: Lay-
out (Magic)

• design/LELO_EX_SKY130A/LELO_EX.md : Mark-
down documentation (any text editor)

All these files are text files, so you can edit them in a text
editor, but mostly you shouldn’t (except for the Markdown)
4) Simulations: All simulations shall be stored in sim. Once
you have a Schematic ready for simulation, then
cd sim
make cell CELL=LELO_EX

This will make a simulation folder for you. Repeat for all your
cells.
sim
Makefile
cicsim.yaml -> ../tech/cicsim/cicsim.yaml

5) The work: All commands (except for simulation), shall be
run in the work folder.

In the work/ folder there are startup files for Xschem
(xschemrc) and Magic (.magicrc). They tell the tools where to
find the process design kit, symbols, etc. At some point you
probably need to learn those also, but I’d wait until you feel a
bit more comfortable.
work
.magicrc
Makefile
mos.24bit.dstyle -> ../tech/magic/mos.24bit.dstyle
mos.24bit.std.cmap -> ../tech/magic/mos.24bit.std.cmap
xschemrc

C. Github setup

Create a repository on github. The name of the repository that
you make on GitHub has to be the same as what is written
after <your username> in the last command below. In this
example, that is lelo_ex_sky130a.
cd lelo_ex_sky130a
git remote add origin \
git@github.com:<your username>/lelo_ex_sky130a.git

D. Start working

1) Edit README.md: Open README.md in your favorite
text editor and make necessary changes.

https://analogicus.com/aic2026/2025/10/25/The-Tools.html
https://github.com

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN OCT 26 19:27:53 UTC 2025 FROM 2962FCFCFB137AF81ED8002F04BD8893DFF45B5A 2

2) Familiarize yourself with the Makefile and make: I write
all commands I do into a Makefile. There is nothing special
with a Makefile, it’s just what I choose to use 20 years ago.
I’m not sure I’d choose something different now.
cd work
make

Take a look inside the file called Makefile.

E. Draw Schematic

The block we’ll make is a current mirror with a 1 to 4 scaling.

A schematic is how we describe the connectivity, and the types
of devices in an analog circuit. The open source schematic
editor we will use is XSchem.

Open the schematic:
xschem -b ../design/LELO_EX_SKY130A/LELO_EX.sch &

1) Add Ports: Add IBPS_5U and IBNS_20U ports, the P and
N in the name signifies what transistor the current comes from.
So IBPS must go into a diode connected NMOS, and N will be
our output, and go into a diode connected PMOS somewhere
else.
2) Add transistors: Use ‘I’ or ‘Shift+i’ (note
the letter case) to open the library man-
ager. Click the lelo_ex_sky130A/design
path, then JNW_ATR_SKY130A and select
JNWATR_NCH_4C5F0.sym

The naming convention for these transistors is <number of
contacts on drain/source>C<times minimum
gate length>F, so the number before the C is the width,
and the number before/after the F is the length. The absolute
size does not matter for now. Just think “4C5F0 is a 4 contact
wide long transistor”, while a “4C1F2 is a 4 contact wide,
short transistor”.

Select the transistor and press ‘c’ to copy it, while dragging,
press ‘shift-f’ to flip the transistor so our current mirror looks
nice. ‘shift-r’ rotates the transistor, but we don’t want that now.

Place two transistors for the output transistor, as shown in the
figure below.

Press ESC to deselect everything

Select the input transistor, and change the name to ‘xo1’

Select the first output transistor, and change the name to
‘xo0[1:0]’. Using bus notation on the name will create 2
transistors.

Select the second output transistor and give it the name
‘xo1[1:0]’.

Select ports, and use ‘m’ to move the ports close to the
transistors.

Press ‘w’ to route wires.

Use ‘shift-z’ and z, to zoom in and out

Use ‘f’ to zoom full screen

Remember to save the schematic

3) Netlist schematic: Check that the netlist looks OK

In work/
make xsch CELL=LELO_EX
cat xsch/LELO_EX.spice

F. Typical corner SPICE simulation

I’ve made cicsim that I use to run simulations (ngspice) and
extract results
1) Setup simulation environment: Navigate to the
lelo_ex_sky130a/sim/ directory.

