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I. NOISE

Noise is a phenomena that occurs in all electronic circuits. It
places a lower limit on the smallest signal we can use. Many
now have super audio compact disc (SACD) players with 24bit
converters, 24 bits is around 224 = 16.78 Million different
levels. If 5V is the maximum voltage, the minimum would
have to be 5V

224 ≈ 298nV . That level is roughly equivalent to
the noise in a 50 Ohm resistor with a bandwith of 96kHz.
There exist an equation that relates number of bits to signal to
noise ratio ?, the equation specifies that SNR = 6.02∗Bits+
1.76 = 146.24dB. As of 12.2005 the best digital to analog
converter (DAC) that Analog Devices (a very big semiconductor
company) has is a DAC with 120dB SNR, that equals around
Bits = (120 − 1.76)/6.02 = 19.64. In other words, the last
four bits of your SACD player is probably noise!

II. STATISTICS

The mean of a signal x(t) is defined as

x(t) = lim
T→∞

1

T

∫ +T/2

−T/2

x(t)dt

The mean square of x(t) defined as

x2(t) = lim
T→∞

1

T

∫ +T/2

−T/2

x2(t)dt

The variance of x(t) defined as

σ2 = x2(t)− x(t)
2

For a signals with a mean of zero the variance is equal to the
mean square. The auto-correlation of x(t) is defined as

Rx(τ) = x(t)x(t+ τ)

= lim
T→∞

1

T

∫ +T/2

−T/2

x(t)x(t+ τ)dt

III. AVERAGE POWER

Average power is defined for a continuous system as
([eq:powcont]) and for discrete samples it can be defined as
([eq:powsamp]).

Pav usually has the unit A2 or V 2, so we have to multi-
ply/devide by the impedance to get the power in Watts. To get
Volts and Amperes we use the root-mean-square (RMS) value
which is defined as

√
Pav .

Pav = lim
T→∞

1

T

∫ +T/2

−T/2

x2(t)dt

Pav =
1

N

N∑
i=0

x2(i)

If x(t) has a mean of zero then, according to ([eq:var]), Pav is
equal to the variance of x(t).

Many different notations are used to denote average power and
RMS value of voltage or current, some of them are listed in
Table [t:avgpow] and Table 2. Notation can be a confusing
thing, it changes from book to book and makes expressions
look different.

It is important to realize that it does not matter how you write
average power and RMS value. If you want you can invent
your own notation for average power and RMS value. However,
if you are presenting your calculations to other people it is
convenient if they understand what you have written. In the
remainder of this paper we will use e2n for average power when
we talk about voltage noise source and i2n for average power
when we talk about current noise source. The n subscript is
used to identify different sources and can be whatever.

Voltage Current
V 2
rms I2

rms

V 2
n I2

n

v2
n i2n

Voltage Current
Vrms Irms√

V 2
n

√
I2
n√

v2
n

√
i2n

IV. NOISE SPECTRUM

With random noise it is useful to relate the average power
to frequency. We call this Power Spectral Density (PSD). A
PSD plots how much power a signal carries at each frequency.
In literature Sx(f) is often used to denote the PSD. In the
same way that we use V 2 as unit of average power, the unit of
the PSD is V 2

Hz for voltage and A2

Hz current. The root spectral
density is defined as

√
Sx(f) and has unit V√

Hz
for voltage

and I√
Hz

for current.

The power spectral density is defined as two times the Fourier
transform of the auto-correlation function ?