Make a new simulation folder
cicsim simcell LELO_EX_SKY130A LELO_EX \

../tech/cicsim/cell_spice/template.yaml

I would recommend you have a look at simcell_template.yaml
file to understand what happens.
2) Familiarize yourself with the simulation folder: I’ve added
quite a few options to cicsim, and it might be confusing. For
reference, these are what the files are used for
File Description
Makefile Simulation commands
cicsim.yaml Setup for cicsim
summary.yaml Generate a README with simulation results
tran.meas Measurement to be done after simulation
tran.py Optional python script to run for each simulation
tran.spi Transient testbench
tran.yaml What measurements to summarize

The default setup should run, so
cd LELO_EX
make typical

3) Modify default testbench (tran.spi): Delete the VDD source

Add a current source of 5uA, and a voltage source of 1V to
IBNS_20U
IBP 0 IBPS_5U dc 5u
V0 IBNS_20U 0 dc 1

Save the current in V0 by adding i(V0) to the save statement
in the testbench

Save the voltage by adding v(IBPS_5U) to the save statement
.save i(V0) v(IBPS_5U)

4) Modify measurements (tran.meas): Add measurement
of the current and VGS. It must be added between the
“MEAS_START” and “MEAS_END” lines.
let ibn = -i(v0)
meas tran ibns_20u find ibn at=5n
meas tran vgs_m1 find v(ibps_5u) at=5n

https://github.com/wulffern/cicsim

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN OCT 26 19:27:53 UTC 2025 FROM 2962FCFCFB137AF81ED8002F04BD8893DFF45B5A 3

Run simulation

make typical

and check that the output looks okish.

Try to run the simulation again

make typical

If everything works, then the simulation now should not be
run. Every time cicsim runs (provided the sha: True option
is set in cicsim.yaml) cicsim will compute a SHA hash of
all files (stored in output_tran/.sha) that is referenced in the
tran.spi. Next time cicsim is run, it checks the hash’s and
does not re-run if there is no need (no files changed).

Sometimes you want to force running, and you can do that by

make typical OPT="--no-sha"

Often, it’s the measurement that I get wrong, so instead of
rerunning simulation every time I’ve added a “–no-run” option
to cicsim. For example

make typical OPT="--no-run"

will skip the simulation, and rerun only the measurement. This
is why you should split the testbench and the measurement.
Simulations can run for days, but measurement takes seconds.
5) Modify result specification (tran.yaml): Add the result
specifications, for example

ibn:
src:

- ibns_20u
name: Output current
min: -5%
typ: 20
max: 5%
scale: 1e6
digits: 3
unit: uA

vgs:
src:
- vgs_m1

name: Gate-Source voltage
typ: 0.6
min: 0.3
max: 0.8
scale: 1
digits: 3
unit: V

Re-run the measurement and result generation

make typical OPT="--no-run"

Open results/tran_Sch_typical.html
6) Check waveforms: You can either use ngspice, or you can
use cicsim, or you can use something I don’t know about

Open the raw file with

cicsim wave output_tran/tran_SchGtKttTtVt.raw

Load the results, and try to look at the plots. There might not
be that much interesting happening
a) Searching waveforms: On the left side of the window you’ll
see a text box in the middle between the filename, and the
wave names. This is a regex search field, and you can easily
search for waveforms (like i(v0)) that you want to find.

Note that the search field uses regular expressions. If you don’t
know regex, then it’s time to learn. I always use the perl regular
expression variants.

For example, searching for “i(v0)” won’t acctually show
anything, because the () are special characters. “i(v0)” will
find it though.

I could search for both ibps and v0 at the same time with
ibps|i\(, so it’s well worth learning.