Sx(f) = 2

∫ ∞

−∞
Rx(τ)e

−j2πfτdτ

This can also be written as
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Sx(f) = 2

[∫ ∞

−∞
Rx(τ) cos(ωτ)dτ −

∫ ∞

−∞
Rx(τ)j sin(ωτ)dτ

]
= 2

[∫ 0

−∞
Rx(τ) cos(ωτ)dτ +

∫ ∞

0

Rx(τ) cos(ωτ)dτ

]
− 2j

[∫ 0

−∞
Rx(τ) sin(ωτ)dτ +

∫ ∞

0

Rx(τ) sin(ωτ)dτ

]
= 4

∫ ∞

0

Rx(τ) cos(ωτ)dτ

− 2j

[
−
∫ ∞

0

Rx(τ) sin(ωτ)dτ +

∫ ∞

0

Rx(τ) sin(ωτ)dτ

]
= 4

∫ ∞

0

Rx(τ) cos(ωτ)dτ

, since e−jωτ = cos(ωτ)− j sin(ωτ), Rx(τ) and cos(ωτ) are
symmetric around τ = 0 while sin(ωτ) is asymmetric around
τ = 0.

The inverse of power spectral density is defined as

Rx(τ) =
1

2

∫ ∞

−∞
Sx(f)e

j2πfτdf =

∫ ∞

0

Sx(f) cos(ωτ)df

If we set τ = 0 we get

x2(t) =

∫ ∞

0

Sx(f)df

which means we can easily calculate the average power if we
know the power spectral density. As we will see later it is
common to express noise sources in PSD form.

Another very useful theorem when working with noise in the
frequency domain is this

Sy(f) = Sx(f)|H(f)|2

, where Sy(f) is the output power spectral density, Sx(f) is the
input power spectral density and H(f) is the transfer function
of a time-invariant linear system.

If we insert ([eq:psd_hf]) into ([eq:ms_psd]), with Sx(f) =
a constant = Dv we get

x2(t) =

∫
Sy(f)df = Dv

∫
|H(f)|2df = Dvfx

, where fx is what we call the noise bandwidth. For a single
time constant RC network the noise bandwidth is equal to

fx =
πf0
2

=
1

4RC

where fx is the noise bandwidth and f0 is the 3dB frequency.

We haven’t told you this yet, but thermal noise is white and
white means that the power spectral density is flat (constant
over all frequencies). If Sx(f) is our thermal noise source and
H(f) is a standard low pass filter, then equation ([eq:psd_hf])

tells us that the output spectral density will be shaped by H(f).
At frequencies above the fx in H(f) we expect the root power
spectral density to fall by 20dB per decade.

V. PROBABILITY DISTRIBUTION

Theorem 1 (Central limit theorem). The sum of n independent
random variables subjected to the same distribution will always
approach a normal distribution curve as n increases.

This is a neat theorem, it explains why many noise sources
we encounter in the real world are white.1 Take thermal noise
for example, it is generated by random motion of carriers in
materials. If we look at a single electron moving through the
material the probability distribution might not be Gaussian. But
summing probability distribution of the random movments with
a large number of electrons will give us a Gaussian distribution,
thus thermal noise is white.

VI. PSD OF A WHITE NOISE SOURCE

If we have a true random process with Gaussian distribution
we know that the autocorrelation function only has a value for
τ = 0. From equation ([eq:autocor]) we have that

Rx(τ) = lim
T→∞

1

T

∫ +T/2

−T/2

x(t)x(t− τ)dt

=

[
lim

T→∞

1

T

∫ +T/2

−T/2

x2(t)dt

]
δ(τ)

= x2(t)δ(τ)

The reason being that in a true random process x(t) is
uncorrelated with x(t + τ) where τ is an integer. If we use
equation ([eq:psd]) we see that

Sx(f) = 2

∫ ∞

−∞
x2(t)δ(τ)e−j2πfτdτ

= 2x2(t)

∫ ∞

−∞
δ(τ)e−j2πfτdτ

= 2x2(t)

, since

∫
δ(τ)e−j2πfτdτ = e0 = 1

This means that the power spectral density of a white noise
source is flat, or in other words, the same for all frequencies.