A great resource is Mastering Regular Expressions

G. All corners SPICE simulations

Analog circuits must be simulated for all physical conditions,
we call them corners. We must check high and low temperature,
high and low voltage, all process corners, and device-to-device
mismatch.
1) Remove Vh and Vl corners (Makefile): For the current
mirror we don’t need to vary voltage, since we don’t have a
VDD.

Open Makefile in your favorite text editor.

Change all instances of “Vt,Vl,Vh” and “Vl,Vh” to Vt
2) Run all corners: To simulate all corners do
make typical etc mc

where etc is extreme test condition and mc is monte-carlo.

Wait for simulations to complete.
3) Get creative with python: Open tran.py in your favorite
editor, try to read and understand it.

The name parameter is the corner currently running, for
example tran_SchGtAmcttTtVt.

The measured outputs from ngspice will be added to
tran_SchGtAmcttTtVt.yaml

Delete the “return” line.

Add the following lines (they automatically plot the current
and gate voltage)
import cicsim as cs
fname = name +".png"
print(f"Saving {fname}")
cs.rawplot(name + ".raw","time","v(ibps_5u),i(v0)" \
,ptype="",fname=fname)

Re-run measurements to check the python code
make typical etc mc OPT="--no-run"

You’ll see that cicsim writes all the png’s. Check with ls -l
output_tran/*.png.

You’ll also notice it will slow down the simulation, so maybe
remove the lines from tran.py again ;-)
4) Generate simulation summary: Run
make summary

Install pandoc if you don’t have it

Run
pandoc -s README.md -o README.html

https://en.wikipedia.org/wiki/Regular_expression
https://regex.info/book.html
https://pandoc.org

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN OCT 26 19:27:53 UTC 2025 FROM 2962FCFCFB137AF81ED8002F04BD8893DFF45B5A 4

to generate a HTML slideshow that you can open in browser.
Open the HTML file.
5) Viewing results without GUI browser: If your on a system
without a browser, or indeed a GUI, then it’s possible to view
the results in the terminal.

Check if lynx is installed, if it’s not installed, then

On linux

sudo apt-get install lynx

On Mac

brew install lynx

Then

lynx README.html

6) Think about the results: From the corner and mismatch
simulation, we can observe a few things.

• The typical value is not 20 uA. This is likely because we
have a M2 VDS of 1 V, which is not the same as the
VDS of M1. As such, the current will not be the same.

• The statistics from 30 corners show that when we add or
subtract 3 standard deviation from the mean, the resulting
current is outside our specification of +- 5 %.

H. Draw Layout

A foundry (the factory that makes integrated circuits) needs
to know how we want them to create our circuit. So we need
to provide them with a “layout”, the recipe, or instruction, for
how to make the circuit. Although the layout contains the same
components as the schematic, the layout contains the physical
locations, and how to actually instruct the foundry on how to
make the transistors we want.

Open Magic VLSI

cd work
magic ../design/LELO_EX_SKY130A/LELO_EX.mag

Now brace yourself, Magic VLSI was created in the 1980’s.
For it’s time it was extremely modern, however, today it seems
dated. However, it is free, so we use it.
1) Magic VLSI: Try google for most questions, and there are
youtube videos that give an intro.

• Magic Tutorial 1
• Magic Tutorial 2
• Magic Tutorial 3
• Magic command reference
• Magic Documentation

Default magic start with the BOX tool. Mouse left-click to
select bottom corner, left-click to select top corner.

Press “space” to select another tool (WIRING, NETLIST,
PICK).

Type “macro help” in the command window to see all shortcuts

Hotkey Function
v View all
shift-z zoom out
z zoom in
x look inside box (expand)
shift-x don’t look inside box (unexpand)
u undo
d delete
s select
Shift-Up Move cell up
Shift-Down Move cell down
Shift-Left Move cell left
Shift-Right Move cell right

2) Add transistors: Open Cell -> Place Instance. Navigate to
the right transistor.

Place it. Hover over the transistor and select it with ‘s’. Now
comes a bit of tedious thing. Select again, and copy. It’s possible
to align the transistors on-top of eachother, but it’s a bit finicky.