1Gaussian distribution = normal distribution. Noise sources with Gaussian
distribution are called white
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VII. SUMMING NOISE SOURCES

Summing noise sources is usually trivial, but we need to know
why and when it is not. We if we write the time dependant
noise signals as

v2tot(t) = (v1(t) + v2(t))
2 = v21(t) + 2v1(t)v2(t) + v22(t)

The average power is defined as

e2tot = lim
T→∞

1

T

∫ +T/2

−T/2

v2tot(t)dt

= lim
T→∞

1

T

∫ +T/2

−T/2

v21(t)dt

+ lim
T→∞

1

T

∫ +T/2

−T/2

v22(t)dt

+ lim
T→∞

1

T

∫ +T/2

−T/2

2v1(t)v2(t)dt

= e21 + e22 + lim
T→∞

1

T

∫ +T/2

−T/2

2v1(t)v2(t)dt

If e21 and e22 are uncorrelated noise sources we can skip the
last term in ([eq:noisesum]) and just write

e2tot = e21 + e22

Most natural noise sources are uncorrelated.

VIII. SIGNAL TO NOISE RATIOS

Signal to Noise Ratio (SNR) is a common method to specify
the relation between signal power and noise power in linear
systems. It is defined as

SNR = 10 log

(
Signal power

Noise power

)
= 10 log

(
v2sig

e2n

)

= 20 log

vrms√
e2n


Another useful ratio is Signal to Noise and Distortion (SNDR),
since most real systems exibit non-linearities it is useful to
include distortion in the ratio. One can calculate SNR and
SNDR in many ways. If we don’t know the expression for
e2n we can do a FFT of our output signal. From this FFT we
sum spectral components except at the signal frequency to get
noise and distortion. SNR is normally calculated as

SNR = 10 log

(
Signal power

Noise power − 6 first harmonics

)
And SNDR is calculated as

SNDR = 10 log

(
Signal power

Noise power

)
IX. NOISE FIGURE AND FRIIS FORMULA

Noise factor is a measure on the noise performance of a system.
It is defined as

F =
v2o

source contribution to v2o

where v2o is the total output noise.

The noise figure is defined as (noise factor in dB)

NF = 10 log(F )

The noise factor can also be defined as

F =
SNRinput

SNRoutput

This brings us right into what is known as Friis formula. If
we have a multistage system, for example several amplifiers
in cascade, the total noise figure of the system is defined as

F = 1 + F1 − 1 +
F2 − 1

G1
+

F3 − 1

G1G2
+ ....

Here Fi is the noise figures of the individual stages and Gi is
the available gain of each stage. This can be rewritten as

F = F1 +

N∑
i=1

Fi+1 − 1∏i−1
k=1 Gi

Friiss formula tells us that it is the noise in the first stage that
is the most important if G1 is large. We could say that in a
system it is important to amplify the noise as early as possible!

X. SPECTRAL DENSITY

Warning: This is not an introduction to spectral density. If the
subject is completely unfamiliar I’d advise reading another
source. For example chapter 4 in ? or chapter 7 in ?.

A. Definition of Spectral Density

There are two different definitions of spectral density used in
the literature. They differ by a factor of two. The one used in
signal processing books, like ?, is

Sx1(f) =

∫ ∞

−∞
Rx1(τ)e

−jωτdτ

And the one often used in books about noise, like ?, is

Sx2(f) = 2

∫ ∞

−∞
Rx2(τ)e

−jωτdτ
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In both cases Rxi(τ) is the auto-correlation function defined
as

Rxi(τ) = xi(t)xi(t+ τ)

As we can plainly see

Sx1(f) ̸= Sx2(f)

, there is no way these two can be made equal if

Rx1(τ) = Rx2(τ)

This is ok, there is no problem having two different definitions
for two different functions. In reality Sx1(f) and Sx2(f) are
different functions of frequency, and we could say that

Sx2(f) = 2Sx1(f)

if ([eq:rxequal]) is true.

B. Sources of Confusion

The problem with spectral density arises when reading literature
from different communities, for example ? and ? where
Sx(f) is used for both Sx1(f) and Sx2(f). When I started
investigating spectral densities this lead me to believe that
different sources defined the same measure “spectral density”
in two different ways. The more sources I investigated the
more unsure I was about which of the two definitions that was
correct. After months of searching (not actively, but sporadicly)
I eventually found the original source of the definition of
spectral density ?. Having the original source helped, but I still
don’t know when the original definition split into ([eq:psd1])
and ([eq:psd2]). However, I’m pretty sure the it’s just a matter
of convenience. To see why ([eq:psd2]) is the most common
among sources concerning noise we look at the inverse Fourier
Transform. By the way, if you had not noticed yet, ([eq:psd1])
says that Spectral density is the Fourier Transform of the
Auto-Correlation function. The inverse Fourier Transform of
([eq:psd1]) is

Rx1(τ) =
1

2π

∫ ∞

−∞
Sx1(f)e

jωτdw =

∫ ∞

−∞
Sx1(f)e

jωτdf

,since dw = dfdw/df = 2πdf . And for ([eq:psd2])

Rx2(τ) =
1

2

∫ ∞

−∞
Sx2(f)e

jwτdf

Before we proceed lets get rid of the e’s. We know that ejα =
cosα+ j sinα. So we could rewrite ([eq:psd1]) as

Sx1(f) =

∫ ∞

−∞
Rx1(τ)[cos(ωτ) + j sin(ωτ)]dτ

and it turns out that since Rx1(τ) is an even function we can
drop the j sinωτ term. Sx1(f) is also an even function since
the Fourier Transform of an even function is even.

The definitions then become

Sx1(f) =

∫ ∞

−∞
Rx1(τ) cos(ωτ)dτ

Rx1(τ) =

∫ ∞

−∞
Sx1(f) cos(ωτ)df

and

Sx2(f) = 2

∫ ∞

−∞
Rx2(τ) cos(ωτ)dτ

Rx2(τ) =
1

2

∫ ∞

−∞
Sx2(f) cos(ωτ)df

We can rewrite Rx2(τ) as

Rx2(τ) = x2(t)x2(t+ τ) =

∫ ∞

0

Sx2(f) cos(ωτ)df

and if τ = 0

x2
2(t) =

∫ ∞

0

Sx2(f)df

So using spectral density definition ([eq:psd2]) we see that
average power (mean square value of x2(t)) is equal to the
integral from 0 to infinity of the spectral density. If we use
([eq:psd1]) average power would be

x2
1(t) = 2

∫ ∞

0

Sx1(f)df

But if Rx1(τ) = Rx2(τ) then

x2
2(t) = x2

1(t)

even though Sx1(f) ̸= Sx2(f).

Definition ([eq:psd1]) is called the two-sided spectral density
and ([eq:psd2]) is called the one-sided spectral density.

C. Example: Thermal Noise

The spectral density of thermal noise in electronic circuit should
be known to anyone that has studied analog electronics. We
normally define the voltage spectral density of thermal noise
as

Sth(f) = 4kTR

where k is Boltzmann’s constant, T the temperature in Kelvin
and R the resistance. But ([eq:othermal]) is the spectral density
when it is defined as in ([eq:psd2]). If we were to use ([eq:psd1])
then the spectral density of thermal noise would be

Sth(f) = 2kTR
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Both these spectral densities would give the same average power
value if we use the inverse Fourier Transform of ([eq:psd1])
and ([eq:psd2]).2

D. Einstein: The source

In his 1914 paper ? Albert Einstein described, supposedly
for the first time, the auto-correlation function and what we
have come to know as the spectral density. He defined the
auto-correlation function as

M(∆) = F (t)F (t+∆)

and the intensity (spectral density) as

I(θ) =

∫ T

0

M(∆) cos(π
∆

θ
)d∆

,where the period θ = T/n and T is a very large value. The
paper is very short, only 1 page, but it is worth reading. Note
that ([eq:psd1]) is often referred to as the Wiener-Khintchine
theorem.
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2Note that if you calculate the average power of Sth(f) you’ll get infinity.
You have to include the bandwidth of the circuit you are considering for
average power to have a finite value.

https://www.youtube.com/@analogicus
https://analogicus.com/markdown-cv/
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