Place all transistors on top of each other as shown below in
the picture.

3) Place devices: You will find that one of the more time
consuming things with analog layout is to place the devices,
and to follow the design rules from foundry. I detest tedious
work. As such, I’ve tried for the past 25 years to simplify
analog layout. I’ve not finished yet, but maybe you’ll find
some of the scripts useful.

Note that the command below will override all your hard work
;-)

cd work
make xsch
cicpy sch2mag LELO_EX_SKY130A LELO_EX
4) Add Ground: In the command window, type

see no *
see viali
see locali
see m1
see via1
see m2

Make a box around the layout by left cliking bottom left, and
right clicking top right. Press ‘x’ to expand.

Change grid to 1 um. Set “Window->Snap to grid on”

https://www.youtube.com/watch?v=ORw5OaY33A4&t=9s
https://www.youtube.com/watch?v=NUahmUtY814
https://www.youtube.com/watch?v=OKWM1D0_fPI
http://opencircuitdesign.com/magic/commandref/commands.html
https://analogicus.com/magic/

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN OCT 26 19:27:53 UTC 2025 FROM 2962FCFCFB137AF81ED8002F04BD8893DFF45B5A 5

Select a 1 um box below the transistors and paint the rectangle
with locali (middle click on locali)

Change to the ‘wire tool’ with spacebar. Set “Window-> Snap
to grid off”

Connect guard rings to ground.

Press the top transistor ‘S’ and draw all the way down to
connect all of the transistors’ source terminals. Use ‘shift-right
click’ to change layer down

5) Route Gates: Press “space” to enter wire mode. Left click
on the top gate to start a wire, and right click to end the wire.

The drain of M1 transistor needs a connection from gate to
drain. We do that for the middle transistor. Change to the box
tool (spacebar a few times). Create a box that matches the
locali. Connect the drain to the gate in locali.

6) Drain of M2: Use the wire tool to draw connections for
the drains.

To add vias you can do “shift-left click” to move up a metal,
and “shift-right click” to go down.

It’s a very good idea to have direction rules for metal layers.
I would recommend that you route metal1 vertical, metal2
horizontal, metal3 vertical etc. For locali it’s usually all over
the place.

7) Add labels: All ports must be named (IBPS_5U, IBNS_20U,
VSS). The cicpy script may add ports, but not necessarily where
you want them.

Select a box on a metal, and use “Edit->Text” to add labels
for the ports. Select the port button.

I. Layout verification

The DRC can be seen directly in Magic VLSI as you draw.

To check layout versus schematic navigate to work/ and do

make cdl lvs

Remember to save the layout first.

If you’ve routed correctly, then the LVS should be correct.

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN OCT 26 19:27:53 UTC 2025 FROM 2962FCFCFB137AF81ED8002F04BD8893DFF45B5A 6

J. Extract layout parasitics

With the layout complete, we can extract parasitic capacitance.
make lpe

Check the generated netlist
cat lpe/LELO_EX_lpe.spi

K. Simulate with layout parasitics

Navigate to sim/LELO_EX. We now want to simulate the
layout.

The default tran.spi should already have support for that.

Open the Makefile, and change
VIEW=Sch

to
VIEW=Lay

1) Typical simuation: Run
make typical

2) Corners: Navigate to sim/LELO_EX. Run all corners again
make all

3) Simulation summary: Open summary.yaml and add the
layout files.

- name: Lay_typ
src: results/tran_Lay_typical
method: typical

- name: Lay_etc
src: results/tran_Lay_etc
method: minmax

- name: Lay_3std
src: results/tran_Lay_mc
method: 3std

Run summary again
make summary
pandoc -s README.md -o README.html

Open the README.html and have a look a the results. The
layout should be close to the schematic simulation.

L. Make documentation

Make a file (or it may exists)
design/LELO_EX_SKY130A/LELO_EX.md and add
some documentation of what you’ve made.

Add the simulation results to your git repository to keep track

git add sim/LELO_EX/results/*.html
git add sim/LELO_EX/README.md

M. Edit info.yaml

Finally, let’s setup the info.yaml so that all the github
workflows run correctly.

Mine will look like this.

You need to setup the url (probably something like <your
username>.github.io) to what is correct for you.

I’ve added the doc section such that the workflows will generate
the docs.

The sim is to run a typical simulation.
library: LELO_EX_SKY130A
cell: LELO_EX
author: Carsten Wulff
github: wulffern
tagline: The answer is 42
email: carsten@wulff.no
url: wulffern.github.io
doc:

libraries:
LELO_EX_SKY130A:
- LELO_EX

N. Setup github pages

Go to your GitHub repository (repo). Press Settings. Press
Pages. Choose source under Build and Deployment -> GitHub
Actions

Wait for the workflows to build. And check your github pages.
Mine is https://wulffern.github.io/lelo_ex0_sky130a/.

O. Frequency asked questions

Q: My GDS/LVS/DRC action fails, even though it works
locally.

Sometimes the reference to the transistors in the magic file
might be wrong. Open the .mag file in a text editor and check.
The correct way is
use JNWATR_NCH_4C5F0 JNWATR_NCH_4C5F0_0 ../LELO_ATR_SKY130A

It’s the last ../JNW_ATR_SKY130A that sometimes is miss-
ing.

Carsten Wulff received the M.Sc.
and Ph.D. degrees in electrical
engineering from the Department
of Electronics and Telecommuni-
cation, Norwegian University of
Science and Technology (NTNU),
in 2002 and 2008, respectively.
During his Ph.D. work at NTNU,

https://wulffern.github.io/lelo_ex0_sky130a/

ADVANCED INTEGRATED CIRCUITS - BUILT ON SUN OCT 26 19:27:53 UTC 2025 FROM 2962FCFCFB137AF81ED8002F04BD8893DFF45B5A 7

he worked on open-loop sigma-
delta modulators and analog-to-digital converters in nanoscale
CMOS technologies. In 2006-2007, he was a Visiting Re-
searcher with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada.
Since 2008 he’s been with Nordic Semiconductor in various
roles, from analog designer, to Wireless Group Manager, to
currently Principle IC Scientist. From 2014-2017 he did a
part time Post.Doc focusing on compiled, ultra low power,
SAR ADCs in nanoscale technologies. He’s also an Adjunct
Associate Professor at NTNU. His present research interests
includes analog and mixed-signal CMOS design, design of
high-efficiency analog-to-digital converters and low-power
wireless transceivers. He is the developer of Custom IC
Compiler, a general purpose integrated circuit compiler, and
makes the occational video on analog integrated circuits at
https://www.youtube.com/@analogicus. For full CV see
https://analogicus.com/markdown-cv/.

https://www.youtube.com/@analogicus
https://analogicus.com/markdown-cv/

	Create the IP
	The file structure
	Github workflows
	Configuration files
	Design files
	Simulations
	The work

	Github setup
	Start working
	Edit README.md
	Familiarize yourself with the Makefile and make

	Draw Schematic
	Add Ports
	Add transistors
	Netlist schematic

	Typical corner SPICE simulation
	Setup simulation environment
	Familiarize yourself with the simulation folder
	Modify default testbench (tran.spi)
	Modify measurements (tran.meas)
	Modify result specification (tran.yaml)
	Check waveforms

	All corners SPICE simulations
	Remove Vh and Vl corners (Makefile)
	Run all corners
	Get creative with python
	Generate simulation summary
	Viewing results without GUI browser
	Think about the results

	Draw Layout
	Magic VLSI
	Add transistors
	Place devices
	Add Ground
	Route Gates
	Drain of M2
	Add labels

	Layout verification
	Extract layout parasitics
	Simulate with layout parasitics
	Typical simuation
	Corners
	Simulation summary

	Make documentation
	Edit info.yaml
	Setup github pages
	Frequency asked questions

